Ecosystem Carbon Dynamics in Logged Forest of Malaysian Borneo

Total Page:16

File Type:pdf, Size:1020Kb

Ecosystem Carbon Dynamics in Logged Forest of Malaysian Borneo ECOSYSTEM CARBON DYNAMICS IN LOGGED FOREST OF MALAYSIAN BORNEO Dissertation zur Erlangung der naturwissenschaftlichen Doktorwürde (Dr. sc. nat.) vorgelegt der Mathematisch-naturwissenschaftlichen Fakultät der Universität Zürich von Philippe Gérard Saner aus Beinwil (SO) Promotionskomitee: Prof. Dr. Andrew Hector (Leitung der Dissertation) Prof. Dr. Bernhard Schmid Prof. Dr. Michael Scherer-Lorenzen Dr. Simon Egli Zürich 2009 Contents Contents 1 Summary .....................................................................................................................1 2 Zusammenfassung........................................................................................................7 3 General Introduction ...................................................................................................13 3.1 Scientific background .........................................................................................................14 3.2 Thesis outline .....................................................................................................................17 3.3 References ..........................................................................................................................20 4 Chapter One ................................................................................................................23 4.1 Introduction to the Sabah Biodiversity Experiment ............................................................23 4.2 Lowland mixed dipterocarp forest ......................................................................................24 4.3 Dipterocarp ecology ...........................................................................................................25 4.4 Timber extraction ..............................................................................................................26 4.5 Forest rehabilitation ...........................................................................................................28 4.6 Malua Forest Reserve .........................................................................................................29 4.7 The abahS Biodiversity Experiment ....................................................................................33 4.7.1 Landscape, geology and soil classification ....................................................................34 4.7.2 Rainfall ........................................................................................................................35 4.8 Acknowledgement ..............................................................................................................37 4.9 References ..........................................................................................................................38 5 Chapter Two ................................................................................................................41 5.1 Carbon Baseline Estimation of the Sabah Biodiversity Experiment ....................................41 5.2 Abstract .............................................................................................................................42 5.3 Introduction ......................................................................................................................43 5.4 Material and Methods ........................................................................................................46 5.4.1 The aluaM Forest Reserve ............................................................................................46 5.4.2 The abahS Biodiversity Experiment .............................................................................46 5.4.3 Tree inventory .............................................................................................................47 5.4.4 Tree diversity ...............................................................................................................48 5.4.5 Above-ground tree biomass..........................................................................................49 5.4.6 Wood density ..............................................................................................................50 5.4.7 Above-ground non-tree biomass .................................................................................51 5.4.8 Standing litter and fine roots .......................................................................................52 5.4.9 Litterfall ......................................................................................................................52 5.4.10 Deadwood ...................................................................................................................53 5.4.11 Soil organic carbon ......................................................................................................53 5.4.12 Carbon estimation .......................................................................................................54 5.4.13 Statistical analysis and graphical presentation ..............................................................54 5.5 Results ...............................................................................................................................55 5.5.1 Tree diversity ...............................................................................................................55 5.5.2 Carbon baseline estimation .........................................................................................57 Contents 5.5.3 Above-ground tree biomass..........................................................................................57 5.5.4 Above-ground non-tree biomass ..................................................................................62 5.5.5 Litterfall ......................................................................................................................62 5.5.6 Soil organic carbon ......................................................................................................64 5.6 Discussion..........................................................................................................................65 5.6.1 Tree carbon storage ......................................................................................................65 5.6.2 Tree diversity ...............................................................................................................66 5.6.3 Carbon baseline estimation .........................................................................................68 5.7 Acknowledgment ...............................................................................................................71 5.8 Appendix ...........................................................................................................................73 5.9 References ..........................................................................................................................80 6 Chapter Three ..............................................................................................................87 6.1 Reduced Soil Respiration in Gaps in Logged Lowland Dipterocarp Forest .........................87 6.2 Abstract .............................................................................................................................88 6.3 Introduction ......................................................................................................................88 6.4 Material and Methods ........................................................................................................90 6.4.1 Site description ............................................................................................................90 6.4.2 Forest structure and composition .................................................................................91 6.4.3 Experimental set-up.....................................................................................................92 6.4.4 Measuring soil respiration ............................................................................................93 6.4.5 Measuring covariables ..................................................................................................93 6.4.6 Data analysis ...............................................................................................................94 6.5 Results ...............................................................................................................................95 6.5.1 The importance of forest composition and structure ....................................................95 6.5.2 Comparing day and night soil respiration rates ............................................................97 6.5.3 The importance of selected abiotic and biotic factors ...................................................98 6.6 Discussion..........................................................................................................................100 6.7 Conclusion ........................................................................................................................103 6.8 Acknowledgements ............................................................................................................103 6.9 References ..........................................................................................................................105 7 Chapter Four ...............................................................................................................109 7.1 Carbohydrate Allocation
Recommended publications
  • Research Article ABSTRACT Stand Structure and Tree Composition Of
    JOURNAL OF TROPICAL BIOLOGY AND CONSERVATION, 4 (1) : 55 – 66, 2008 Research Article Stand structure and tree composition of Timbah Virgin Jungle Reserve, Sabah, Malaysia Januarius GOBILIK Sabah Forestry Department, Forest Research Centre P.O. Box 1407, Sepilok 90715 Sandakan, Sabah, Malaysia. ABSTRACT Pioneer and disturbed forest trees were found at a very low density. The results suggest that The stand structure and tree composition of VJR Timbah's soils are infertile, since D. Timbah Virgin Jungle Reserve (VGR Timbah) beccarii, the most abundant species in the plots, were studied. Three locations in the VJR were prefers leached whitish or yellowish sandy selected, and at each location, 1-ha study plot soils. The results also suggest that the VJR had was established. The plots were sub-divided experienced a less significant logging into 10×10 m2 sub-plots, and in each sub-plot, encroachment or invasion of disturbed forest stem diameters of trees > 5 cm diameter-at-breast- trees. The results imply that VJR Timbah still height (DBH) were measured. The trees were maintains its undisturbed forest stand structure identified, and their relative density and relative and tree composition, although it is relatively basal area per hectare were calculated. Little small in size and surrounded by a large matrix of difference was found in tree density and basal heavily logged forest. area per ha between the plots. From the plots, 2,369 trees > 5 cm DBH were enumerated. Total INTRODUCTION basal area of the trees was 119.5 m2. Stem diameter class distribution of the trees was found Of the many forest enumeration activities in to follow the inverse J-shape pattern.
    [Show full text]
  • New Species, Varieties and Reductions in Diospyros (Ebenaceae) in Borneo and Peninsular Malaysia Including Peninsular Thailand
    Gardens' Bulletin Singapore 53 (2001) 291-313. New Species, Varieties and Reductions in Diospyros (Ebenaceae) in Borneo and Peninsular Malaysia including Peninsular Thailand FRANCIS S.P. NG 'I0Forest Research Institute Malaysia, Kepong, 52109 Kuala Lumpur, Malaysia Abstract In the genus Diospyros, seven new species (D. beccarioides Ng, D. brainii Ng, D. crockerensis Ng, D. keningauensis Ng, D, lunduensis Ng, D. multinervis Ng and D. parabuxifolia Ng) and six new varieties (D. curranii Merr. var. kalimantanensis Ng; D. ferruginescens Bakh. var. rufotomentosa Ng; D. lanceifolia Roxb. var. iliaspaiei Ng, var. renageorgei Ng, var. saliciformis Ng; D. penibukanensis Bakh. var. scalarinervis Ng) are described. Thirty species or varieties are reduced to synonymy. Introduction In revising the genus Diospyros for the Tree Flora of Sabah and Sarawak, I took the opportunity to review the genus for Borneo and Peninsular Malaysia. This has resulted in the recognition of seven new species and six new varieties, and the reduction bf 30 species or varieties to synonymy. New Species 1. Diospyros beccarioides Ng, sp. nov. Arbor ad 20 m alta; rami dense rubro-brunnee pubescentes demum glabrescentes. Folia membranacea ad chartacea, glabra, oblonga ad ovato- oblonga 16-30 cm longa 5.5-11 cm lata, basi cuneata leviter attenuata rare rotundata, apice acuminato, costa supra immersa plana vel 'marginibus' elevatis provisa, infra nervis lateralibus prominentibus paribus 7-13 incurvatis ante margines anastomosantibus venam intra-marginalem plus minusve distinctam formantibus, venatione intercostali prominula laxe scalariformi; petiolus 0.8-1.5 cm longus. Inflorescentia mascula cymis subsessilis condensatis floribus ut videtur 3 vel plus sed ignotis. Fructus 1- 3 pedicellis 0.3-0.8 cm longis suffulti, globosi ad 2.5 cm diam.
