A Statistical Study of Pulsar Proper Motions

Total Page:16

File Type:pdf, Size:1020Kb

A Statistical Study of Pulsar Proper Motions UNIVERSITY BIELEFELD FACULTY OF PHYSICS A Statistical Study of Pulsar Proper Motions Author: Timo Kaja Supervisor: Joris Verbiest 2nd referee: Golam Shaifullah November 12, 2015 Declaration: I hereby affirm that this bachelor thesis represents my own work and has not been previously submitted to any examination office. All resources used have been referenced. Abstract This thesis is about a possible statistical bias in the measurement of pulsar proper motion. This bias is similar to the Lutz & Kelker bias in parallax measurements. To investigate this bias, a likelihood analysis was conducted concerning the pulsar proper motion. The likelihood distribution was constraint using the measured parallax, upper and lower distance limits and radio flux of a pulsar as well as the distribution of pulsar three-dimensional velocity, obtained by Hobbs et al. [2005]. The resulting likelihood distribution was analysed, using self-written python methods. For this two different samples of pulsars were used. In summary the results were, that for a single pulsar the bias is insignificant for all pulsars out of the samples, since either the measurement precision of the pulsar proper motion is to high for the bias to occur or the measurement was insignificant to make a statement on the bias. Alternatively, for a larger sample of proper motion measurements, the measured proper motion tend to be underestimated. This is rather surprising, since a distance measurements of a pulsar tend to be underestimated as well. Another result from the analysis is, that for a large value with a significance of two to four σ, there is the possibility, that the measured proper motion is inconsistent with the corrected biased value obtained by this analysis. Then again we find no evidence in the data that such in a case exists in the data available. Table of Contents 1 Introduction 9 1.1 Stellar Evolution and the Formation of Neutron Stars . 10 1.1.1 Stellar Evolution . 10 1.1.2 Neutron Star Structure . 12 1.1.3 Pulsar Properties . 12 1.1.4 Pulsar Timing . 13 1.2 Astronomical Coordinate Systems . 15 1.2.1 Equatorial Coordinates . 15 1.2.2 Galactic Coordinates . 15 1.2.3 Converting Equatorial to Galactic Coordinates . 16 1.3 Pulsar Velocities . 17 1.3.1 Pulsar Proper Motions . 17 1.3.2 Pulsar Distances and the Lutz-Kelker Bias . 18 1.3.3 Pulsar Velocities . 22 2 Application of the Lutz-Kelker Bias to Pulsar Proper Motions 24 2.1 Theoretical Derivation . 24 2.2 Uncertainty Estimation . 26 2.3 Examples . 29 3 Results 32 3.1 First sample . 32 3.2 Second sample . 35 4 Conclusion and Future Research 42 5 Appendix 44 5.1 Functions . 44 5.2 The Geterrorbars Method . 45 5.3 The Sepint Method . 46 5.3.1 Graphics . 47 9 1 Introduction The pulsar phenomenon is probably one of the most interesting subjects in modern physics. Shortly after its discovery it was proposed that the origin of these pulses were rotating magne- tized neutron stars. Neutron stars up to this point were considered, if they were existing, not to be detectable. A neutron star is an exotic object and lies beyond our imagination. Hence they are a rich source of effects to test the theories abstracted from our environment in their limits. The range of theories needed to understand and describe the pulsar phenomenon ranges from general relativity, solid state physics and particle physics to the physics of exotic matter. And yet they are a riddle to solve. Neither is the mechanics that generates their characteristic emis- sion known, nor their internal structure or their origin understood. In general pulsars can be considered as clocks. This gives rise to applications by which not only the object itself but also its surrounding can be understood. With the help of pulsars the structure of the galaxy can be illuminated. As a tool, they can also be used to test a missing piece from one of the best tested theories in physics, which refuses to this date to be directly observed: gravitational waves. The first indirect proof of gravitational waves was indeed provided by the observation of a system of two pulsars in a close orbit. Since the measurement of an observable is a probability statement, this gives rise to systematic errors, if not all statistical effects are considered for this measurement. In this thesis statistical effects will be studied, which could result in a bias in the measured velocity of the objects. This type of bias was first described by Lutz & Kelker for parallax measurements and hence is referred to as the Lutz & Kelker bias. The measurement of the velocity of pulsars provides insights in the dynamical processes they are formed in. Pulsars are in general high velocity ob- jects. The additional speed compared to their ancestral population, pulsars gain in supernovae. A complete description of the velocities of the pulsar population constrains the mechanisms responsible for the velocity and hence leads to a better understanding of supernovae. 