A Review of Some Basic Concepts of Topology and Measure Theory

Total Page:16

File Type:pdf, Size:1020Kb

A Review of Some Basic Concepts of Topology and Measure Theory APPENDIX 1 A Review of Some Basic Concepts of Topology and Measure Theory In this appendix, we summarize, mainly without proof, some standard results from topology and measure theory. The aims are to establish terminology and notation, to set out results needed at various stages in the text in some specific form for convenient reference, and to provide some brief perspectives on the development of the theory. For proofs and further details, the reader should refer, in particular, to Kingman and Taylor (1966, Chapters 1–6), whose development and terminology we have followed rather closely. A1.1. Set Theory A set A of a space X is a collection of elements or points of X .Whenx is an element of the set A,wewritex ∈ A (x belongs to or is included in A). The set of points of X not included in A is the complement of A, written Ac.If A, B aretwosetsofpointsfromX ,theirunion, written A ∪ B, is the set of points in either A or B or both; their symmetric difference, written A B, is the set of points in A or B but not both. If every element of B is also an element of A,wesayB is included in A (B ⊆ A)orA contains B (A ⊇ B). In this case, the proper difference of A and B, written either A − B or A \ B, is the set of points of A but not B. More generally, we use A − B for A ∩ Bc, so A − B = A B only when A ⊃ B. The operations ∩ and on subsets of X are commutative, associative and distributive. The class of all such subsets thus forms an algebra with respect to these operations, where ∅, the empty set, plays the role of identity for and X the role of identity for ∩. The special relation A ∩ A = A implies that the algebra is Boolean. More generally, any class of sets closed under the operations of ∩ and is called a ring,oranalgebra if X itself is a member of the class. A semiring is a class of sets A with the properties (i) A is closed under intersections and (ii) every symmetric difference of sets in A can be 368 A1.2. Topologies 369 represented as a finite union of disjoint sets in A. The ring generated by an arbitrary family of sets F is the smallest ring containing F or, equivalently, the intersection of all rings containing F. Every element in the ring generated by a semiring A can be represented as a union of disjoint sets of A.IfR is a finite ring, there exists a basis of disjoint elements of R such that every element in R can be represented uniquely as a union of disjoint elements of the basis. The notions of union and intersection can be extended to arbitrary classes { } ↑ of sets. If An: n =1, 2,... is a sequence of sets, write An A = lim An ⊆ ∞ ⊇ if An An+1 (n =1, 2,...)and A = n=1 An; similarly, if An An+1, ↓ ∞ write An A = lim An if A = n=1 An.Amonotone class is a class of sets closed under monotonically increasing sequences. A ring or algebra that is closed under countable unionsiscalledaσ-ring or σ-algebra, respectively. The σ-ring generated by a class of sets C, written σ(C), is the smallest σ- ring containing C.Aσ-ring is countably generated if it can be generated by a countable class of C. The following result, linking σ-rings to monotone classes, is useful in identifying the σ-ring generated by certain classes of sets. Proposition A1.1.I (Monotone Class Theorem). If R is a ring and C is a monotone class containing R,thenC contains σ(R). A closely related result uses the concept of a Dynkin system D meaning (i) X∈D; (ii) D is closed under proper differences; and (iii) D is closed under monotonically increasing limits. Proposition A1.1.II (Dynkin System Theorem). If S is a class of sets closed under finite intersections, and D is a Dynkin system containing S, then D contains σ(S). A1.2. Topologies A topology U on a space X is a class of subsets of X that is closed under arbitrary unions and finite intersections and that includes the empty set ∅ and the whole space X ;themembersofU are open sets, while their complements are closed sets. The pair (X , U)isatopological space.Theclosure of an arbitrary set A from X , written A¯, is the smallest closed set (equivalently, the intersection of all closed sets) containing A.Theinterior of A, written A◦, is the largest open