Read-Only Diskless Filesystem with Debian 7.0 CTRL.01.01.001
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
CST8207 – Linux O/S I
Mounting a Filesystem Directory Structure Fstab Mount command CST8207 - Algonquin College 2 Chapter 12: page 467 - 496 CST8207 - Algonquin College 3 The mount utility connects filesystems to the Linux directory hierarchy. The mount point is a directory in the local filesystem where you can access mounted filesystem. This directory must exist before you can mount a filesystem. All filesystems visible on the system exist as a mounted filesystem someplace below the root (/) directory CST8207 - Algonquin College 4 can be mounted manually ◦ can be listed in /etc/fstab, but not necessary ◦ all mounting information supplied manually at command line by user or administrator can be mounted automatically on startup ◦ must be listed /etc/fstab, with all appropriate information and options required Every filesystem, drive, storage device is listed as a mounted filesystem associated to a directory someplace under the root (/) directory CST8207 - Algonquin College 5 CST8207 - Algonquin College 6 Benefits Scalable ◦ As new drives are added and new partitions are created, further filesystems can be mounted at various mount points as required. ◦ This means a Linux system does not need to worry about running out of disk space. Transparent ◦ No application would stop working if transferred to a different partition, because access to data is done via the mount point. ◦ Also transparent to user CST8207 - Algonquin College 7 All known filesystems volumes are typically listed in the /etc/fstab (static information about filesystem) file to help automate the mounting process If it is not listed in the /etc/fstab file, then all appropriate information about the filesystem needs to be listed manually at the command line. -
Practice Test Version 1.8 LPI 117-101: Practice Exam QUESTION NO: 1 CORRECT TEXT
LPI 117-101 117-101 LPI 101 General Linux, Part I Practice Test Version 1.8 LPI 117-101: Practice Exam QUESTION NO: 1 CORRECT TEXT You suspect that a new ethernet card might be conflicting with another device. Which file should you check within the /proc tree to learn which IRQs are being used by which kernel drives? Answer: interrupts QUESTION NO: 2 How many SCSI ids for peripherals can SCSI-1 support? A. 5 B. 6 C. 7 D. 8 Answer: C Explanation: SCSI-1 support total 7 peripherals. There are several different types of SCSI devices. The original SCSI specification is commonly referred to as SCSI-1. The newer specification, SCSI-2, offers increased speed and performance, as well as new commands. Fast SCSI increases throughput to more than 10MB per second. Fast-Wide SCSI provides a wider data path and throughput of up to 40MB per second and up to 15 devices. There there are Ultra-SCSI and Ultra-Wide-SCSI QUESTION NO: 3 You need to install a fax server. Which type of fax/modem should you install to insure Linux compatibility? Test-King.com A. External Serial Fax/modem B. External USB Fax/modem C. Internal ISA Fax/modem D. Internal PCI Fax/modem Answer: A QUESTION NO: 4 You are running Linux 2.0.36 and you need to add a USB mouse to your system. Which of the following statements is true? "Welcome to Certification's Main Event" - www.test-king.com 2 LPI 117-101: Practice Exam A. You need to rebuild the kernel. -
Control of Protein Orientation on Gold Nanoparticles † ∥ † § † ∥ ⊥ Wayne Lin, Thomas Insley, Marcus D
Article pubs.acs.org/JPCC Control of Protein Orientation on Gold Nanoparticles † ∥ † § † ∥ ⊥ Wayne Lin, Thomas Insley, Marcus D. Tuttle, Lingyang Zhu, Deborah A. Berthold, Petr Kral,́, † ‡ # † Chad M. Rienstra,*, , , and Catherine J. Murphy*, † ‡ Department of Chemistry and Department of Biochemistry, University of Illinois at Urbana−Champaign, 600 South Matthews Avenue, Urbana, Illinois 61801, United States § School of Chemical Sciences, University of Illinois at Urbana−Champaign, 505 South Matthews Avenue, Urbana, Illinois 61801, United States ∥ ⊥ Department of Chemistry and Department of Physics, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607, United States # Center for Biophysics and Computational Biology, University of Illinois at Urbana−Champaign, 607 South Matthews Avenue, Urbana, Illinois 61801, United States *S Supporting Information ABSTRACT: Gold nanoparticles (Au NPs) have attracted much attention due to their potential applications in nanomedicine. While numerous studies have quantified biomolecular adsorption to Au NPs in terms of equilibrium binding constants, far less is known about biomolecular orientation on nanoparticle surfaces. In this study, the binding of the protein α-synuclein to citrate and (16- mercaptohexadecyl)trimethylammonium bromide (MTAB)-coated 12 nm Au NPs is examined by heteronuclear single quantum coherence NMR spectroscopy to provide site-specific measurements of protein−nanoparticle binding. Molecular dynamics simulations support the orientation assignments, which -
