Physiologic and Genetic Comparisons of Lysine and Leucine Distribution in High and Low Protein Corn Karl Lucken Iowa State University
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Effect of Peptide Histidine Isoleucine on Water and Electrolyte Transport in the Human Jejunum
Gut: first published as 10.1136/gut.25.6.624 on 1 June 1984. Downloaded from Gut, 1984, 25, 624-628 Alimentary tract and pancreas Effect of peptide histidine isoleucine on water and electrolyte transport in the human jejunum K J MORIARTY, J E HEGARTY, K TATEMOTO, V MUTT, N D CHRISTOFIDES, S R BLOOM, AND J R WOOD From the Department of Gastroenterology, St Bartholomew's Hospital, London, The Liver Unit, King's College Hospital, London, Department ofMedicine, Hammersmith Hospital, London, and Department of Biochemistry, Karolinska Institute, Stockholm, Sweden SUMMARY Peptide histidine isoleucine, a 27 amino acid peptide with close amino acid sequence homology to vasoactive intestinal peptide and secretin, is distributed throughout the mammalian intestinal tract, where it has been localised to intramural neurones. An intestinal perfusion technique has been used to study the effect of intravenous peptide histidine isoleucine (44.5 pmol/kg/min) on water and electrolyte transport from a plasma like electrolyte solution in human jejunum in vivo. Peptide histidine isoleucine infusion produced peak plasma peptide histidine isoleucine concentrations in the range 2000-3000 pmolIl, flushing, tachycardia and a reduction in diastolic blood pressure. Peptide histidine isoleucine caused a significant inhibition of net absorption of water, sodium, potassium and bicarbonate and induced a net secretion of chloride, these changes being completely reversed during the post-peptide histidine isoleucine period. These findings suggest that endogenous peptide histidine isoleucine may participate in the neurohumoral regulation of water and electrolyte transport in the human jejunum. http://gut.bmj.com/ Peptide histidine isoleucine, isolated originally from INTESTINAL PERFUSION mammalian small intestine, is a 27-amino acid After an eight hour fast, each subject swallowed a peptide having close amino acid sequence homology double lumen intestinal perfusion tube, incorpo- to vasoactive intestinal peptide and secretin. -
Isoleucine, an Essential Amino Acid, Prevents Liver Metastases of Colon Cancer by Antiangiogenesis Kazumoto Murata1 and Masami Moriyama2
Research Article Isoleucine, an Essential Amino Acid, Prevents Liver Metastases of Colon Cancer by Antiangiogenesis Kazumoto Murata1 and Masami Moriyama2 1The First Department of Internal Medicine, Mie University School of Medicine, Tsu, Mie, Japan and 2Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan Abstract infection in the airways of cystic fibrosis (8), and susceptibility to salmonella infection in mouse intestinal tracts (9). In addition to In spite of recent advances in the treatment of colon cancer, h multiple liver metastases of colon cancer are still difficult to their direct antimicrobial activities, -defensins are strong treat. Some chemotherapeutic regimens have been reported to chemotactic factors for memory T cells and dendritic cells, be efficient, but there is a high risk of side effects associated suggesting that they also play an important role in acquired immunity (10–12). h-defensins are also inducible by inflammatory with these. Here, we show that isoleucine, an essential amino a h acid, prevents liver metastases in a mouse colon cancer cytokines, such as tumor necrosis factor- and interleukin-1 (13, 14). Recently, Fehlbaum et al. (15) reported that isoleucine metastatic model. Because isoleucine is a strong inducer of h B-defensin, we first hypothesized that it prevented liver and its analogues are highly specific inducers of -defensins. We thus originally hypothesized that isoleucine may contribute to metastases via the accumulation of dendritic cells or memory B tumor immunity through both innate and acquired immunity by T cells through up-regulation of -defensin. However, neither h B-defensin nor immunologic responses were induced by induction of -defensins. -
Workshop 1 – Biochemistry (Chem 160)
