Models of the Small World in the General Case

Total Page:16

File Type:pdf, Size:1020Kb

Models of the Small World in the General Case Models of the Small World A Review M. E. J. Newman Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501 Abstract reach their destination, and Milgram found that it had only taken an average of six steps for a letter to get from Ne- It is believed that almost any pair of people in the world braska to Boston. He concluded, with a somewhat cavalier can be connected to one another by a short chain of inter- disregard for experimental niceties, that six was therefore mediate acquaintances, of typical length about six. This the average number of acquaintances separating the pairs phenomenon, colloquially referred to as the “six degrees of of people involved, and conjectured that a similar separa- separation,” has been the subject of considerable recent in- tion might characterize the relationship of any two people terest within the physics community. This paper provides a in the entire world. This situation has been labeled “six de- short review of the topic. grees of separation” (Guare 1990), a phrase which has since passed into popular folklore. Given the form of Milgram’s experiment, one could be 1 Introduction forgiven for supposing that the figure six is probably not a very accurate one. The experiment certainly contained The United Nations Department of Economic and Social many possible sources of error. However, the general re- Affairs estimates that the population of the world exceeded sult that two randomly chosen human beings can be con- six billion people for the first time on October 12, 1999. nected by only a short chain of intermediate acquaintances There is no doubt that the world of human society has be- has been subsequently verified, and is now widely accepted come quite large in recent times. Nonetheless, people rou- (Korte and Milgram 1970). In the jargon of the field this tinely claim that, global statistics notwithstanding, it’s still result is referred to as the small-world effect. a small world. And in a certain sense they are right. Despite The small-world effect applies to networks other than the enormous number of people on the planet, the struc- networks of friends. Brett Tjaden’s parlor game “The Six ture of social networks—the map of who knows whom—is Degrees of Kevin Bacon” connects any pair of film ac- such that we are all very closely connected to one another tors via a chain of at most eight co-stars (Tjaden and Was- (Kochen 1989, Watts 1999). son 1997). Tom Remes hasdone the same forbaseball play- One of the first quantitative studies of the structure of so- ers who have played on the same team (Remes 1997). With cial networks was performed in the late 1960s by Stanley tongue very firmly in cheek, the New York Times played a Milgram, then at Harvard University (Milgram 1967). He similar game with the the names of those who had tangled performed a simple experiment as follows. He took a num- with Monica Lewinsky (Kirby and Sahre 1998). ber of letters addressed to a stockbroker acquaintance of his All of this however, seems somewhat frivolous. Why in Boston, Massachusetts, and distributed them to a random should a serious scientist care about the structure of so- selection of people in Nebraska. (Evidently, he considered cial networks? The reason is that such networks are Nebraska to be about as far as you could get from Boston, crucially important for communications. Most human in social terms, without falling off the end of the world.) communication—where the word is used in its broad- His instructions were that the letters were to be sent to their est sense—takes place directly between individuals. The addressee (the stockbroker) by passing them from person to spread of news, rumors, jokes, and fashions all take place person, and that, in addition, they could be passed only to by contact between individuals. And a rumor can spread arXiv:cond-mat/0001118v2 [cond-mat.stat-mech] 9 May 2000 someone whom the passer new on a first-name basis. Since from coast to coast far faster over a social network in which it was not likely that the initial recipients of the letters were the average degree of separation is six, than it can over on a first-name basis with a Boston stockbroker, their best one in which the average degree is a hundred, or a million. strategy was to pass their letter to someone whom they felt More importantly still, the spread of disease also occurs by was nearer to the stockbroker in some social sense: perhaps