set (equivalently, the union of all open sets) contained within A.Theboundary of A, written ∂A, is the difference A¯ \ A◦.The following elementary properties of boundaries are needed in the discussion of weak convergence of measures. Proposition A1.2.I. (a) ∂(A ∪ B) ⊆ ∂A ∪ ∂B; (b) ∂(A ∩ B) ⊆ ∂A ∪ ∂B; (c) ∂Ac = ∂A. 370 APPENDIX 1. Some Basic Topology and Measure Theory Concepts A neighbourhood of the point x ∈X with respect to the topology U (or, more briefly, a U-neighbourhood of x)isanopensetfromU containing x. U is a Hausdorff or T2-topology if the open sets separate points; that is, if for x = y, x and y possess disjoint neighbourhoods. A family of sets F forms a basis for the topology U if every U ∈U can be represented as a union of sets in F and F⊆U. U is then said to be generated by F. U is second countable if it has a countable basis. A sufficient condition for a family of sets to form a basis for some topology is that, if F1 ∈F, F2 ∈Fand x ∈ F1 ∩F2, then there exists F3 ∈Fsuch that x ∈ F3 ⊆ F1 ∩ F2. The topology generated by F is then uniquely defined and consists of all unions of sets in F. Two bases F and G,say,areequivalent if they generate the same topology. A necessary and sufficient condition for F and G to be equivalent is that for each F ∈F and x ∈ F , there exists G ∈G with x ∈ G ⊆ F , and similarly for each G ∈Gand y ∈ G, there exists F ∈F such that y ∈ F ⊆ G. Given a topology U on X , a notion of convergence of sequences (or more generally nets, but we do not need the latter concept) can be introduced by saying xn → x in the topology U if, given any U-neighbourhood of x, Ux,there exists an integer N (depending on the neighbourhood in general) such that xn ∈ Ux for n ≥ N. Conversely, nearly all the important types of convergence can be described in terms of a suitable topology. In this book, the overwhelm- ingemphasisisonmetric topologies, where the open sets are defined in terms of a metric or distance function ρ(·) that satisfies the conditions, for arbitrary x, y, z ∈X, (i) ρ(x, y)=ρ(y, x); (ii) ρ(x, y) ≥ 0andρ(x, y) = 0 if and only if x = y;and (iii) (triangle inequality) ρ(x, y)+ρ(y, z) ≥ ρ(x, z). With respect to a given distance function ρ,theopen sphere S (x) is the set {y: ρ(x, y) <}, being defined for any >0. For any set A, define its diameter by # $ diam A =2inf r: Sr(x) ⊇ A for some x . The metric topology generated by ρ is the smallest topology containing the open spheres; it is necessarily Hausdorff. A set is open in this topology if and only if every point in the set can be enclosed by an open sphere lying wholly within the set. A sequence of points {xn} converges to x in this topology if and only if ρ(xn,x) → 0. A limit point y of a set A is a limit of a sequence of points xn ∈ A with xn = y; y need not necessarily be in A. The closure of A in the metric topology is the union of A and its limit points. A space X with topology U is metrizable if a distance function ρ can be found such that U is equivalent to the metric topology generated by ρ. Two metrics on the same space X are equivalent if they each generate the same topology on X . A sequence of points {xn: n ≥ 1} in a metric space is a Cauchy sequence if ρ(xn,xm) → 0asn, m →∞. The space is complete if every Cauchy sequence has a limit; i.e. if for every Cauchy sequence {xn} there exists x ∈X such A1.2. Topologies 371 that ρ(xn,x) → 0. A set D is dense in X if, for every >0, every point in X can be approximated by points in D; i.e. given x ∈X, there exists d ∈Dsuch that ρ(x, d) <. The space X is separable if there exists a countable dense set, also called a separability set.IfX is a separable metric space, the spheres with rational radii and centres on a countable dense set form a countable base for the topology. Given two topological spaces (X1, U1)and(X2, U2), a mapping f(·)from −1 (X1, U1)to(X2, U2)iscontinuous if the inverse image f (U) of every open set U ∈U2 is an open set in U1. If both spaces are metric spaces, the mapping is continuous if and only if for every x ∈X1 and every >0, there exists δ>0 such that ρ2(f(x ),f(x)) <whenever ρ1(x ,x) <δ,whereρi is themetricinXi for i =1, 2; we can express this more loosely as f(x ) → f(x) whenever x → x.Ahomeomorphism is a one-to-one continuous-both- ways mapping between two topological spaces.