Workshop 1 – Biochemistry (Chem 160) 1. Draw the following peptide at pH = 7 and make sure to include the overall charge, label the N- and C-terminus, the peptide bond and the -carbon. AVDKY Give the overall charge of the peptide at pH = 3 and 12. 2. Draw a titration curve for Arg, make sure to label the different points. Determine the pI for Arg. 3. Nonpolar solute + water = solution a. What is the S of the universe, system and surroundings? The S of the universe would decrease this is why it is not spontaneous, the S of the system would increase but to a lesser extent to which the S of the surrounding would decrease S universe = S system + S surroundings 4. What is the hydrophobic effect and explain why it is thermodynamically favorable. The hydrophobic effect is when hydrophobic molecules tend to clump together burying them and placing hydrophilic molecules on the outside. The reason this is thermodynamically favorable is because it frees caged water molecules when burying clumping the hydrophobic molecules together. 5. Urea dissolves very readily in water, but the solution becomes very cold as the urea dissolves. How is this possible? Urea dissolves in water because when dissolving there is a net increase in entropy of the universe. The heat exchange, getting colder only reflects the enthalpy (H) component of the total energy change. The entropy change is high enough to offset the enthalpy component and to add up to an overall -G 6. A mutation that changes an alanine residue in the interior of a protein to valine is found to lead to a loss of activity. -
The Optimum Isoleucine:Lysine Ratio in Starter Diets to Maximize Growth Performance of the Early-Weaned Pig
Kansas Agricultural Experiment Station Research Reports Volume 0 Issue 10 Swine Day (1968-2014) Article 837 2000 The optimum isoleucine:lysine ratio in starter diets to maximize growth performance of the early-weaned pig B W. James Robert D. Goodband Michael D. Tokach See next page for additional authors Follow this and additional works at: https://newprairiepress.org/kaesrr Part of the Other Animal Sciences Commons Recommended Citation James, B W.; Goodband, Robert D.; Tokach, Michael D.; Nelssen, Jim L.; and DeRouchey, Joel M. (2000) "The optimum isoleucine:lysine ratio in starter diets to maximize growth performance of the early-weaned pig," Kansas Agricultural Experiment Station Research Reports: Vol. 0: Iss. 10. https://doi.org/10.4148/ 2378-5977.6677 This report is brought to you for free and open access by New Prairie Press. It has been accepted for inclusion in Kansas Agricultural Experiment Station Research Reports by an authorized administrator of New Prairie Press. Copyright 2000 Kansas State University Agricultural Experiment Station and Cooperative Extension Service. Contents of this publication may be freely reproduced for educational purposes. All other rights reserved. Brand names appearing in this publication are for product identification purposes only. No endorsement is intended, nor is criticism implied of similar products not mentioned. K-State Research and Extension is an equal opportunity provider and employer. The optimum isoleucine:lysine ratio in starter diets to maximize growth performance of the early-weaned pig Abstract A total of 360 weanling pigs (initially 12.3 lb BW and approximately 18 d of age) was used in a 14-d growth assay to determine the optimal isoleucine:lysine ratio to maximize growth performance. -
Effects of Single Amino Acid Deficiency on Mrna Translation Are Markedly
www.nature.com/scientificreports OPEN Efects of single amino acid defciency on mRNA translation are markedly diferent for methionine Received: 12 December 2016 Accepted: 4 May 2018 versus leucine Published: xx xx xxxx Kevin M. Mazor, Leiming Dong, Yuanhui Mao, Robert V. Swanda, Shu-Bing Qian & Martha H. Stipanuk Although amino acids are known regulators of translation, the unique contributions of specifc amino acids are not well understood. We compared efects of culturing HEK293T cells in medium lacking either leucine, methionine, histidine, or arginine on eIF2 and 4EBP1 phosphorylation and measures of mRNA translation. Methionine starvation caused the most drastic decrease in translation as assessed by polysome formation, ribosome profling, and a measure of protein synthesis (puromycin-labeled polypeptides) but had no signifcant efect on eIF2 phosphorylation, 4EBP1 hyperphosphorylation or 4EBP1 binding to eIF4E. Leucine starvation suppressed polysome formation and was the only tested condition that caused a signifcant decrease in 4EBP1 phosphorylation or increase in 4EBP1 binding to eIF4E, but efects of leucine starvation were not replicated by overexpressing nonphosphorylatable 4EBP1. This suggests the binding of 4EBP1 to eIF4E may not by itself explain the suppression of mRNA translation under conditions of leucine starvation. Ribosome profling suggested that leucine deprivation may primarily inhibit ribosome loading, whereas methionine deprivation may primarily impair start site recognition. These data underscore our lack of a full -