person-to-person contact, and the structure of networks of someone they knew in the financial industry, or a friend in such contacts has a huge impact on the nature of epidemics. Massachusetts. In a highly connected network, this year’s flu—or the HIV A reasonable number of Milgram’s letters did eventually virus—can spread far faster than in a network where the 1 paths between individuals are relatively long. Network N ℓ C Crand In this paper we outline some recent developments in the movie actors 225 226 3.65 0.79 0.00027 theory of social networks, particularly in the characteriza- neural network 282 2.65 0.28 0.05 tion and modeling of networks, and in the modeling of the power grid 4941 18.7 0.08 0.0005 spread of information or disease. Table 1: The number of nodes N, average degree of separa- tion ℓ, and clustering coefficient C, for three real-world net- 2 Random graphs works. The last column is the value which C would take in a random graph with the same size and coordination num- The simplest explanation for the small-world effect uses the ber. idea of a random graph. Suppose there is some number N of people in the world, and on average they each have z 1 acquaintances. This means that there are 2 Nz connections A random graph does not show clustering. In a random between people in the entire population. The number z is graph the probability that two of person A’s friends will called the coordination number of the network. be friends of one another is no greater than the probabil- We can make a very simple model of a social network by ity that two randomly chosen people will be. On the other 1 taking N dots (“nodes” or “vertices”) and drawing 2 Nz hand, clustering has been shown to exist in a number of lines (“edges”) between randomly chosen pairs to repre- real-world networks. One can define a clustering coeffi- sent these connections. Such a network is called a random cient C, which is the average fraction of pairs of neigh- graph (Bollob´as 1985). Random graphs have been studied bors of a node which are also neighbors of each other. In a extensively in the mathematics community, particularly by fully connected network, in which everyone knows every- Erd¨os and R´enyi (1959). It is easy to see that a random one else, C = 1; in a random graph C = z/N, which is graph shows the small-world effect. If a person A on such a very small for a large network. In real-world networks it graph has z neighbors, and each of A’s neighbors also has z has been found that, while C is significantly less than 1, it 2 neighbors, then A has about z second neighbors. Extend- is much greater than O(N −1). In Table 1, we show some 3 4 ing this argument A also has z third neighbors, z fourth values of C calculated by Watts and Strogatz (1998) for neighbors and so on. Most people have between a hundred three different networks: the network of collaborations be- 4 and a thousand acquaintances, so z is already between tween movie actors discussed previously, the neural net- 8 12 about 10 and 10 , which is comparable with the popu- work of the worm C. Elegans, and the Western Power Grid lation of the world. In general the number D of degrees of the United States. We also give the value Crand which of separation which we need to consider in order to reach the clustering coefficient would have on random graphs of all N people in the network (also called the diameter of the same size and coordinationnumber, and in each case the the graph) is given by setting zD = N, which implies that measured value is significantly higher than for the random D = log N/ log z. This logarithmic increase in the number graph, indicating that indeed the graph is clustered. of degrees of separation with the size of the network is typ- In the same table we also show the average distance ℓ ical of the small-world effect. Since log N increases only between pairs of nodes in each of these networks. This is slowly with N, it allows the number of degrees to be quite not the same as the diameter D of the network discussed small even in very large systems. above, which is the maximum distance between nodes, but As an example of this type of behavior, Al- it also scales at most logarithmically with number of nodes bert et al. (1999) studied the properties of the network on random graphs. This is easy to see, since the average of “hyperlinks” between documents on the World Wide distance is strictly less than or equal to the maximum dis- Web. They estimated that, despite the fact there were tance, and so ℓ cannot increase any faster than D.
