Research Article 5849 BMP2 and FGF2 cooperate to induce neural-crest-like fates from fetal and adult CNS stem cells Martin H. M. Sailer1,2,3, Thomas G. Hazel1, David M. Panchision1,4, Daniel J. Hoeppner1, Martin E. Schwab2,3 and Ronald D. G. McKay1,* 1Laboratory of Molecular Biology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA 2Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland 3Department of Biology, Swiss Federal Institute of Technology, 8057 Zurich, Switzerland 4Center for Neuroscience Research, Children’s Research Institute, Children’s National Medical Center, Washington DC, 20010, USA *Author for correspondence (e-mail:
[email protected]) Accepted 21 September 2005 Journal of Cell Science 118, 5849-5860 Published by The Company of Biologists 2005 doi:10.1242/jcs.02708 Summary CNS stem cells are best characterized by their ability to stem cells from E14.5 cortex, E18.5 cortex and adult self-renew and to generate multiple differentiated subventricular zone, but with a progressive shift toward derivatives, but the effect of mitogenic signals, such as gliogenesis that is characteristic of normal development. fibroblast growth factor 2 (FGF2), on the positional identity These data indicate that FGF2 confers competence for of these cells is not well understood. Here, we report that dorsalization independently of its mitogenic action. This bone morphogenetic protein 2 (BMP2) induces rapid and efficient induction of dorsal fates may allow telencephalic CNS stem cells to fates characteristic of identification of positional identity effectors that are co- neural crest and choroid plexus mesenchyme, a cell type of regulated by FGF2 and BMP2.