Untargeted Metabolomics Uncovers the Essential Lysine Transporter in Toxoplasma Gondii
H OH metabolites OH Article Untargeted Metabolomics Uncovers the Essential Lysine Transporter in Toxoplasma gondii Joachim Kloehn 1,*,† , Matteo Lunghi 1,†, Emmanuel Varesio 2 , David Dubois 1 and Dominique Soldati-Favre 1,* 1 Department of Microbiology and Molecular Medicine, University of Geneva, CMU, Rue Michel-Servet 1, 1211 Geneva, Switzerland; [email protected] (M.L.); [email protected] (D.D.) 2 Institute of Pharmaceutical Sciences of Western Switzerland, School of Pharmaceutical Sciences, Mass Spectrometry Core Facility (MZ 2.0), University of Geneva, 1211 Geneva, Switzerland; [email protected] * Correspondence: [email protected] (J.K.); [email protected] (D.S.-F.); Tel.: +41-22-379-57-16 (J.K.); +41-22-379-56-72 (D.S.-F.) † These authors contributed equally to the work. Abstract: Apicomplexan parasites are responsible for devastating diseases, including malaria, toxo- plasmosis, and cryptosporidiosis. Current treatments are limited by emerging resistance to, as well as the high cost and toxicity of existing drugs. As obligate intracellular parasites, apicomplexans rely on the uptake of many essential metabolites from their host. Toxoplasma gondii, the causative agent of tox- oplasmosis, is auxotrophic for several metabolites, including sugars (e.g., myo-inositol), amino acids (e.g., tyrosine), lipidic compounds and lipid precursors (cholesterol, choline), vitamins, cofactors (thiamine) and others. To date, only few apicomplexan metabolite transporters have been charac- terized and assigned a substrate. Here, we set out to investigate whether untargeted metabolomics can be used to identify the substrate of an uncharacterized transporter. Based on existing genome- Citation: Kloehn, J.; Lunghi, M.; and proteome-wide datasets, we have identified an essential plasma membrane transporter of the Varesio, E.; Dubois, D.; Soldati-Favre, major facilitator superfamily in T. -
Expression Profile of Protein Fractions in the Developing Kernel of Normal
www.nature.com/scientificreports OPEN Expression profle of protein fractions in the developing kernel of normal, Opaque‑2 and quality protein maize Mehak Sethi1, Alla Singh2, Harmanjot Kaur1, Ramesh Kumar Phagna2, Sujay Rakshit2 & Dharam Paul Chaudhary2* Maize protein quality is determined by the composition of its endosperm proteins, which are classifed as nutritionally poor zeins (prolamin and prolamin-like) and nutritionally rich non-zeins (albumin, globulin, glutelin-like, and glutelin). Protein quality is considerably higher in opaque‑2 mutants due to increased content of non-zeins over zeins. However, the opaque‑2 endosperm is soft, which leads to poor agronomic performance and post-harvest infestation. Endosperm modifcation of opaque‑2 had led to the development of Quality Protein Maize (QPM), which has higher protein quality along with hard kernel endosperm. The present study was planned to analyze the expression dynamics of diferent protein fractions in the endospem of developing maize kernel in normal, opaque‑2 and QPM in response to the introgression of endosperm modifers. Results revealed that albumin and globulin content decreases, whereas, prolamin, prolamin-like, glutelin-like, and glutelin content increases with kernel maturity. It has been observed that opaque‑2 mutation afects protein expression at initial stages, whereas, the efect of endosperm modifers was observed at the intermediate and later stages of kernel development. It has also been noted that prolamin, glutelin, and glutelin-like fractions can be used as quick markers for quality assessment for diferentiating QPM varieties, even at the immature stage of kernel development. Overall, the present study implicates the role of diferent protein fractions in developing and utilizing nutritionally improved maize varieties. -
Hydroxy–Methyl Butyrate (HMB) As an Epigenetic Regulator in Muscle