Recommended publications
  • Jump Bifurcation and Hysteresis in an Infinite-Dimensional Dynamical System of Coupled Spins*
    SIAM J. APPL. MATH. (C) 1990 Society for Industrial and Applied Mathematics Vol. 50, No. 1, pp. 108-124, February 1990 008 JUMP BIFURCATION AND HYSTERESIS IN AN INFINITE-DIMENSIONAL DYNAMICAL SYSTEM OF COUPLED SPINS* RENATO E. MIROLLOt AND STEVEN H. STROGATZ: Abstract. This paper studies an infinite-dimensional dynamical system that models a collection of coupled spins in a random magnetic field. A state of the system is given by a self-map of the unit circle. Critical states for the dynamical system correspond to equilibrium configurations of the spins. Exact solutions are obtained for all the critical states and their stability is characterized by analyzing the second variation of the system's potential function at those states. It is proven rigorously that the system exhibits a jump bifurcation and hysteresis as the coupling between spins is varied. Key words, bifurcation, dynamical system, phase transition, spin system AMS(MOS) subject classifications. 58F14, 82A57, 34F05 1. Introduction. There is currently a great deal of interest in the collective behavior of dynamical systems with many interacting subunits [2]. Such systems are very difficult to analyze rigorously unless some simplifying assumptions are made. "Phase models," in which each subunit is characterized by a single phase angle Oi, provide an analytically tractable class of many-body systems. Phase models have been used in a wide variety of scientific contexts, including charge-density wave transport [8], [9], [23], [24], magnetic spin systems [3], [26], oscillating chemical reactions 15], 18], [28], networks of biological oscillators [4], [7], [14], [27], [28], and arrays of Josephson junctions [11], [25].
    [Show full text]
  • Question-And-Answer-Physics-Today
    Questions and answers with Steven Strogatz An applied mathematician notes that for many physics topics, including general relativity and climate science, the whole is often not equal to the sum of the parts. By Jeremy N. A. Matthews April 2015 Bookends: Questions and answers with Steven Strogatz Questions and answers with Peter Pesic Questions and answers with Marcelo Gleiser Questions and answers with Amit Hagar Questions and answers with A. Douglas Stone Steven Strogatz is the Jacob Schurman Professor of Applied Mathematics at Cornell University in Ithaca, New York. He conducts research on dynamical systems in physics, biology, and social science. His 1998 Nature article “Collective dynamics of ‘small-world’ networks” is considered a seminal contribution to complexity research. Strogatz is also an active communicator of mathematics and related topics to the public. He frequently appears on public radio and writes for The New Yorker and other publications. A 2015 recipient of the Lewis Thomas Prize for Writing About Science, he has written books that include Sync: How Order Emerges from Chaos in the Universe, Nature, and Daily Life (Hyperion, 2003) and The Joy of x: A Guided Tour of Math, from One to Infinity (Houghton Mifflin Harcourt, 2012). Strogatz recently published the second edition of a text he wrote more than two decades ago. The new edition of Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering (Westview Press, 2015) contains new exercises on such topics as protein dynamics and superconductivity and covers applications in such emerging fields as sociophysics and systems biology. Physics Today reviewed the book in the April issue.
    [Show full text]
  • Damien Fair, Never at Rest
    Spectrum | Autism Research News https://www.spectrumnews.org PROFILES Rising Star: Damien Fair, never at rest BY SARAH DEWEERDT 9 JANUARY 2019 One day last April, Damien Fair chuckled along with the members of his 30-person lab at their monthly lunch meeting as he attempted to maneuver a bowl of soup, a plate of salad and a pair of crutches all at the same time. The associate professor of behavioral neuroscience at Oregon Health and Science University in Portland had broken his ankle in a city-league basketball game the evening before. Fair waved away offers of help and soon got down to business. “All right, teach us something,” he told the lab members who were presenting their work that day. He mostly let the presenters, a graduate student and a research associate, hold the floor. Fair is tall and trim, with a salt-and- pepper goatee and expressive eyebrows. He laughed appreciatively at the visual puns in their PowerPoint presentation — for example, a photograph of a toddler in a wetsuit, a play on the name ‘FreeSurfer,’ software for analyzing brain scans. “Damien never sweats anything — officially,” says Nico Dosenbach, assistant professor of pediatric neurology at Washington University in St. Louis, Missouri. Underneath his cool exterior, though, Fair is intense and driven, says Dosenbach, who has been Fair’s friend since the two were in graduate school. And Fair is not intimidated by conventional notions of status or rank: He doesn’t hesitate to ask other scientists for their data or time — or to offer his in return. These traits have made Fair one of the most productive and sought-after collaborators in the field of brain imaging.