10 1 INTRODUCTION 1.1 Stellar Evolution and the Formation of Neutron Stars This chapter provides a brief overview of the concepts related to the topic of neutron stars and pulsars in particular, without going into more detail than required in the context of this thesis. For the parts on stellar evolution §(1.1.1), neutron star structure §(1.1.2) and pulsar properties §(1.1.3) the book of Irvine [1978] was mainly used with additional input from the book of Lorimer and Kramer [2012] for the Pulsar properties part. 1.1.1 Stellar Evolution The force responsible for forming structures in the universe with its infinitely long range is gravity. Gravity is an attractive force. So for nature to form stable or quasi-stable objects, a repulsive interaction is needed to counter gravity, otherwise black holes would be the only ex- isting objects. Sources of repulsive interactions are kinetic effects or fundamental forces like electromagnetic and nuclear forces. Examples of kinetic effects are angular momentum, hydro- dynamic pressure, radiation pressure in main sequence stars and neutrino radiation pressure in white dwarf and neutron stars. Most kinetic effects lead only to quasi-stable states since an- gular momentum can be lost through the action of normal hydrodynamic viscous forces, or be radiated away gravitationally or, in case of a hot system, the free energy will be radiated away. Eventually all sources of free energy will become exhausted. Another particularly important kinetic effect for the stability of white dwarfs and neutrons stars is the Fermi pressure. Since matter fundamentally consists of fermions, which obey the Pauli exclusion principle, no two fermions can occupy the same state. For a gas of non-interacting fermions, the Fermi energy is the highest energy state fermions can occupy at zero temperature. As a consequence, even at zero temperature, there exists a distribution of non-zero momentum states for the fermions. This leads to the Fermi pressure, which counters the gravitational pull: 2 ~ 2 5 P = (3π)) 3 ρ 3 (1) f 5m where ρ is the density, compare eq.(12.22) and eq.(12.26) from Ford [2013]. This equation holds true if the temperature of the system is considered cold, compared to the Fermi tempera- 5 ture. It is important to note that the Fermi pressure is proportional to ρ 3 and proportional to the inverse mass m of the particle. Due to the gravitational pull, a large cloud in space will collapse under its own mass, if the gravitational binding energy exceeds the thermal energy of the gas. As the cloud collapses, the temperature rises and so does the pressure provided by the temperature. How the pressure rises as a function of temperature and other thermodynamic variables is described by the equation of state of the matter. As the temperature rises, the cloud begins to radiate, which not only provides an additional source of pressure to stabilize the cloud, but also cools it as the kinetic energy is radiated into the cooler space surrounding the cloud. Due to the cooling, the cloud will collapse further. If the cloud is sufficiently massive, eventually the density and temperature at the core of the cloud will be large enough to sustain nuclear fusion processes. When a collapsed cloud starts nuclear fusion, it is referred to as a star. In nuclear fusion pro- cesses the mass of the product is slightly smaller than the combined mass of the constituents. 1.1 Stellar Evolution and the Formation of Neutron Stars 11 So the fusion processes provide a source of temperature and hence pressure to stabilize the star. The initial cloud consisted mostly of hydrogen. So the first nuclear reaction in the core would be the hydrogen burning where two essentially four proton (hydrogen cores) are fused to a helium-4 core. For the longest span of a stars lifetime, hydrogen burning is the main source of energy, so a hydrogen burning star is referred to as a main-sequence star. Since the density and temperature is the highest in the centre of the star, the fusion rate is also the highest in the star’s centre. This leads to the formation of a helium core in the star’s centre. The helium-rich core can provide the nuclear fuel for the fusion of more massive nuclei. For this even higher temper- atures and densities are needed, to overcome the stronger Coulomb repulsion. In a massive star, shell burning could be initiated, where the more massive nuclei are fused towards the centre and the lighter elements toward the outer layers, leading to an onion-like structure. The highest element fused inside a star with a positive energy balance is Fe56.