    [Show full text]
  • Botanical Assessment for Batu Punggul and Sg
    Appendix I. Photo gallery A B C D E F Plate 1. Lycophyte and ferns in Timimbang –Botitian. A. Lycopediella cernua (Lycopodiaceae) B. Cyclosorus heterocarpus (Thelypteridaceae) C. Cyathea contaminans (Cyatheaceae) D. Taenitis blechnoides E. Lindsaea parallelogram (Lindsaeaceae) F. Tectaria singaporeana (Tectariaceae) Plate 2. Gnetum leptostachyum (Gnetaceae), one of the five Gnetum species found in Timimbang- Botitian. A B C D Plate 3. A. Monocot. A. Aglaonema simplex (Araceae). B. Smilax gigantea (Smilacaceae). C. Borassodendron borneensis (Arecaceae). D. Pholidocarpus maiadum (Arecaceae) A B C D Plate 4. The monocotyledon. A. Arenga undulatifolia (Arecaceae). B. Plagiostachys strobilifera (Zingiberaceae). C. Dracaena angustifolia (Asparagaceae). D. Calamus pilosellus (Arecaceae) A B C D E F Plate 5. The orchids (Orchidaceae). A. Acriopsis liliifolia B. Bulbophyllum microchilum C. Bulbophyllum praetervisum D. Coelogyne pulvurula E. Dendrobium bifarium F. Thecostele alata B F C A Plate 6. Among the dipterocarp in Timimbang-Botitian Frs. A. Deeply fissured bark of Hopea beccariana. B Dryobalanops keithii . C. Shorea symingtonii C D A B F E Plate 7 . The Dicotyledon. A. Caeseria grewioides var. gelonioides (Salicaceae) B. Antidesma tomentosum (Phyllanthaceae) C. Actinodaphne glomerata (Lauraceae). D. Ardisia forbesii (Primulaceae) E. Diospyros squamaefolia (Ebenaceae) F. Nepenthes rafflesiana (Nepenthaceae). Appendix II. List of vascular plant species recorded from Timimbang-Botitian FR. Arranged by plant group and family in aphabetical order.
    [Show full text]
  • Ekologi Regenerasi Tumbuhan Berkayu Pada Sistem Agroforest Karet
    EKOLOGI REGENERASI TUMBUHAN BERKAYU PADA SISTEM AGROFOREST KARET SAIDA RASNOVI SEKOLAH PASCASARJANA INSTITUT PERTANIAN BOGOR BOGOR 2006 PERNYATAAN MENGENAI DISERTASI DAN SUMBER INFORMASI Dengan ini saya menyatakan bahwa Disertasi Ekologi Regenerasi Tumbuhan Berkayu pada Sistem Agroforest Karet adalah karya saya sendiri di bawah bimbingan Cecep Kusmana, Gregoire Vincent dan Soekisman Tjitrosemito. Disertasi ini belum pernah diajukan dalam bentuk apapun kepada perguruan tinggi manapun. Sumber informasi yang berasal atau dikutip dari karya yang diterbitkan maupun yang tidak diterbitkan dari penulis lain telah disebutkan dalam teks dan dicantumkan dalam daftar pustaka di bagian akhir disertasi ini. Bogor, November 2006 Saida Rasnovi NRP E016010011 ABSTRAK SAIDA RASNOVI. Ekologi Regenerasi Tumbuhan Berkayu pada Sistem Agroforest Karet. Dibimbing oleh CECEP KUSMANA, GREGOIRE VINCENT dan SOEKISMAN TJITROSEMITO Penelitian ini bertujuan untuk mengkaji kemampuan agroforest karet dalam menampung jenis tumbuhan berkayu dari hutan yang ada di sekitarnya. Kajian difokuskan pada beberapa aspek ekologi regenerasi anakan