    [Show full text]
  • Comparison of Different Generalizations of Clustering Coefficient and Local Efficiency for Weighted Undirected Graphs
    LETTER Communicated by Mika Rubinov Comparison of Different Generalizations of Clustering Coefficient and Local Efficiency for Weighted Undirected Graphs Yu Wang Eshwar Ghumare [email protected] Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven 3000, Belgium Rik Vandenberghe [email protected] Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven 3000, Belgium, and Alzheimer Research Centre, KU Leuven, Leuven Institute for Neuroscience and Disease, KU Leuven, Leuven 3000, Belgium Patrick Dupont [email protected] Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven 3000, Belgium; Alzheimer Research Centre, KU Leuven, Leuven Institute for Neuroscience and Disease, KU Leuven, Leuven 3000, Belgium; and Medical Imaging Research Center, KU Leuven and University Hospitals Leuven, Leuven 3000, Belgium Binary undirected graphs are well established, but when these graphs are constructed, often a threshold is applied to a parameter describing the connection between two nodes. Therefore, the use of weighted graphs is more appropriate. In this work, we focus on weighted undirected graphs. This implies that we have to incorporate edge weights in the graph mea- sures, which require generalizations of common graph metrics. After re- viewing existing generalizations of the clustering coefficient and the local efficiency, we proposed new generalizations for these graph measures. To be able to compare different generalizations, a number of essential and useful properties were defined that ideally should be satisfied. We ap- plied the generalizations to two real-world networks of different sizes. As a result, we found that not all existing generalizations satisfy all es- sential properties. Furthermore, we determined the best generalization for the clustering coefficient and local efficiency based on their properties and the performance when applied to two networks.
    [Show full text]
  • Scale- Free Networks in Cell Biology
    Scale- free networks in cell biology Réka Albert, Department of Physics and Huck Institutes of the Life Sciences, Pennsylvania State University Summary A cell’s behavior is a consequence of the complex interactions between its numerous constituents, such as DNA, RNA, proteins and small molecules. Cells use signaling pathways and regulatory mechanisms to coordinate multiple processes, allowing them to respond to and adapt to an ever-changing environment. The large number of components, the degree of interconnectivity and the complex control of cellular networks are becoming evident in the integrated genomic and proteomic analyses that are emerging. It is increasingly recognized that the understanding of properties that arise from whole-cell function require integrated, theoretical descriptions of the relationships between different cellular components. Recent theoretical advances allow us to describe cellular network structure with graph concepts, and have revealed organizational features shared with numerous non-biological networks. How do we quantitatively describe a network of hundreds or thousands of interacting components? Does the observed topology of cellular networks give us clues about their evolution? How does cellular networks’ organization influence their function and dynamical responses? This article will review the recent advances in addressing these questions. Introduction Genes and gene products interact on several level. At the genomic level, transcription factors can activate or inhibit the transcription of genes to give mRNAs. Since these transcription factors are themselves products of genes, the ultimate effect is that genes regulate each other's expression as part of gene regulatory networks. Similarly, proteins can participate in diverse post-translational interactions that lead to modified protein functions or to formation of protein complexes that have new roles; the totality of these processes is called a protein-protein interaction network.