Recommended publications
  • The Dunhuang Chinese Sky: a Comprehensive Study of the Oldest Known Star Atlas
    25/02/09JAHH/v4 1 THE DUNHUANG CHINESE SKY: A COMPREHENSIVE STUDY OF THE OLDEST KNOWN STAR ATLAS JEAN-MARC BONNET-BIDAUD Commissariat à l’Energie Atomique ,Centre de Saclay, F-91191 Gif-sur-Yvette, France E-mail: [email protected] FRANÇOISE PRADERIE Observatoire de Paris, 61 Avenue de l’Observatoire, F- 75014 Paris, France E-mail: [email protected] and SUSAN WHITFIELD The British Library, 96 Euston Road, London NW1 2DB, UK E-mail: [email protected] Abstract: This paper presents an analysis of the star atlas included in the medieval Chinese manuscript (Or.8210/S.3326), discovered in 1907 by the archaeologist Aurel Stein at the Silk Road town of Dunhuang and now held in the British Library. Although partially studied by a few Chinese scholars, it has never been fully displayed and discussed in the Western world. This set of sky maps (12 hour angle maps in quasi-cylindrical projection and a circumpolar map in azimuthal projection), displaying the full sky visible from the Northern hemisphere, is up to now the oldest complete preserved star atlas from any civilisation. It is also the first known pictorial representation of the quasi-totality of the Chinese constellations. This paper describes the history of the physical object – a roll of thin paper drawn with ink. We analyse the stellar content of each map (1339 stars, 257 asterisms) and the texts associated with the maps. We establish the precision with which the maps are drawn (1.5 to 4° for the brightest stars) and examine the type of projections used.
    [Show full text]
  • Constraining the Masses of Microlensing Black Holes and the Mass Gap with Gaia DR2 Łukasz Wyrzykowski1 and Ilya Mandel2,3,4
    A&A 636, A20 (2020) Astronomy https://doi.org/10.1051/0004-6361/201935842 & c ESO 2020 Astrophysics Constraining the masses of microlensing black holes and the mass gap with Gaia DR2 Łukasz Wyrzykowski1 and Ilya Mandel2,3,4 1 Warsaw University Astronomical Observatory, Al. Ujazdowskie 4, 00-478 Warszawa, Poland e-mail: [email protected] 2 Monash Centre for Astrophysics, School of Physics and Astronomy, Monash University, Clayton, Victoria 3800, Australia 3 OzGrav: The ARC Center of Excellence for Gravitational Wave Discovery, Australia 4 Institute of Gravitational Wave Astronomy and School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK Received 6 May 2019 / Accepted 27 January 2020 ABSTRACT Context. Gravitational microlensing is sensitive to compact-object lenses in the Milky Way, including white dwarfs, neutron stars, or black holes, and could potentially probe a wide range of stellar-remnant masses. However, the mass of the lens can be determined only in very limited cases, due to missing information on both source and lens distances and their proper motions. Aims. Our aim is to improve the mass estimates in the annual parallax microlensing events found in the eight years of OGLE-III observations towards the Galactic Bulge with the use of Gaia Data Release 2 (DR2). Methods. We use Gaia DR2 data on distances and proper motions of non-blended sources and recompute the masses of lenses in parallax events. We also identify new events in that sample which are likely to have dark lenses; the total number of such events is now 18. Results.
    [Show full text]
  • New Wide Common Proper Motion Binaries
    Vol. 6 No. 1 January 1, 2010 Journal of Double Star Observations Page 30 New Wide Common Proper Motion Binaries Rafael Benavides1,2, Francisco Rica2,3, Esteban Reina4, Julio Castellanos5, Ramón Naves6, Luis Lahuerta7, Salvador Lahuerta7 1. Astronomical Society of Córdoba, Observatory of Posadas, MPC-IAU Code J53, C/.Gaitán nº 20, 1º, 14730 Posadas (Spain) 2. Double Star Section of Liga Iberoamericana de Astronomía (LIADA), Avda. Almirante Guillermo Brown No. 4998, 3000 Santa Fe (Argentina) 3. Astronomical Society of Mérida, C/José Ruíz Azorín, 14, 4º D, 06800 Mérida (Spain) 4. Plza. Mare de Dèu de Montserrat, 1 Etlo 2ªB, 08901 L'Hospitalet de Llobregat (Spain) 5. 0bservatory with MPC-IAU Code 939, Av. Primado Reig 183, 46020 Valencia (Spain) 6. Observatory of Montcabrer, MPC-IAU Code 213, C/Jaume Balmes, 24, 08348 Cabrils (Spain) 7. G.E.O.D.A., Observatorio Manises, MPC-IAU Code J98, C/ Mayor, 111-4, 46940 Manises (Spain) Abstract: In this work we report the discovery of 150 new double stars of which 142 are wide common proper motion stellar systems. In addition to this, we report the study of 23 recently catalogued wide common proper motion binaries discovered by other observers. Spectral types, photometric distances, kinematics and ages were determined from data ob- tained consulting the literature. Several criteria were used to determine the nature of each double star. Orbital periods and the semimajor axes were calculated. they are good sensors to detect unknown mass concen- 1. Introduction trations that they may encounter along their galactic For several years double-star amateurs have con- trajectories.