tumbuhan berkayu pada tingkat lanskap. Penelitian ini dilakukan dari Agustus 2002 hingga Agustus 2005 di Kabupaten Bungo dan Tebo Provinsi Jambi. Survei jenis anakan tumbuhan berkayu (tinggi ≥ 1 m, diameter ≤ 3 cm) tidak termasuk liana, dilakukan dengan menggunakan metode transek sepanjang 60 m yang dikombinasikan dengan subplot berbentuk lingkaran berdiameter 6 m. Faktor lain yang diukur dan ditentukan adalah struktur tegakan berupa luas penampang batang (BA), kerapatan, cahaya, tanah, kelompok pemencar biji, umur, manajemen dan vegetasi asal agroforest karet. Hasil survei jenis anakan tumbuhan berkayu pada agroforest karet didapatkan sebanyak 689 jenis anakan dengan indeks probabilitas Simpson sebesar 0.897 dan rarefaction Coleman sebesar 53 jenis dalam 200 individu. Sedangkan di hutan sebanyak 646 jenis anakan dengan indeks probabilitas Simpson sebesar 0.935 dan rarefaction Coleman sebesar 68 jenis dalam 200 individu.
    [Show full text]
  • PDF Hosted at the Radboud Repository of the Radboud University Nijmegen
    PDF hosted at the Radboud Repository of the Radboud University Nijmegen The following full text is a publisher's version. For additional information about this publication click this link. https://hdl.handle.net/2066/227635 Please be advised that this information was generated on 2021-10-03 and may be subject to change. IAWA Journal 41 (4), 2020: 577–619 Description and evolution of wood anatomical characters in the ebony wood genus Diospyros and its close relatives (Ebenaceae): a first step towards combatting illegal logging Mehrdad Jahanbanifard1,2,⁎, Vicky Beckers1, Gerald Koch3, Hans Beeckman4, Barbara Gravendeel1,5,6, Fons Verbeek2, Pieter Baas1, Carlijn Priester7, and Frederic Lens1 1Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, The Netherlands 2Section Imaging and Bioinformatics, Leiden Institute of Advanced Computer Science (LIACS), Leiden University, Niels Bohrweg 1, 2333 CA Leiden, The Netherlands 3Thünen Institute of Wood Research, 21031 Hamburg, Germany 4Wood Biology Service, Royal Museum for Central Africa, 3080 Tervuren, Belgium 5Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands 6Institute for Water and Wetland Research, Radboud University, Heyendaalsweg 135, 6500 GL, Nijmegen, The Netherlands 7Amsterdam University of Applied Sciences, Weesperzijde 190, 1097 DZ Amsterdam, The Netherlands *Corresponding author; email: [email protected] Accepted for publication: 10 September 2020 ABSTRACT The typical black coloured ebony wood (Diospyros, Ebenaceae) is desired as a com- mercial timber because of its durable and aesthetic properties. Surprisingly, a com- prehensive wood anatomical overview of the genus is lacking, making it impossible to fully grasp the diversity in microscopic anatomy and to distinguish between CITES protected species native to Madagascar and the rest.