H OH metabolites OH Communication The Leucine Catabolite and Dietary Supplement β-Hydroxy-β-Methyl Butyrate (HMB) as an Epigenetic Regulator in Muscle Progenitor Cells Virve Cavallucci 1,2,* and Giovambattista Pani 1,2,* 1 Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy 2 Institute of General Pathology, Università Cattolica del Sacro Cuore, 00168 Roma, Italy * Correspondence: [email protected] (V.C.); [email protected] (G.P.) Abstract: β-Hydroxy-β-Methyl Butyrate (HMB) is a natural catabolite of leucine deemed to play a role in amino acid signaling and the maintenance of lean muscle mass. Accordingly, HMB is used as a dietary supplement by sportsmen and has shown some clinical effectiveness in preventing muscle wasting in cancer and chronic lung disease, as well as in age-dependent sarcopenia. However, the molecular cascades underlying these beneficial effects are largely unknown. HMB bears a significant structural similarity with Butyrate and β-Hydroxybutyrate (βHB), two compounds recognized for important epigenetic and histone-marking activities in multiple cell types including muscle cells. We asked whether similar chromatin-modifying actions could be assigned to HMB as well. Exposure of murine C2C12 myoblasts to millimolar concentrations of HMB led to an increase in global histone acetylation, as monitored by anti-acetylated lysine immunoblotting, while preventing myotube differentiation. In these effects, HMB resembled, although with less potency, the histone Citation: Cavallucci, V.; Pani, G. deacetylase (HDAC) inhibitor Sodium Butyrate. However, initial studies did not confirm a direct The Leucine Catabolite and Dietary inhibitory effect of HMB on HDACs in vitro. β-Hydroxybutyrate, a ketone body produced by the Supplement β-Hydroxy-β-Methyl liver during starvation or intense exercise, has a modest effect on histone acetylation of C2C12 Butyrate (HMB) as an Epigenetic Regulator in Muscle Progenitor Cells. -
Effect of Leucine on Intestinal Absorption of Tryptophan in Rats
Downloaded from https://doi.org/10.1079/BJN19850155 British Journal of Nutrition (1985), 54, 695-703 695 https://www.cambridge.org/core Effect of leucine on intestinal absorption of tryptophan in rats BY CHISAE UMEZAWA, YUKO MAEDA, KANJI HABA, MARIKO SHIN AND KEIJI SANO School of Pharmacy, Kobe-Gakuin University, Nishi-ku, Kobe 673, Japan (Received I7 May 1985 - Accepted 24 June 1985) . IP address: 1. To elucidate the causal relation between leucine and the lowering of hepatic NAD content of rats fed on a leucine-excessive diet (Yamada et aZ. 1979), the effect of leucine on intestinal absorption of tryptophan was 170.106.35.93 investigated. 2. Co-administration of [3H]tryptophan and leucine, with leucine at ten times the level of tryptophan, delayed absorption of L-[side chain 2,3-3H]tryptophan from the digestive tract and incorporation of [3H]tryptophan into portal blood, the liver and a protein fraction of the liver. After 120 min, more than 95% of tryptophan was absorbed whether [3H]tryptophan was administered with or without leucine. , on 3. Co-administration of a mixture of ten essential amino acids, in proportions simulating casein, with 02 Oct 2021 at 04:49:27 [3H]tryptophan markedly delayed absorption of tryptophan from the digestive tract. The addition of supplementary leucine to the amino acid mixture, however, caused no further delay. 4. In rats prefed a leucine-excessive diet for 1 week [3H]tryptophan was absorbed at the same rate as in rats fed on a control diet. 5. The results indicate that competition between tryptophan and leucine for intestinal absorption did not cause lowering of hepatic NAD. -
Electrochemical Studies of Dl-Leucine, L-Proline and L
ELECTROCHEMICAL STUDIES OF DL -LEUCINE, 60 L-PROLINE AND L-TRYPTOPHAN AND THEIR INTERACTION WITH COPPER AND IRON 30 c b A) M. A. Jabbar, R. J. Mannan, S. Salauddin and B. µ a Rashid 0 Department of Chemistry, University of Dhaka, ( Current Dhaka-1000, Bangladesh -30 Introduction -60 In vitro study of the charge transfer reactions coupled -800 -400 0 400 800 with chemical reactions can give important indication of Potential vs. Ag/AgCl (mV) about actual biological processes occurring in human Fig.1. Comparison of the cyclic voltammogram of system. Understanding of such charge-transfer 5.0mM (a) DL -Leucine, (b) Cu-DL -Leucine ion and mechanism will help to determine