Recommended publications
  • A J-Function for Marked Point Patterns
    AISM (2006) 58: 235–259 DOI 10.1007/s10463-005-0015-7 M.N.M. van Lieshout A J -function for marked point patterns Received: 5 July 2004 / Revised: 7 February 2005 / Published online: 30 May 2006 © The Institute of Statistical Mathematics, Tokyo 2006 Abstract We propose a new summary statistic for marked point patterns. The underlying principle is to compare the distance from a marked point to the near- est other marked point in the pattern to the same distance seen from an arbitrary point in space. Information about the range of interaction can be inferred, and the statistic is well-behaved under random mark allocation. We develop a range of Hanisch style kernel estimators to tackle the problems of exploding tail variance earlier associated with J -function plug-in estimators, and carry out an exploratory analysis of a forestry data set. Keywords Empty space function · J -function · Marked point pattern · Mark correlation function · Nearest neighbour distance distribution function · Product density · Random labelling · Reduced second moment measure · Spatial interaction · Spatial statistics 1 Introduction Marked point patterns are spatial point configurations with a mark attached to each point (Stoyan and Stoyan, 1994). The points could represent the locations in (Euclidean) space of objects, while the marks capture additional information. The latter could be a type label, in which case we also speak of a multivariate point pattern (Cox and Lewis, 1972), a continuous measurement or shape descriptor, or a combination of these. The statistical analysis of such a pattern in general begins by plotting a few summary statistics. Which statistic is used depends on taste and the type of mark.
    [Show full text]
  • Set Theory, Including the Axiom of Choice) Plus the Negation of CH
    ANNALS OF ~,IATltEMATICAL LOGIC - Volume 2, No. 2 (1970) pp. 143--178 INTERNAL COHEN EXTENSIONS D.A.MARTIN and R.M.SOLOVAY ;Tte RockeJ~'ller University and University (.~t CatiJbrnia. Berkeley Received 2 l)ecemt)er 1969 Introduction Cohen [ !, 2] has shown that tile continuum hypothesis (CH) cannot be proved in Zermelo-Fraenkel set theory. Levy and Solovay [9] have subsequently shown that CH cannot be proved even if one assumes the existence of a measurable cardinal. Their argument in tact shows that no large cardinal axiom of the kind present;y being considered by set theorists can yield a proof of CH (or of its negation, of course). Indeed, many set theorists - including the authors - suspect that C1t is false. But if we reject CH we admit Gurselves to be in a state of ignorance about a great many questions which CH resolves. While CH is a power- full assertion, its negation is in many ways quite weak. Sierpinski [ 1 5 ] deduces propcsitions there called C l - C82 from CH. We know of none of these propositions which is decided by the negation of CH and only one of them (C78) which is decided if one assumes in addition that a measurable cardinal exists. Among the many simple questions easily decided by CH and which cannot be decided in ZF (Zerme!o-Fraenkel set theory, including the axiom of choice) plus the negation of CH are tile following: Is every set of real numbers of cardinality less than tha't of the continuum of Lebesgue measure zero'? Is 2 ~0 < 2 ~ 1 ? Is there a non-trivial measure defined on all sets of real numbers? CIhis third question could be decided in ZF + not CH only in the unlikely event t Tile second author received support from a Sloan Foundation fellowship and tile National Science Foundation Grant (GP-8746).