    [Show full text]
  • NODEXL for Beginners Nasri Messarra, 2013‐2014
    NODEXL for Beginners Nasri Messarra, 2013‐2014 http://nasri.messarra.com Why do we study social networks? Definition from: http://en.wikipedia.org/wiki/Social_network: A social network is a social structure made up of a set of social actors (such as individuals or organizations) and a set of the dyadic ties between these actors. Social networks and the analysis of them is an inherently interdisciplinary academic field which emerged from social psychology, sociology, statistics, and graph theory. From http://en.wikipedia.org/wiki/Sociometry: "Sociometric explorations reveal the hidden structures that give a group its form: the alliances, the subgroups, the hidden beliefs, the forbidden agendas, the ideological agreements, the ‘stars’ of the show". In social networks (like Facebook and Twitter), sociometry can help us understand the diffusion of information and how word‐of‐mouth works (virality). Installing NODEXL (Microsoft Excel required) NodeXL Template 2014 ‐ Visit http://nodexl.codeplex.com ‐ Download the latest version of NodeXL ‐ Double‐click, follow the instructions The SocialNetImporter extends the capabilities of NodeXL mainly with extracting data from the Facebook network. To install: ‐ Download the latest version of the social importer plugins from http://socialnetimporter.codeplex.com ‐ Open the Zip file and save the files into a directory you choose, e.g. c:\social ‐ Open the NodeXL template (you can click on the Windows Start button and type its name to search for it) ‐ Open the NodeXL tab, Import, Import Options (see screenshot below) 1 | Page ‐ In the import dialog, type or browse for the directory where you saved your social importer files (screenshot below): ‐ Close and open NodeXL again For older Versions: ‐ Visit http://nodexl.codeplex.com ‐ Download the latest version of NodeXL ‐ Unzip the files to a temporary folder ‐ Close Excel if it’s open ‐ Run setup.exe ‐ Visit http://socialnetimporter.codeplex.com ‐ Download the latest version of the socialnetimporter plug in 2 | Page ‐ Extract the files and copy them to the NodeXL plugin direction.
    [Show full text]
  • The Role of Homophily Yohsuke Murase 1, Hang-Hyun Jo 2,3,4, János Török5,6,7, János Kertész6,5,4 & Kimmo Kaski4,8
    www.nature.com/scientificreports OPEN Structural transition in social networks: The role of homophily Yohsuke Murase 1, Hang-Hyun Jo 2,3,4, János Török5,6,7, János Kertész6,5,4 & Kimmo Kaski4,8 We introduce a model for the formation of social networks, which takes into account the homophily or Received: 17 August 2018 the tendency of individuals to associate and bond with similar others, and the mechanisms of global and Accepted: 27 February 2019 local attachment as well as tie reinforcement due to social interactions between people. We generalize Published: xx xx xxxx the weighted social network model such that the nodes or individuals have F features and each feature can have q diferent values. Here the tendency for the tie formation between two individuals due to the overlap in their features represents homophily. We fnd a phase transition as a function of F or q, resulting in a phase diagram. For fxed q and as a function of F the system shows two phases separated at Fc. For F < Fc large, homogeneous, and well separated communities can be identifed within which the features match almost perfectly (segregated phase). When F becomes larger than Fc, the nodes start to belong to several communities and within a community the features match only partially (overlapping phase). Several quantities refect this transition, including the average degree, clustering coefcient, feature overlap, and the number of communities per node. We also make an attempt to interpret these results in terms of observations on social behavior of humans. In human societies homophily, the tendency of similar individuals getting associated and bonded with each other, is known to be a prime tie formation factor between a pair of individuals1.
    [Show full text]
  • 10-5-19 Workshop Announcement V2
    Cornell University Department of Mathematics K-12 Education and Outreach MATH 5080 – Mathematics for Secondary School Teachers October 5, 2019 u 9:00 am – 2:30 pm (lunch provided) u 406 Malott Hall 8:45 – 9:00 am Bagels & Juice (provided) 9:00 – 9:20 am Introductions 9:20 – 10:20 am Business Math for Entrepreneurs Lee Kaltman, M.A.T. (New Roots Charter School) I will describe the course called Business Math for Entrepreneurs, share some student work, and explain how I use real-world experiences to engage and motivate students to want to learn more. 10:30 – 11:30 am The Beauty of Calculus Steven Strogatz, Ph.D. (Cornell University, Mathematics) Based on my new book, Infinite Powers: How Calculus Reveals the Secrets of the Universe, I will present a broad look at the story of calculus, focusing on the connections between calculus and the laws of nature. 11:30 – 12:00 pm Lunch (provided) 12:00 – 12:50 pm Teaching Statistics in the Age of Data Science Michael Nussbaum, Ph.D. (Cornell University, Mathematics) I will try to summarize my 20 years of experience teaching statistics at Cornell, focusing in particular on the basic undergraduate course, which is a slightly more advanced version of AP Statistics. This course always includes a computer component, but new challenges have arisen with the advent of “Data Science,” which promises to revolutionize both the practice and the teaching of statistics, and applied mathematics in general, by total integration with computing. I will conclude with a demonstration of how some of the new CS-inspired courses are taught at Cornell, with on-screen computing using software like R or Python.