File System, Files, and *Tab /Etc/Fstab
File system, files, and *tab File system files directories volumes, file systems mounting points local versus networked file systems 1 /etc/fstab Specifies what is to be mounted where and how fs_spec: describes block special device for remote filesystem to be mounted fs_file: describes the mount point fs_vfstype: describes the type of file system fs_mntops: describes the mount options associated with the filesystem 2 /etc/fstab cont. fs_freq: used by the dump command fs_passno: used by fsck to determine the order in which checks are done at boot time. Root file systems should be specified as 1, others should be 2. Value 0 means that file system does not need to be checked 3 /etc/fstab 4 from blocks to mounting points metadata inodes directories superblocks 5 mounting file systems mounting e.g., mount -a unmounting manually or during shutdown umount 6 /etc/mtab see what is mounted 7 Network File System Access file system (FS) over a network looks like a local file system to user e.g. mount user FS rather than duplicating it (which would be a disaster) Developed by Sun Microsystems (mid 80s) history for NFS: NFS, NFSv2, NFSv3, NFSv4 RFC 3530 (from 2003) take a look to see what these RFCs are like!) 8 Network File System How does this actually work? server needs to export the system client needs to mount the system server: /etc/exports file client: /etc/fstab file 9 Network File System Security concerns UID GID What problems could arise? 10 Network File System example from our raid system (what is a RAID again?) Example of exports file from -
The Linux Command Line
The Linux Command Line Fifth Internet Edition William Shotts A LinuxCommand.org Book Copyright ©2008-2019, William E. Shotts, Jr. This work is licensed under the Creative Commons Attribution-Noncommercial-No De- rivative Works 3.0 United States License. To view a copy of this license, visit the link above or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042. A version of this book is also available in printed form, published by No Starch Press. Copies may be purchased wherever fine books are sold. No Starch Press also offers elec- tronic formats for popular e-readers. They can be reached at: https://www.nostarch.com. Linux® is the registered trademark of Linus Torvalds. All other trademarks belong to their respective owners. This book is part of the LinuxCommand.org project, a site for Linux education and advo- cacy devoted to helping users of legacy operating systems migrate into the future. You may contact the LinuxCommand.org project at http://linuxcommand.org. Release History Version Date Description 19.01A January 28, 2019 Fifth Internet Edition (Corrected TOC) 19.01 January 17, 2019 Fifth Internet Edition. 17.10 October 19, 2017 Fourth Internet Edition. 16.07 July 28, 2016 Third Internet Edition. 13.07 July 6, 2013 Second Internet Edition. 09.12 December 14, 2009 First Internet Edition. Table of Contents Introduction....................................................................................................xvi Why Use the Command Line?......................................................................................xvi -
Filesystem Hierarchy Standard
Filesystem Hierarchy Standard LSB Workgroup, The Linux Foundation Filesystem Hierarchy Standard LSB Workgroup, The Linux Foundation Version 3.0 Publication date March 19, 2015 Copyright © 2015 The Linux Foundation Copyright © 1994-2004 Daniel Quinlan Copyright © 2001-2004 Paul 'Rusty' Russell Copyright © 2003-2004 Christopher Yeoh Abstract This standard consists of a set of requirements and guidelines for file and directory placement under UNIX-like operating systems. The guidelines are intended to support interoperability of applications, system administration tools, development tools, and scripts as well as greater uniformity of documentation for these systems. All trademarks and copyrights are owned by their owners, unless specifically noted otherwise. Use of a term in this document should not be regarded as affecting the validity of any trademark or service mark. Permission is granted to make and distribute verbatim copies of this standard provided the copyright and this permission notice are preserved on all copies. Permission