    [Show full text]
  • Establishing Case Studies for Carbon Management and Biodiversity Conservation
    Asia‐Pacific Network for Global Change Research Synergy between Ecosystem Change and Biodiversity Studies in the Western Pacific and Asia: Establishing Case Studies for Carbon Management and Biodiversity Conservation Final report for APN project 2005-03-CMY-Kitayama The following collaborators worked on this project: PI Kanehiro Kitayama, DIWPA, Center for Ecological Research, Kyoto University, Japan, [email protected] Collaborator Lee Ying Fah, Forest Research Centre, Sabah, Malaysia, [email protected] 1 Synergy between Ecosystem Change and Biodiversity Studies in the Western Pacific and Asia: Establishing Case Studies for Carbon Management and Biodiversity Conservation 2005-03-CMY-Kitayama Final Report submitted to APN ©Asia-Pacific Network for Global Change Research 2 Overview of project work and outcomes Non-technical summary The Kyoto Protocol incorporates the vital role of forests and wetlands in its mechanisms to reduce green house gases, favouring fast growing plantations. The Convention on Biological Diversity (CBD) emphasizes the conservation and sustainable use of forest and wetlands that harbour biological diversity. These two international frameworks need to be synergized to jointly achieve carbon sequestration and biodiversity conservation. Guidelines need to be developed without sacrificing these mutually exclusive requirements. This project aimed at increasing the awareness and at disseminating the synergy concept through organizing two workshops and the existing DIWPA network. We also established a pilot case-study site to synergize carbon storage and biodiversity conservation in Deramakot Forest Reserve, Sabah, Malaysian Borneo. In the pilot site established in Deramakot, we developed an algorithm to evaluate the amount of carbon sequestered in tropical rain forests and the diversity of canopy-tree species on a landscape level using satellite data.
    [Show full text]
  • Octomeles Sumatrana
    Mount Silam Scientific Expedition 2020 Mount Silam Scientific Expedition Lahad Datu, Sabah 13th-18th January, 2020 Compilation of Papers i Mount Silam Scientific Expedition 2020 Mount Silam Scientific Expedition Lahad Datu, Sabah 13th–18th January, 2020 Compilation of Papers Compiled by Arthur Y.C. Chung Reuben Nilus John B. Sugau Mohd. Aminur Faiz Suis Musa Salleh 2020 ii Mount Silam Scientific Expedition 2020 Published 2020 © Sabah Forestry Department Locked Bag No. 68, 90009 Sandakan, Sabah, Malaysia http://www.forest.sabah.gov.my/ COMPILATION OF PAPERS: MOUNT SILAM SCIENTIFIC EXPEDITION Lahad Datu, Sabah. 13th -18th January 2020. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the Sabah Forestry Department. ISBN: 978-967-0180-22-9 CITATION: Chung, A.Y.C., Nilus, R., Sugau, J.B., Suis, M.A.F. & Salleh, M. (2020). Compilation of papers – Mount Silam Scientific Expedition, Lahad Datu, Sabah. 13th-18th January, 2020. Sabah Forestry Department, Sandakan, Sabah. 149 pp. http://www.forest.sabah.gov.my/publications/ iii Mount Silam Scientific Expedition 2020 Content Page Foreword v Summary 1 No. Research Paper Authors 1. Assessment of forest ecosystems in Mount Silam, M.A.F. Suis, R. Nilus, J.B. 4 Lahad Datu, Sabah Sugau & S.T.L. Tsen 2. Field soil assessment of Mount Silam and its E.K.M. Dyi & S. Dullah 22 surrounding areas in Lahad Datu, Sabah 3. Preliminary report on diversity and conservation S.
    [Show full text]
  • Downloaded by [CEH Edinburgh] at 05:57 05 February 2013
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by NERC Open Research Archive Article (refereed) - postprint Peñuelas, Josep; Sardans, Jordi; Llusia, Joan; Silva, Jorge; Owen, Susan M.; Bala-Ola , Bernadus; Linatoc, Alona C.; Dalimin, Mohamed N. ; Niinemets, Ulo. 2013. Foliar chemistry and standing folivory of early and late- successional species in a Bornean rainforest. © 2013 Botanical Society of Scotland and Taylor & Francis This version available http://nora.nerc.ac.uk/500153/ NERC has developed NORA to enable users to access research outputs wholly or partially funded by NERC. Copyright and other rights for material on this site are retained by the rights owners. Users should read the terms and conditions of use of this material at http://nora.nerc.ac.uk/policies.html#access This is an Author's Accepted Manuscript of an article published in Plant Ecology & Diversity (2013), 6(2). 