    [Show full text]
  • 1 Sets and Classes
    Prerequisites Topological spaces. A set E in a space X is σ-compact if there exists a S1 sequence of compact sets such that E = n=1 Cn. A space X is locally compact if every point of X has a neighborhood whose closure is compact. A subset E of a locally compact space is bounded if there exists a compact set C such that E ⊂ C. Topological groups. The set xE [or Ex] is called a left translation [or right translation.] If Y is a subgroup of X, the sets xY and Y x are called (left and right) cosets of Y . A topological group is a group X which is a Hausdorff space such that the transformation (from X ×X onto X) which sends (x; y) into x−1y is continuous. A class N of open sets containing e in a topological group is a base at e if (a) for every x different form e there exists a set U in N such that x2 = U, (b) for any two sets U and V in N there exists a set W in N such that W ⊂ U \ V , (c) for any set U 2 N there exists a set W 2 N such that V −1V ⊂ U, (d) for any set U 2 N and any element x 2 X, there exists a set V 2 N such that V ⊂ xUx−1, and (e) for any set U 2 N there exists a set V 2 N such that V x ⊂ U. If N is a satisfies the conditions described above, and if the class of all translation of sets of N is taken for a base, then, with respect to the topology so defined, X becomes a topological group.
    [Show full text]
  • Lecture Notes
    MEASURE THEORY AND STOCHASTIC PROCESSES Lecture Notes José Melo, Susana Cruz Faculdade de Engenharia da Universidade do Porto Programa Doutoral em Engenharia Electrotécnica e de Computadores March 2011 Contents 1 Probability Space3 1 Sample space Ω .....................................4 2 σ-eld F .........................................4 3 Probability Measure P .................................6 3.1 Measure µ ....................................6 3.2 Probability Measure P .............................7 4 Learning Objectives..................................7 5 Appendix........................................8 2 Chapter 1 Probability Space Let's consider the experience of throwing a dart on a circular target with radius r (assuming the dart always hits the target), divided in 4 dierent areas as illustrated in Figure 1.1. 4 3 2 1 Figure 1.1: Circular Target The circles that bound the regions 1, 2, 3, and 4, have radius of, respectively, r , r , 3r , and . 4 2 4 r Therefore, the probability that a dart lands in each region is: 1 , 3 , 5 , P (1) = 16 P (2) = 16 P (3) = 16 7 . P (4) = 16 For this kind of problems, the theory of discrete probability spaces suces. However, when it comes to problems involving either an innitely repeated operation or an innitely ne op- eration, this mathematical framework does not apply. This motivates the introduction of a measure-theoretic probability approach to correctly describe those cases. We dene the proba- bility space (Ω; F;P ), where Ω is the sample space, F is the event space, and P is the probability 3 measure. Each of them will be described in the following subsections. 1 Sample space Ω The sample space Ω is the set of all the possible results or outcomes ! of an experiment or observation.
    [Show full text]
  • Borel Structure in Groups and Their Dualso
    BOREL STRUCTURE IN GROUPS AND THEIR DUALSO GEORGE W. MACKEY Introduction. In the past decade or so much work has been done toward extending the classical theory of finite dimensional representations of com- pact groups to a theory of (not necessarily finite dimensional) unitary repre- sentations of locally compact groups. Among the obstacles interfering with various aspects of this program is the lack of a suitable natural topology in the "dual object"; that is in the set of equivalence classes of irreducible representations. One can introduce natural topologies but none of them seem to have reasonable properties except in extremely special cases. When the group is abelian for example the dual object itself is a locally compact abelian group. This paper is based on the observation that for certain purposes one can dispense with a topology in the dual object in favor of a "weaker struc- ture" and that there is a wide class of groups for which this weaker structure has very regular properties. If .S is any topological space one defines a Borel (or Baire) subset of 5 to be a member of the smallest family of subsets of 5 which includes the open sets and is closed with respect to the formation of complements and countable unions. The structure defined in 5 by its Borel sets we may call the Borel structure of 5. It is weaker than the topological structure in the sense that any one-to-one transformation of S onto 5 which preserves the topological structure also preserves the Borel structure whereas the converse is usually false.