is granted to copy and distribute modified versions of this standard under the conditions for verbatim copying, provided also that the title page is labeled as modified including a reference to the original standard, provided that information on retrieving the original standard is included, and provided that the entire resulting derived work is distributed under the terms of a permission notice identical to this one. Permission is granted to copy and distribute translations of this standard into another language, under the above conditions for modified versions, except that this permission notice may be stated in a translation approved by the copyright holder. Dedication This release is dedicated to the memory of Christopher Yeoh, a long-time friend and colleague, and one of the original editors of the FHS. -
Advanced Bash-Scripting Guide
Advanced Bash−Scripting Guide An in−depth exploration of the art of shell scripting Mendel Cooper <[email protected]> 2.2 31 October 2003 Revision History Revision 0.1 14 June 2000 Revised by: mc Initial release. Revision 0.2 30 October 2000 Revised by: mc Bugs fixed, plus much additional material and more example scripts. Revision 0.3 12 February 2001 Revised by: mc Another major update. Revision 0.4 08 July 2001 Revised by: mc More bugfixes, much more material, more scripts − a complete revision and expansion of the book. Revision 0.5 03 September 2001 Revised by: mc Major update. Bugfixes, material added, chapters and sections reorganized. Revision 1.0 14 October 2001 Revised by: mc Bugfixes, reorganization, material added. Stable release. Revision 1.1 06 January 2002 Revised by: mc Bugfixes, material and scripts added. Revision 1.2 31 March 2002 Revised by: mc Bugfixes, material and scripts added. Revision 1.3 02 June 2002 Revised by: mc 'TANGERINE' release: A few bugfixes, much more material and scripts added. Revision 1.4 16 June 2002 Revised by: mc 'MANGO' release: Quite a number of typos fixed, more material and scripts added. Revision 1.5 13 July 2002 Revised by: mc 'PAPAYA' release: A few bugfixes, much more material and scripts added. Revision 1.6 29 September 2002 Revised by: mc 'POMEGRANATE' release: some bugfixes, more material, one more script added. Revision 1.7 05 January 2003 Revised by: mc 'COCONUT' release: a couple of bugfixes, more material, one more script. Revision 1.8 10 May 2003 Revised by: mc 'BREADFRUIT' release: a number of bugfixes, more scripts and material. -
Oracle® Linux 7 Managing File Systems
Oracle® Linux 7 Managing File Systems F32760-07 August 2021 Oracle Legal Notices Copyright © 2020, 2021, Oracle and/or its affiliates. This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited. The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing. If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then the following notice is applicable: U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any programs embedded, installed or activated on delivered hardware, and modifications of such programs) and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial computer software" or "commercial computer software documentation" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated software, any programs embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the license contained in the applicable contract. -
Name Synopsis Description Options
UMOUNT(8) System Administration UMOUNT(8) NAME umount − unmount file systems SYNOPSIS umount −a [−dflnrv][−t fstype][−O option...] umount [−dflnrv]{directory|device}... umount −h|−V DESCRIPTION The umount command detaches the mentioned file system(s) from the file hierarchy. A file system is spec- ified by giving the directory where it has been mounted. Giving the special device on which the file system livesmay also work, but is obsolete, mainly because it will fail in case this device was mounted on more than one directory. Note that a file system cannot be unmounted when it is ’busy’ - for example, when there are open files on it, or when some process has its working directory there, or when a swap file on it is in use. The offending process could evenbe umount itself - it opens libc, and libc in its turn may open for example locale files. Alazy unmount avoids this problem, but it may introduce another issues. See −−lazy description below. OPTIONS −a, −−all All of the filesystems described in /proc/self/mountinfo (or in deprecated /etc/mtab) are un- mounted, except the proc, devfs, devpts, sysfs, rpc_pipefs and nfsd filesystems. This list of the filesystems may be replaced by −−types umount option. −A, −−all−targets Unmount all mountpoints in the current namespace for the specified filesystem. The filesystem can be specified by one of the mountpoints or the device name (or UUID, etc.). When this option is used together with −−recursive,then all nested mounts within the filesystem are recursively un- mounted. This option is only supported on systems where /etc/mtab is a symlink to /proc/mounts. -