245-256, copyright Botanical Society of Scotland and Taylor & Francis, available online at: http://www.tandfonline.com/10.1080/17550874.2013.768713 Contact CEH NORA team at [email protected] The NERC and CEH trademarks and logos (‘the Trademarks’) are registered trademarks of NERC in the UK and other countries, and may not be used without the prior written consent of the Trademark owner. Foliar chemistry and standing folivory of early and late successional species in a Bornean rainforest Josep Peñuelas1,2*, Jordi Sardans1,2, Joan Llusià1,2, Jorge Silva 1,2, Susan M. Owen1,3, Bernadus Bala-Ola4, Alona C. Linatoc5, Mohamed
    [Show full text]
  • Soil Organic Carbon Stocks and Changes Upon Forest Regeneration in East Kalimantan
    ISHAK YASSIR S OIL ORGAN You are cordially invited to attend the public defence of IC CARBON STOCKS AND CHANGES UPON FOREST REGENERATI FOREST UPON CHANGES AND STOCKS IC CARBON my PhD thesis entitled: Soil organic carbon stocks and changes upon forest regeneration in East Kalimantan on Tuesday, September 4, 2012 at 11.00 am in the Aula of Wageningen University Generaal Foulkesweg 1a, Wageningen SOIL ORGANIC CARBON STOCKS AND CHANGES Ishak Yassir [email protected] UPON FOREST REGENERATION IN EAST KALIMANTAN Paranymphs: Mochamad Apri ON ON ISHAK YASSIR [email protected] I N EAST KALIMANTAN-INDONESIA EAST Sacha Amaruzaman [email protected] Soil organic carbon stocks and changes upon forest regeneration in East Kalimantan-Indonesia i Thesis committee Thesis supervisor Prof. dr. P. Kabat Professor of Earth System Science, Wageningen University Thesis co-supervisors Dr. ir. P. Buurman Associate Professor, Earth System Science and Climate Change Group, Wageningen University Dr. B. van Putten Associate Professor, Mathematical and Statistical Methods Group – Biometris, Wageningen University Other members Prof. dr. E. Hoffland, Wageningen University Prof. dr. ir. G.M.J. Mohren, Wageningen University Prof. dr. K. Kalbitz, University of Amsterdam Dr. M. Jonas, International Institute for Applied Systems Analysis Ecosystems Services and Management, Laxenburg, Austria This research was conducted under the auspices of the Graduate School Wageningen Institute for Environment and Climate Research (WIMEK / SENSE) ii Soil organic carbon stocks and changes upon forest regeneration in East Kalimantan-Indonesia Ishak Yassir Thesis submitted in fulfilment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof.
    [Show full text]
  • Global Survey of Ex Situ Ebony Collections Global Survey of Ex Situ Ebony Collections
    Global Survey of Ex situ Ebony Collections Global Survey of Ex situ Ebony Collections By Emily Beech, Kirsty Shaw, Malin Rivers and George E. Schatz © 2016 Botanic Gardens Conservation International Recommended citation: Beech, E., Shaw, K., Rivers, M. and Schatz, G.E. (2016) Global Survey of Ex situ Ebony Collections. BGCI. Richmond, UK. ISBN-10: 1-905164-63-7 ISBN-13: 978-1-905164-63-9 Published by Botanic Gardens Conservation International. Descanso House, 199 Kew Road, Richmond, Surrey, TW9 3BW, UK. Authors: Emily Beech is Conservation Assistant at BGCI. Kirsty Shaw is Conservation Manager at BGCI. Malin Rivers is Red List Manager at BGCI. George E. Schatz is a Curator at the Missouri Botanical Garden. Design: John Morgan www.seascapedesign.co.uk Acknowledgements BGCI would like to thank Rafaël Govaerts and George Schatz for providing the taxonomy for this survey. We gratefully acknowledge all the gardens that shared their collection information as well as photos, herbarium specimens and leaf samples and those who have provided data to BGCI’s PlantSearch database. We would Diospyros lotus (LC) reported in 150 ex situ collections also like to thank Auroville Botanical Garden, Missouri Botanical (Credit: Inmaculada Porras) Garden and Tooro Botanical Gardens for their contributions to the case studies in this report. BGCI would like to thank Missouri Botanical Garden who facilitated this survey as a contribution to the Global Ebony Assessment. BGCI and MBG would like to thank Fondation Franklinia for their generous support of the BOTANIC GARDENS Global Ebony Assessment. CONSERVATION INTERNATIONAL (BGCI) is a membership organisation linking botanic gardens in over 100 Acronyms countries in a shared commitment to biodiversity conservation, sustainable use and environmental education.