    [Show full text]
  • Completely Random Measures and Related Models
    CRMs Sinead Williamson Background Completely random measures and related L´evyprocesses Completely models random measures Applications Normalized Sinead Williamson random measures Neutral-to-the- right processes Computational and Biological Learning Laboratory Exchangeable University of Cambridge matrices January 20, 2011 Outline CRMs Sinead Williamson 1 Background Background L´evyprocesses Completely 2 L´evyprocesses random measures Applications 3 Completely random measures Normalized random measures Neutral-to-the- right processes 4 Applications Exchangeable matrices Normalized random measures Neutral-to-the-right processes Exchangeable matrices A little measure theory CRMs Sinead Williamson Set: e.g. Integers, real numbers, people called James. Background May be finite, countably infinite, or uncountably infinite. L´evyprocesses Completely Algebra: Class T of subsets of a set T s.t. random measures 1 T 2 T . 2 If A 2 T , then Ac 2 T . Applications K Normalized 3 If A1;:::; AK 2 T , then [ Ak = A1 [ A2 [ ::: AK 2 T random k=1 measures (closed under finite unions). Neutral-to-the- right K processes 4 If A1;:::; AK 2 T , then \k=1Ak = A1 \ A2 \ ::: AK 2 T Exchangeable matrices (closed under finite intersections). σ-Algebra: Algebra that is closed under countably infinite unions and intersections. A little measure theory CRMs Sinead Williamson Background L´evyprocesses Measurable space: Combination (T ; T ) of a set and a Completely σ-algebra on that set. random measures Measure: Function µ between a σ-field and the positive Applications reals (+ 1) s.t. Normalized random measures 1 µ(;) = 0. Neutral-to-the- right 2 For all countable collections of disjoint sets processes P Exchangeable A1; A2; · · · 2 T , µ([k Ak ) = µ(Ak ).
    [Show full text]
  • Ergodicity and Metric Transitivity
    Chapter 25 Ergodicity and Metric Transitivity Section 25.1 explains the ideas of ergodicity (roughly, there is only one invariant set of positive measure) and metric transivity (roughly, the system has a positive probability of going from any- where to anywhere), and why they are (almost) the same. Section 25.2 gives some examples of ergodic systems. Section 25.3 deduces some consequences of ergodicity, most im- portantly that time averages have deterministic limits ( 25.3.1), and an asymptotic approach to independence between even§ts at widely separated times ( 25.3.2), admittedly in a very weak sense. § 25.1 Metric Transitivity Definition 341 (Ergodic Systems, Processes, Measures and Transfor- mations) A dynamical system Ξ, , µ, T is ergodic, or an ergodic system or an ergodic process when µ(C) = 0 orXµ(C) = 1 for every T -invariant set C. µ is called a T -ergodic measure, and T is called a µ-ergodic transformation, or just an ergodic measure and ergodic transformation, respectively. Remark: Most authorities require a µ-ergodic transformation to also be measure-preserving for µ. But (Corollary 54) measure-preserving transforma- tions are necessarily stationary, and we want to minimize our stationarity as- sumptions. So what most books call “ergodic”, we have to qualify as “stationary and ergodic”. (Conversely, when other people talk about processes being “sta- tionary and ergodic”, they mean “stationary with only one ergodic component”; but of that, more later. Definition 342 (Metric Transitivity) A dynamical system is metrically tran- sitive, metrically indecomposable, or irreducible when, for any two sets A, B n ∈ , if µ(A), µ(B) > 0, there exists an n such that µ(T − A B) > 0.
    [Show full text]
  • On Families of Mutually Exclusive Sets
    ANNALS OF MATHEMATICS Vol. 44, No . 2, April, 1943 ON FAMILIES OF MUTUALLY EXCLUSIVE SETS BY P . ERDÖS AND A. TARSKI (Received August 11, 1942) In this paper we shall be concerned with a certain particular problem from the general theory of sets, namely with the problem of the existence of families of mutually exclusive sets with a maximal power . It will turn out-in a rather unexpected way that the solution of these problems essentially involves the notion of the so-called "inaccessible numbers ." In this connection we shall make some general remarks regarding inaccessible numbers in the last section of our paper . §1. FORMULATION OF THE PROBLEM . TERMINOLOGY' The problem in which we are interested can be stated as follows : Is it true that every field F of sets contains a family of mutually exclusive sets with a maximal power, i .e . a family O whose cardinal number is not smaller than the cardinal number of any other family of mutually exclusive sets contained in F . By a field of sets we understand here as usual a family F of sets which to- gether with every two sets X and Y contains also their union X U Y and their difference X - Y (i.e. the set of those elements of X which do not belong to Y) among its elements . A family O is called a family of mutually exclusive sets if no set X of X of O is empty and if any two different sets of O have an empty inter- section. A similar problem can be formulated for other families e .g .