    [Show full text]
  • Lecture 8: Stellar Motions Reading: Box 19-1
    Lecture 8: Stellar Motions Reading: Box 19-1 Key Ideas The stars are in constant motion. Observed Motions Proper motions (motion against the background, measured in angular motion/time) Radial velocities (motion towards or away, measured from the Doppler shift) True Space Motion Combination of radial velocity, proper motion, and distance (important for proper motion!) The “Fixed” Stars Although the stars are moving, their motions across the sky are so small that to the naked eye, the stars appear “fixed” to the sky. Great distances make the amount of motion small on human lifetimes. (Of course, stars moving directly away or towards us will not to appear to move across the sky) Proper Motions Apparent angular motion across the sky of nearby stars with respect to distant objects. (Distant stars are used because we assume that even though they are moving through space they are so far away that from our perspective they are fixed). It is the projection of the star’s true motion through space relative to the Sun. Typical proper motion for stars in the solar neighborhood is about 0.1 arcsec/year Largest proper motion measured is 10.25 arcsec/year Barnard’s Star) Proper motions are cumulative. Effects build up over time. The longer you wait, the greater apparent angular motion is. Measuring proper motions: Compare photos of the sky taken 20 to 50 years apart Measure how much stars have moved compared to more distant background objects (galaxies, quasars). Example: if a star has a proper motion of 0.1 arcsec/year: In one year, it moves 0.1 arcsec In 10 years, it moves 10x0.1= 1 arcsec In 100 years, it moves 100x0.1 =10 arcsec It can take a long time for the constellations to noticeably change shape.
    [Show full text]
  • Arxiv:1703.10167V1
    Draft version April 9, 2018 Preprint typeset using LATEX style emulateapj v. 08/22/09 ON THE ORIGIN OF SUB-SUBGIANT STARS. I. DEMOGRAPHICS Aaron M. Geller1,2,†,∗, Emily M. Leiner3, Andrea Bellini4, Robert Gleisinger5,6, Daryl Haggard5, Sebastian Kamann7, Nathan W. C. Leigh8, Robert D. Mathieu3, Alison Sills9, Laura L. Watkins4, David Zurek8,10 1Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA) and Department of Physics & Astronomy, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60201, USA; 2Adler Planetarium, Dept. of Astronomy, 1300 S. Lake Shore Drive, Chicago, IL 60605, USA; 3Department of Astronomy, University of Wisconsin-Madison, WI 53706, USA; 4Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA; 5Department of Physics, McGill University, McGill Space Institute, 3550 University Street, Montreal, QC H3A 2A7, Canada; 6Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada; 7Institut f¨ur Astrophysik, Universit¨at G¨ottingen, Friedrich-Hund-Platz 1, 37077 G¨ottingen, Germany; 8Department of Astrophysics, American Museum of Natural History, Central Park West and 79th Street, New York, NY 10024; 9Department of Physics and Astronomy, McMaster University, Hamilton, ON L8S 4M1, Canada; 10Visiting Researcher, NRC – Herzberg Astronomy and Astrophysics, National Research Council of Canada, 5071 West Saanich Road, Victoria, British Columbia V9E 2E7, Canada Draft version April 9, 2018 ABSTRACT Sub-subgiants are stars observed to be redder than normal main-sequence stars and fainter than normal subgiant (and giant) stars in an optical color-magnitude diagram. The red straggler stars, which lie redward of the red giant branch, may be related and are often grouped together with the sub-subgiants in the literature.
