Energy Design of a Conceptual Autonomous Surface Vehicle (ASV)
Total Page:16
File Type:pdf, Size:1020Kb
Energy Design of a conceptual Autonomous Surface Vehicle (ASV) Tiago Filipe Rodrigues Gomes Dissertação para a obtenção do Grau de Mestre em Engenharia Civil Orientadores Professor Doutor António Bento Franco Doutor António José Nunes de Almeida Sarmento Júri Presidente: Professor Doutor Rodrigo de Almada Cardoso Proença de Oliveira Orientador: Professor Doutor António Bento Franco Vogal: Professora Doutora Helena Margarida Machado da Silva Ramos Maio de 2018 i Declaration I declare that this document is an original work of my own authorship and that it fulfils all the requirements of the Code of Conduct and Good Practices of the Universidade de Lisboa. ii Acknowledgments My thanks and appreciation to all my friends and colleagues that helped me through the entire Master Degree. I wish to thank to Professor António Sarmento for allowing me to do my thesis in partnership with WavEC. A special thanks to Engineer Diogo Lopes for all the patience and hours spent helping me and to Professor António Bento Franco, who accepted to my tutor in this dissertation. I would like to express my gratitude towards my family for all the support through all my academic journey and for giving me the opportunity to achieve my goals. And I wish to thank specially to my girlfriend, Rita Gil, who has been my rock in the last years and always encouraged me and helped me through many courses. iii Resumo alargado O objetivo desta tese é o estudo de veículos autónomos de superfície (ASV) com especial foco nas suas especificações e limitações energéticas, de modo a avaliar hipótese de desenvolver um veículo que consiga executar diferentes missões e com elevada autonomia. Actualmente, estes veículos apresentam limitações na autonomia o que leva a um grande interesse em converter a energia das ondas, o maior recurso energético dos oceanos, em eletricidade para uso futuro durante as missões. Esta tese considerou um ASV cujo casco é um monocasco e equipado com diversos aparelhos de recolha de dados e dispositivos capazes de extrair energia de três recursos disponíveis no oceano: radiação solar, vento e ondas. Ao longo da dissertação, foram estudados os recursos disponíveis na costa atlântica da ZEE portuguesa, assim como a potencial energia extraída desses mesmos recursos e a velocidade a que o ASV conseguiria operar. O ASV dimensionado apresenta um monocasco, desenvolvido para operar no oceano e em águas agitadas, com 4,56 m de comprimento, 1,3 m de largura e altura de 0,7 m, capaz de navegar a velocidades de mais de 4 nós e com elevada capacidade de carga e energia para executar as diversas missões científicas. Palavras-Chave: Veículo autónomo de superfície (ASV), Energia, Flapping Energy Utilization and Recovery (FLEUR), Monocasco, Zona Económica Exclusiva (ZEE). iv Abstract The objective of this thesis is a study about Autonomous Surface Vehicles (ASV) and their energy design and limitations in order to evaluate the hypothesis of having an ASV capable of performing different missions with high levels of autonomy. Nowadays, these vessels present limitations in the autonomy field which leads to a great interest in converting wave energy, the highest energy resource of the oceans into energy for later use on board during the missions. This dissertation considered a monohull ASV equipped with devices capable of extracting energy from three resources at the sea: solar radiation, wind and waves. During this dissertation, it was studied the resources available at the Portuguese EEZ as well as the potential energy extracted from those resources and the speed at which the ASV was able to operate. The studied ASV is a monohull, designed for open ocean and rough waters with 4,56 m length, 1,3 m width and 0,7 m height, capable of sailing at speeds of 4 Kt and with enough payload and power to execute the diverse scientific missions. Key Words: Autonomous Surface Vehicle (ASV), Energy, Flapping Energy Utilization and Recovery (FLEUR), Monohull, Economic Exclusive Zone (EEZ). v Index 1. Introduction ........................................................................................................................................ 1 2. State of the art ................................................................................................................................... 3 3. Resource assessment in the Portuguese EEZ ............................................................................. 14 3.1. Solar Energy ............................................................................................................................... 15 3.2. Wind Energy ............................................................................................................................... 18 3.3. Wave Energy .............................................................................................................................. 23 3.4. Energy Resource Comparision .................................................................................................. 25 4. Mission Requirements……………………………………………………………………….…………....27 4.1. Equipment .................................................................................................................................. 27 4.2. Preliminary Hull Design .............................................................................................................. 28 4.3. Preliminary Propulsion Calculation ............................................................................................. 30 5. Energy generation ........................................................................................................................... 32 5.1. Solar Energy ............................................................................................................................... 32 5.2. Wind Energy ............................................................................................................................... 35 5.3. Wave Energy .............................................................................................................................. 39 5.4. Renewable Energy System ........................................................................................................ 45 5.5. Energy Storage ........................................................................................................................... 48 6. Resistance and Propulsion ............................................................................................................ 56 7. ASV Design ...................................................................................................................................... 62 8. Conclusions and further work ....................................................................................................... 64 Bibliography ......................................................................................................................................... 66 APPENDIX 1. ....................................................................................................................................... A.1 APPENDIX 2. ....................................................................................................................................... A.3 APPENDIX 3. ....................................................................................................................................... A.6 APPENDIX 4. ....................................................................................................................................... A.8 APPENDIX 5. ..................................................................................................................................... A.14 APPENDIX 6. ..................................................................................................................................... A.17 vi Index of Figures Figure 1. Endurance vs Nominal Power in some developed ASVs and objective for the ASV in study. 2 Figure 2. The ASC Artemis...................................................................................................................... 3 Figure 3. ACES main structure. ............................................................................................................... 4 Figure 4. Basic SESAMO test in Genoa harbour wet dock on October 22,2003. ................................... 6 Figure 5. The MIT Surface Craft for Oceanographic and Undersea Testing. ......................................... 6 Figure 6. The Ocean Atmosphere Sensor Integration System (OASIS) ASV. ........................................ 7 Figure 7. ROAZ II visible and infrared camera. ....................................................................................... 8 Figure 8. Visible spectrum (top) and infrared (bottom) image of a human body in water. ...................... 8 Figure 9. C-Enduro. ................................................................................................................................. 9 Figure 10. 3D view of the concept design of the Ultrafast USV. ............................................................. 9 Figure 11. A drawing of the Autonaut from Pearson’s Magazine, December 1898. ............................ 10 Figure 12. WDPS ship raising a foil. ..................................................................................................... 11 Figure 13. WDPS ship speed trial. ....................................................................................................... 11 Figure 14. The Wave Glider from below.