    [Show full text]
  • Comm 645 Handout – Nodexl Basics
    COMM 645 HANDOUT – NODEXL BASICS NodeXL: Network Overview, Discovery and Exploration for Excel. Download from nodexl.codeplex.com Plugin for social media/Facebook import: socialnetimporter.codeplex.com Plugin for Microsoft Exchange import: exchangespigot.codeplex.com Plugin for Voson hyperlink network import: voson.anu.edu.au/node/13#VOSON-NodeXL Note that NodeXL requires MS Office 2007 or 2010. If your system does not support those (or you do not have them installed), try using one of the computers in the PhD office. Major sections within NodeXL: • Edges Tab: Edge list (Vertex 1 = source, Vertex 2 = destination) and attributes (Fig.1→1a) • Vertices Tab: Nodes and attribute (nodes can be imported from the edge list) (Fig.1→1b) • Groups Tab: Groups of nodes defined by attribute, clusters, or components (Fig.1→1c) • Groups Vertices Tab: Nodes belonging to each group (Fig.1→1d) • Overall Metrics Tab: Network and node measures & graphs (Fig.1→1e) Figure 1: The NodeXL Interface 3 6 8 2 7 9 13 14 5 12 4 10 11 1 1a 1b 1c 1d 1e Download more network handouts at www.kateto.net / www.ognyanova.net 1 After you install the NodeXL template, a new NodeXL tab will appear in your Excel interface. The following features will be available in it: Fig.1 → 1: Switch between different data tabs. The most important two tabs are "Edges" and "Vertices". Fig.1 → 2: Import data into NodeXL. The formats you can use include GraphML, UCINET DL files, and Pajek .net files, among others. You can also import data from social media: Flickr, YouTube, Twitter, Facebook (requires a plugin), or a hyperlink networks (requires a plugin).
    [Show full text]
  • Graph and Network Analysis
    Graph and Network Analysis Dr. Derek Greene Clique Research Cluster, University College Dublin Web Science Doctoral Summer School 2011 Tutorial Overview • Practical Network Analysis • Basic concepts • Network types and structural properties • Identifying central nodes in a network • Communities in Networks • Clustering and graph partitioning • Finding communities in static networks • Finding communities in dynamic networks • Applications of Network Analysis Web Science Summer School 2011 2 Tutorial Resources • NetworkX: Python software for network analysis (v1.5) http://networkx.lanl.gov • Python 2.6.x / 2.7.x http://www.python.org • Gephi: Java interactive visualisation platform and toolkit. http://gephi.org • Slides, full resource list, sample networks, sample code snippets online here: http://mlg.ucd.ie/summer Web Science Summer School 2011 3 Introduction • Social network analysis - an old field, rediscovered... [Moreno,1934] Web Science Summer School 2011 4 Introduction • We now have the computational resources to perform network analysis on large-scale data... http://www.facebook.com/note.php?note_id=469716398919 Web Science Summer School 2011 5 Basic Concepts • Graph: a way of representing the relationships among a collection of objects. • Consists of a set of objects, called nodes, with certain pairs of these objects connected by links called edges. A B A B C D C D Undirected Graph Directed Graph • Two nodes are neighbours if they are connected by an edge. • Degree of a node is the number of edges ending at that node. • For a directed graph, the in-degree and out-degree of a node refer to numbers of edges incoming to or outgoing from the node.