    [Show full text]
  • Near IR Astrometry of Magnetars Shriharsh P
    Neutron Stars and Pulsars: Challenges and Opportunities after 80 years Proceedings IAU Symposium No. 291, 2012 c International Astronomical Union 2013 J. van Leeuwen, ed. doi:10.1017/S1743921312024702 Near IR Astrometry of Magnetars Shriharsh P. Tendulkar Department of Astronomy and Astrophysics, California Institute of Technology email: [email protected] Abstract. We report on the progress of our five-year program for astrometric monitoring of mag- netars using high-resolution NIR observations using the laser guide star adaptive optics (LGS- AO) supported NIRC2 camera on the 10-meter Keck telescope. We have measured the proper motion of two of the youngest magnetars, SGR 1806−20 and SGR 1900+14, which have coun- terparts with K ∼21 mag, and have placed a preliminary upper limit on the motion of the young AXP 1E 1841−045. The precision of the proper motion measurement is at the milliarcsecond per year level. Our proper motion measurements now provide evidence to link SGR 1806−20 and SGR 1900+14 with neighboring young star clusters. At the distances of these magnetars, their proper motion corresponds to transverse space velocities of 350±100 km s−1 and 130±30 km s−1 respectively. The upper limit on the proper motion of AXP 1E 1841−045 is 160 km s−1 .With the sample of proper motions available, we conclude that the kinematics of the magnetar family are not distinct from that of pulsars. Keywords. infrared:stars,stars:neutron,techniques: high angular resolution, astrometry, instrumentation: adaptive optics 1. Introduction Magnetars or highly magnetized neutron stars were proposed by Thompson & Duncan (1996) as a unified model to explain the phenomena of soft gamma repeaters (SGRs) and anomalous X-ray pulsars (AXPs).
    [Show full text]
  • The Proper Motion of M31 Roeland Van Der Marel (Stsci)
    The Proper Motion of M31 Roeland van der Marel (STScI) (ApJ, July 2012) I: HST measurement (Sohn, Anderson & vdMarel) II: Implied velocity + LG mass (vdMarel et al.) III: MW-M31-M33 future (vdMarel, Besla, et al.) [Other collaborators: Fardal, Beaton, Guhathakurta, Brown, Cox] History • 1912: Slipher measures VLOS ; implies approach towards Milky Way at ~110 km/s Galactocentric • 1918: Barnard finds no dectable proper motion (PM) from observations started in 1898 • No successful subsequent proper motion measurements 2 • The MW and M31 protogalaxies started expanding radially outwards after the Big Bang • Subsequently started falling back Theory together due to their mutual gravity (timing argument) • Angular momentum induced by [Peebles et al. 2001] tidal torques from surrounding model Local Universe: Vtan < 200 km/s solutions • Millennium simulation MW-M31- like pairs (Li & White 2008) – median Vtan ~ 87 km/s • Action modeling shows many v possible solutions trans supergalactic coordinates wide range of possible orbits 3 Proper Motion Challenge • Relevant proper motions are small – 200 km/s at M31 = 55 μas/year – 40 km/s at M31 = 11 μas/year • Maser VLBI – 2014? – First discovered in M31 by Sjouwerman et al. (2010) and Darling (2011) – Some years of follow-up required • GAIA – 2018? – MW-optimized, but can measure bright uncrowded M31 stars • HST – now! – 200 km/s at M31 = 0.007 ACS/WFC pixels over 7 years 4 M31 HST Proper Motion Measurement • Three fields observed to great depth (>200 orbits)with ACS 2002-2004 to study MSTO (Brown et al.) – Spheroid – Outer Disk – Tidal Stream • Reobserved in 2010 for 9 orbits to determine proper motions.