the effectiveness of (c) [Fe-DL -Leucine] in 0.1M KCl solution at a Pt- nutrition, metabolism and treatment of various biological button electrode. Scan rates 50 mV/s. disorders. In the previous research, the redox behaviour of 40 various amino acids and biochemically important compounds and their charge transfer reaction and their b interaction of metal ions were studied [1,2]. In the present 20 ) a c research, the redox behavior and the charge transfer µΑ kinetics of DL -Leucine, L-Proline and L-Tryptophan in 0 the presence and absence of copper and iron will be investigated. Current ( -20 Experimental A computerized electrochemistry system developed by -40 -800 -400 0 400 800 Advanced Analytics, Virginia, USA, (Model-2040) Potential vs. Ag/AgCl (mV) consisting of three electrodes micro-cell with a saturated Ag/AgCl reference, a Pt-wire auxiliary and a pretreated Fig.2 . Comparison of the cyclic voltammogram of Pt-button working electrode is employed to investigate 5.0mM (a) L-Proline, (b) Cu-L-Proline and (c) Fe-L- Proline in 0.1M KCl solution at a Pt-button different amino acids and metal-amino acid systems. -
An Update on the Maize Zein-Gene Family in the Post-Genomics Era Nasr Ullah Khan1, Mohamed Sheteiwy1,2, Ning Lihua1, Muhammad Mohib Ullah Khan3 and Zhao Han1*
Khan et al. Food Production, Processing and Nutrition (2019) 1:13 Food Production, Processing https://doi.org/10.1186/s43014-019-0012-5 and Nutrition REVIEW Open Access An update on the maize zein-gene family in the post-genomics era Nasr Ullah Khan1, Mohamed Sheteiwy1,2, Ning Lihua1, Muhammad Mohib Ullah Khan3 and Zhao Han1* Abstract Maize (Zea mays) is a cereal crop of global food importance. However, the deficiency of essential amino acids, more importantly lysine, methionine and tryptophan, in the major seed storage zein proteins makes corn nutritionally of low value for human consumption. The idea of improving maize nutritional value prompted the search for maize natural mutants harboring low zein contents and higher amount of lysine. These studies resulted in the identification of more than dozens of maize opaque mutants in the previous few decades, o2 mutant being the most extensively studied one. However, the high lysine contents but soft kernel texture and chalky endosperm halted the widespread application and commercial success of maize opaque mutants, which ultimately paved the way for the development of Quality Protein Maize (QPM) by modifying the soft endosperm of o2 mutant into lysine-rich hard endosperm. The previous few decades have witnessed a marked progress in maize zein research. It includes elucidation of molecular mechanism underlying the role of different zein genes in seed endosperm development by cloning different components of zein family, exploring the general organization, function and evolution of zein family members within maize species and among other cereals, and elucidating the cis- and trans-regulatory elements modulating the regulation of different molecular players of maize seed endosperm development. -
Effect of Ph on the Binding of Sodium, Lysine, and Arginine Counterions to L- Undecyl Leucinate Micelles
Effect of pH on the Binding of Sodium, Lysine, and Arginine Counterions to l- Undecyl Leucinate Micelles Corbin Lewis, Burgoyne H. Hughes, Mariela Vasquez, Alyssa M. Wall, Victoria L. Northrup, Tyler J. Witzleb, Eugene J. Billiot, et al. Journal of Surfactants and Detergents ISSN 1097-3958 Volume 19 Number 6 J Surfact Deterg (2016) 19:1175-1188 DOI 10.1007/s11743-016-1875-y 1 23 Your article is protected by copyright and all rights are held exclusively by AOCS. This e- offprint is for personal use only and shall not be self-archived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at link.springer.com”. 1 23 Author's personal copy J Surfact Deterg (2016) 19:1175–1188 DOI 10.1007/s11743-016-1875-y ORIGINAL ARTICLE Effect of pH on the Binding of Sodium, Lysine, and Arginine Counterions to L-Undecyl Leucinate Micelles 1 2 1 2 Corbin Lewis • Burgoyne H. Hughes • Mariela Vasquez • Alyssa M. Wall • 2 2 1 3 Victoria L. Northrup • Tyler J. Witzleb • Eugene J. Billiot • Yayin Fang • 1 2 Fereshteh H. Billiot • Kevin F. Morris Received: 20 May 2016 / Accepted: 6 September 2016 / Published online: 20 September 2016 Ó AOCS 2016 Abstract Micelle formation by the amino acid-based sur- surface through both of its amine functional groups.