    [Show full text]
  • Clustering Coefficient
    School of Information Sciences University of Pittsburgh TELCOM2125: Network Science and Analysis Konstantinos Pelechrinis Spring 2015 Figures are taken from: M.E.J. Newman, “Networks: An Introduction” Part 8: Small-World Network Model 2 Small World-Phenomenon l Milgram’s experiment § Given a target individual - stockbroker in Boston - pass the message to a person you know on a first name basis who you think is closest to the target l Outcome § 20% of the the chains were completed § Average chain length of completed trials ~ 6.5 l Dodds, Muhamad and Watts have repeated this experiment using e-mail communications § Completion rate is lower, average chain length is lower too 3 Small World-Phenomenon l Are these numbers accurate? § What bias do the uncompleted chains introduce? inter-country intra-country Source: An Experimental Study of Search in Global Social Networks: Peter Sheridan Dodds, Roby Muhamad, and 4 Duncan J. Watts (8 August 2003); Science 301 (5634), 827. Clustering in real networks l What would you expect if networks were completely cliquish? § Friends of my friends are also my friends § What happens to small paths? l Real-world networks (e.g., social networks) exhibit high levels of transitivity/clustering § But they also exhibit short paths too 5 Clustering coefficient l The network models that we have seen until now (random graph, configuration model and preferential attachment) do not show any significant clustering coefficient § For instance the random graph model has a clustering coefficient of c/n-1, which vanishes in
    [Show full text]
  • Particle Dynamics in Inertial Microfluidics
    PARTICLE DYNAMICS IN INERTIAL MICROFLUIDICS vorgelegt von Master of Science Christian Schaaf ORCID: 0000-0002-4154-5459 an der Fakultät II – Mathematik und Naturwissenschaften der Technischen Universität Berlin zur Erlangung des akademischen Grades Doktor der Naturwissenschaften – Dr. rer. nat. – genehmigte Dissertation Promotionsausschuss: Vorsitzender: Prof. Dr. Michael Lehmann Erster Gutachter: Prof. Dr. Holger Stark Zweiter Gutachter: Prof. Dr. Roland Netz Tag der wissenschaftlichen Aussprache: 17. September 2020 Berlin 2020 Zusammenfassung Die inertiale Mikrofluidik beschäftigt sich mit laminaren Strömungen von Flüssigkeiten durch mikroskopische Kanäle, bei denen die Trägheitseffekte der Flüssigkeit nicht vernach- lässigt werden können. Befinden sich Teilchen in diesen inertialen Strömungen, ordnen sie sich von selbst an bestimmten Positionen auf der Querschnittsfläche an. Da diese Gleich- gewichtspositionen von den Teilcheneigenschaften abhängen, können so beispielsweise Zellen voneinander getrennt werden. In dieser Arbeit beschäftigen wir uns mit der Dynamik mehrerer fester Teilchen, sowie dem Einfluss der Deformierbarkeit auf die Gleichgewichtsposition einer einzelnen Kapsel. Wir verwenden die Lattice-Boltzmann-Methode, um dieses System zu simulieren. Einen wichtigen Grundstein für das Verständnis mehrerer Teilchen bildet die Dynamik von zwei festen Partikeln. Zunächst klassifizieren wir die möglichen Trajektorien, von denen drei zu ungebundenen Zuständen führen und eine über eine gedämpfte Schwingung in einem gebundenem Zustand endet. Zusätzlich untersuchen wir die inertialen Hubkräfte, welche durch das zweite Teilchen stark beeinflusst werden. Dieser Einfluss hängt vor allem vom Abstand der beiden Teilchen entlang der Flussrichtung ab. Im Anschluss an die Dynamik beschäftigen wir uns genauer mit der Stabilität von Paaren und Zügen bestehend aus mehreren festen Teilchen. Wir konzentrieren uns auf Fälle, in denen die Teilchen sich lateral bereits auf ihren Gleichgewichtspositionen befinden, jedoch nicht entlang der Flussrichtung.
    [Show full text]