    [Show full text]
  • On Gp Kuiper's Work on the Stars of Large Proper Motion
    ON G.P. KUIPER'S WORK ON THE STARS OF LARGE PROPER MOTION William P. Bidelman Warner and Swasey Observatory, Case Western Reserve University ABSTRACT The writer is preparing for publication a complete listing of the late G.P. Kuiperfs spectral classifications of stars of large proper motion north of δ=-50 . This work, resulting from his observations made at the Yerkes and McDonald Observatories some 35 years ago, has been only partially published; it is esti- mated that useful unpublished classifications exist for the order of 1000 stars. This paper discusses the background of his program and the procedures to be followed in making these data generally available. Kuiper's spectral classification program on the stars of large proper motion, which eventually comprised some 3500 objects observed during 1938-1944 at Yerkes and McDonald, represented a natural outgrowth of his earlier determination with the Lick Cross ley reflector of the colors of all known stars of large par- allax north of 6=-20° for which no spectral class nor color index was known. On reporting its completion, Kuiper (1935) states: "Next in importance to the stars of (known) large parallax, in a statistical study of the near-by stars, are the stars with large proper motions (but without known parallax). Annual proper motions of 0750 and larger invariably indicate interesting stars; they are either in the immediate neighborhood of the Sun, or pos- sess very high space velocities. The lower limit 0750 has been adopted in the present color program, but in future work the limit may well be taken as low as 074 or 073.
    [Show full text]
  • Proper Motion of a Star
    Page 1 of 7 Group Members: __________________ __________________ __________________ Proper Motion of a Star In this exercise you will measure the proper motion of Barnard’s Star and use it, with a given parallax and radial velocity, to determine the space motion of the star. Background information In 1718 Edmund Halley had noted that some stars were not fixed, but appeared to move in the sky relative to other stars. Arctures in Boötes and Sirius in Canis Major were the first stars detected by Halley to have proper motion. Proper motion is the angular change in position of a star across our line of sight, measured in arc seconds per year, and symbolized with the Greek letter “mu” μ. Proper motion is generally measured by taking photographs several years apart and measuring the movement of the image of a star with respect to more distant background stars over that time period. Usually decades must elapse between successive photographs before a reliable measurement can be made. The star with the largest proper motion was discovered by E. E. Barnard in 1916 at Yerkes Observatory. This star, now called Barnard’s Star, is a 9.5 magnitude star located in the constellation Ophiuchus. Its proper motion is so much larger than that of any other star that it is considered to be virtually a “runaway” star. Even so, the angular velocity is small enough that measurements must be made from photographs taken many years apart. The negatives of Barnard’s Star provided in this lab were taken in 1924 and 1951 respectively.
    [Show full text]
  • Arxiv:2101.05282V3 [Astro-Ph.SR] 2 Feb 2021 at Angular Separations Greater Than About One Arcsecond, Wide Et Al
    MNRAS 000,1–26 (2021) Preprint 3 February 2021 Compiled using MNRAS LATEX style file v3.0 A million binaries from Gaia eDR3: sample selection and validation of Gaia parallax uncertainties Kareem El-Badry,1,2¢ Hans-Walter Rix,2 and Tyler M. Heintz3 1Department of Astronomy and Theoretical Astrophysics Center, University of California Berkeley, Berkeley, CA 94720, USA 2Max-Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg, Germany 3Department of Astronomy, Boston University, 725 Commonwealth Ave., Boston, MA 02215, US Accepted to MNRAS ABSTRACT We construct from Gaia eDR3 an extensive catalog of spatially resolved binary stars within ≈ 1 kpc of the Sun, with projected separations ranging from a few au to 1 pc. We estimate the probability that each pair is a chance alignment empirically, using the Gaia catalog itself to calculate the rate of chance alignments as a function of observables. The catalog contains 1.3 (1.1) million binaries with >90% (>99%) probability of being bound, including 16,000 white dwarf – main sequence (WD+MS) binaries and 1,400 WD+WD binaries. We make the full catalog publicly available, as well as the queries and code to produce it. We then use this sample to calibrate the published Gaia DR3 parallax uncertainties, making use of the binary components’ near-identical parallaxes. We show that these uncertainties are generally reliable for faint stars (퐺 & 18), but are underestimated significantly for brighter stars. The underestimates are generally ≤ 30% for isolated sources with well-behaved astrometry, but are larger (up to ∼80%) for apparently well-behaved sources with a companion within .