Managing Network File Systems in Oracle® Solaris 11.4
Managing Network File Systems in ® Oracle Solaris 11.4 Part No: E61004 August 2021 Managing Network File Systems in Oracle Solaris 11.4 Part No: E61004 Copyright © 2002, 2021, Oracle and/or its affiliates. This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited. The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing. If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then the following notice is applicable: U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any programs embedded, installed or activated on delivered hardware, and modifications of such programs) and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial computer software" or "commercial computer software documentation" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated software, any programs embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the license contained in the applicable contract. -
Bash Tutorial
Bash Shell Lecturer: Prof. Andrzej (AJ) Bieszczad Email: [email protected] Phone: 818-677-4954 Bash Shell The shell of Linux • Linux has a variety of different shells: – Bourne shell (sh), C shell (csh), Korn shell (ksh), TC shell (tcsh), Bour ne Again shell (bash). • Certainly the most popular shell is “bash”. Bash is an sh- compatible shell that incorporates useful features from the Korn shell (ksh) and C shell (csh). • It is intended to conform to the IEEE POSIX P1003.2/ISO 9945.2 Shell and Tools standard. • It offers functional improvements over sh for both programming and interactive use. Bash Shell Programming or Scripting ? • bash is not only an excellent command line shell, but a scripting language in itself. Shell scripting allows us to use the shell's abilities and to automate a lot of tasks that would otherwise require a lot of commands. • Difference between programming and scripting languages: – Programming languages are generally a lot more powerful and a lot faster than scriptin g languages. Programming languages generally start from source code and are compil ed into an executable. This executable is not easily ported into different operating syste ms. – A scripting language also starts from source code, but is not compiled into an executabl e. Rather, an interpreter reads the instructions in the source file and executes each inst ruction. Interpreted programs are generally slower than compiled programs. The main a dvantage is that you can easily port the source file to any operating system. bash is a s cripting language. Other examples of scripting languages are Perl, Lisp, and Tcl. -
On-Demand Host-Container Filesystem Sharing
TECHNION – ISRAEL INSTITUTE OF TECHNOLOGY On-Demand Host-Container Filesystem Sharing Bassam Yassin and Guy Barshatski Supervisor: Noam Shalev NSSL Labs Winter 2016 Implementing and adding a new feature to Docker open source project which allows a host to add extra volume to a running container 1 Contents List Of Figures ............................................................................................................................ 3 1 Abstract ................................................................................................................................. 4 2 Introduction ........................................................................................................................... 5 3 Background Theory ................................................................................................................ 6 3.1 Device .............................................................................................................................. 6 3.1.1 Character devices ..................................................................................................... 6 3.1.2 Block devices ............................................................................................................ 6 3.2 Unix-Like Filesystem ....................................................................................................... 7 3.3 Namespaces and Cgroups ............................................................................................... 9 3.3.1 Namespaces .............................................................................................................