    [Show full text]
  • Reduced Soil Respiration in Gaps in Logged Lowland Dipterocarp Forests
    Saner, P; Lim, R; Burla, B; Scherer-Lorenzen, M; Hector, A (2009). Reduced soil respiration in gaps in logged lowland dipterocarp forests. Forest Ecology and Management, 258:2007-2012. Postprint available at: http://www.zora.uzh.ch University of Zurich Posted at the Zurich Open Repository and Archive, University of Zurich. Zurich Open Repository and Archive http://www.zora.uzh.ch Originally published at: Forest Ecology and Management 2009, 258:2007-2012. Winterthurerstr. 190 CH-8057 Zurich http://www.zora.uzh.ch Year: 2009 Reduced soil respiration in gaps in logged lowland dipterocarp forests Saner, P; Lim, R; Burla, B; Scherer-Lorenzen, M; Hector, A Saner, P; Lim, R; Burla, B; Scherer-Lorenzen, M; Hector, A (2009). Reduced soil respiration in gaps in logged lowland dipterocarp forests. Forest Ecology and Management, 258:2007-2012. Postprint available at: http://www.zora.uzh.ch Posted at the Zurich Open Repository and Archive, University of Zurich. http://www.zora.uzh.ch Originally published at: Forest Ecology and Management 2009, 258:2007-2012. Reduced soil respiration in gaps in logged lowland dipterocarp forests Abstract We studied the effects of forest composition and structure, and related biotic and abiotic factors on soil respiration rates in a tropical logged forest in Malaysian Borneo. Forest stands were classified into gap, pioneer, non-pioneer and mixed (pioneer, non-pioneer and unclassified trees) based on the species composition of trees >10 cm diameter breast height. Soil respiration rates did not differ significantly between non-gap sites (1290 ± 210 mg CO2 m-2 h-1) but were double those in gap sites (640 ± 130 mg CO2 m-2 h-1).
    [Show full text]
  • Floristic Composition, Stand Structure, and Above-Ground Biomass
    Floristic composition, stand structure, and above-ground biomass of the tropical rain forests of Deramakot and Tangkulap Forest Reserve in Malaysia under different forest managements Running title: Floristic composition and stand structure of Deramakot Forest Reserve 2 3 4 Tatsuyuki Seino 1*, Masaaki Takyu , Shin-ichiro Aiba , Kanehiro Kitayama 1 and Robert C. Ong 1 Center for Ecological Research, Kyoto University, Otsu, Shiga 520-2113, Japan 2 Faculty of Regional Environmental Science, Tokyo University ofAgriculture, Tokyo 156-8502, Japan 3 Faculty ofScience, Kagoshima University, Kagoshima 890-0065, Japan 4 Forest Research Centre, Forestry Department, P 0. Box 1407, 90715 Sandakan, Sabah, Malaysia * Author to whom correspondence should be addressed (Tel: +81 77 549 8214, Fax +81 77 549 8202, E-mail: [email protected]). Abstract Floristic composition, stand structure, above-ground biomass of the forest harvested by and above-ground biomass of tropical lowland rain the conventional method were different from those forests were examined to compare the effects of of the old-growth forest and the forest harvested by different forest managements, i.e., old-growth forest RIL due to high impacts of logging. Thus, RlL as control, the forest harvested by the management could keep species diversity, forest reduced-impact logging (RIL), and the forest structure, and biomass at a pre-harvest status. harvested by the conventional method In Deramakot and Tangkulap Forest Reserve, Malaysian Borneo. Species diversity was rich in Abstract for policy-makers the old-growth forest and the forest harvested by RIL where climax and important We conducted a comparative study of the effects of commercial-timber species of Dipterocarpaceae different logging methods on the floristic dominated, while low in the forest harvested by the composition, structure and biomass of tropical rain conventional method where pioneer species of the forests in Deramakot and Tangkulap Forest Reserve, genus Macaranga (Euphorbiaceae) dominated.
    [Show full text]