    [Show full text]
  • Arxiv:0902.1781V2 [Astro-Ph.GA] 30 Mar 2009 Martinez-Delgado .Munn A
    SEGUE: A Spectroscopic Survey of 240,000 stars with g =14–20 Brian Yanny1, Constance Rockosi2, Heidi Jo Newberg3, Gillian R. Knapp4, Jennifer K. Adelman-McCarthy1, Bonnie Alcorn1, Sahar Allam1, Carlos Allende Prieto5,6, Deokkeun An7, Kurt S. J. Anderson8,9, Scott Anderson10, Coryn A.L. Bailer-Jones11, Steve Bastian1, Timothy C. Beers12, Eric Bell11, Vasily Belokurov13, Dmitry Bizyaev8, Norm Blythe8, John J. Bochanski10, William N. Boroski1, Jarle Brinchmann14, J. Brinkmann8, Howard Brewington8, Larry Carey10, Kyle M. Cudworth15, Michael Evans10, N. W. Evans13, Evalyn Gates15, B. T. G¨ansicke16, Bruce Gillespie8, Gerald Gilmore13, Ada Nebot Gomez-Moran17, Eva K. Grebel18, Jim Greenwell10, James E. Gunn4, Cathy Jordan8, Wendell Jordan8, Paul Harding19, Hugh Harris20, John S. Hendry1, Diana Holder8, Inese I. Ivans4, Zeljko Ivezi´c10, Sebastian Jester11, Jennifer A. Johnson7, Stephen M. Kent1, Scot Kleinman8, Alexei Kniazev11, Jurek Krzesinski8, Richard Kron15, Nikolay Kuropatkin1, Svetlana Lebedeva1, Young Sun Lee12, R. French Leger1, S´ebastien L´epine21, Steve Levine20, Huan Lin1, Daniel C. Long8, Craig Loomis4, Robert Lupton4, Olena Malanushenko8, Viktor Malanushenko8, Bruce Margon22, David Martinez-Delgado11, Peregrine McGehee23, Dave Monet20, Heather L. Morrison19, Jeffrey A. Munn20, Eric H. Neilsen, Jr.1, Atsuko Nitta8, John E. Norris24, Dan Oravetz8, Russell Owen10, Nikhil Padmanabhan25, Kaike Pan8, R. S. Peterson1, Jeffrey R. Pier20, Jared Platson1, Paola Re Fiorentin26,11, Gordon T. Richards27, Hans-Walter Rix11, David J. Schlegel25, Donald P. Schneider28, Matthias R. Schreiber29, Axel Schwope17, Valena Sibley1, Audrey Simmons8, Stephanie A. Snedden8, J. Allyn Smith30, Larry Stark10, Fritz Stauffer8, M. Steinmetz17, C. Stoughton1, Mark SubbaRao15,31, Alex Szalay32, Paula Szkody10, Aniruddha R. Thakar32, Sivarani Thirupathi12, Douglas Tucker1, Alan Uomoto33, Dan Vanden Berk28, Simon Vidrih18, Yogesh Wadadekar4,34, Shannon Watters8, Ron Wilhelm35, Rosemary F.
    [Show full text]
  • New Determinations of the Proper Motions of 44 Pulsars PA
    Mon. Not. R. Astron. Soc. 261,113-124 (1993) .113H New determinations of the proper motions of 44 pulsars 93MNRAS.261. 19 P. A. Harrison, A. G. Lyne and B. Anderson University of Manchester, Nuffield Radio Astronomy Laboratories, Jodrell Bank, Macclesfield, Cheshire SKI 1 9DL Accepted 1992 August 28. Received 1992 August 28; in original form 1992 May 22 ABSTRACT A programme of observations to measure the proper motions of 44 pulsars has been carried out at Jodrell Bank over a four-year period, yielding 31 determinations of proper motion and 13 upper limits. Observations were carried out with two interfero- meters of the MERLIN radio synthesis instrument at 408 MHz. By wide-field phase referencing to multiple sources within the primary beam of the instrument, accurate positions of each pulsar relative to its reference sources have been determined for a number of epochs. The change in the measured position with epoch results in the determination of the proper motion of the pulsar, using a method similar to that of Lyne, Anderson & Salter. The new measurements double the number of interfero- metrically measured proper motions and reinforce the general picture which emerged from that study, i.e. pulsars form a population of high-velocity objects (with rms speed - 300 km s~1 ) which seem to be migrating from the galactic plane. The new kinetic age determinations also support the conclusion that the magnetic fields of pulsars decay on time-scales of a few million years. The observation of a small number of pulsars moving towards the galactic plane, however, implies that there is a small population of pulsars born far from the plane, requiring some modification of the traditionally held views about pulsar birthplaces.
    [Show full text]