    [Show full text]
  • Defining Physics at Imaginary Time: Reflection Positivity for Certain
    Defining physics at imaginary time: reflection positivity for certain Riemannian manifolds A thesis presented by Christian Coolidge Anderson [email protected] (978) 204-7656 to the Department of Mathematics in partial fulfillment of the requirements for an honors degree. Advised by Professor Arthur Jaffe. Harvard University Cambridge, Massachusetts March 2013 Contents 1 Introduction 1 2 Axiomatic quantum field theory 2 3 Definition of reflection positivity 4 4 Reflection positivity on a Riemannian manifold M 7 4.1 Function space E over M ..................... 7 4.2 Reflection on M .......................... 10 4.3 Reflection positive inner product on E+ ⊂ E . 11 5 The Osterwalder-Schrader construction 12 5.1 Quantization of operators . 13 5.2 Examples of quantizable operators . 14 5.3 Quantization domains . 16 5.4 The Hamiltonian . 17 6 Reflection positivity on the level of group representations 17 6.1 Weakened quantization condition . 18 6.2 Symmetric local semigroups . 19 6.3 A unitary representation for Glor . 20 7 Construction of reflection positive measures 22 7.1 Nuclear spaces . 23 7.2 Construction of nuclear space over M . 24 7.3 Gaussian measures . 27 7.4 Construction of Gaussian measure . 28 7.5 OS axioms for the Gaussian measure . 30 8 Reflection positivity for the Laplacian covariance 31 9 Reflection positivity for the Dirac covariance 34 9.1 Introduction to the Dirac operator . 35 9.2 Proof of reflection positivity . 38 10 Conclusion 40 11 Appendix A: Cited theorems 40 12 Acknowledgments 41 1 Introduction Two concepts dominate contemporary physics: relativity and quantum me- chanics. They unite to describe the physics of interacting particles, which live in relativistic spacetime while exhibiting quantum behavior.
    [Show full text]
  • ERGODIC THEORY and ENTROPY Contents 1. Introduction 1 2
    ERGODIC THEORY AND ENTROPY JACOB FIEDLER Abstract. In this paper, we introduce the basic notions of ergodic theory, starting with measure-preserving transformations and culminating in as a statement of Birkhoff's ergodic theorem and a proof of some related results. Then, consideration of whether Bernoulli shifts are measure-theoretically iso- morphic motivates the notion of measure-theoretic entropy. The Kolmogorov- Sinai theorem is stated to aid in calculation of entropy, and with this tool, Bernoulli shifts are reexamined. Contents 1. Introduction 1 2. Measure-Preserving Transformations 2 3. Ergodic Theory and Basic Examples 4 4. Birkhoff's Ergodic Theorem and Applications 9 5. Measure-Theoretic Isomorphisms 14 6. Measure-Theoretic Entropy 17 Acknowledgements 22 References 22 1. Introduction In 1890, Henri Poincar´easked under what conditions points in a given set within a dynamical system would return to that set infinitely many times. As it turns out, under certain conditions almost every point within the original set will return repeatedly. We must stipulate that the dynamical system be modeled by a measure space equipped with a certain type of transformation T :(X; B; m) ! (X; B; m). We denote the set we are interested in as B 2 B, and let B0 be the set of all points in B that return to B infinitely often (meaning that for a point b 2 B, T m(b) 2 B for infinitely many m). Then we can be assured that m(B n B0) = 0. This result will be proven at the end of Section 2 of this paper. In other words, only a null set of points strays from a given set permanently.
    [Show full text]
  • The Concentration of Measure Phenomenon
    http://dx.doi.org/10.1090/surv/089 Selected Titles in This Series 89 Michel Ledoux, The concentration of measure phenomenon, 2001 88 Edward Frenkel and David Ben-Zvi, Vertex algebras and algebraic curves, 2001 87 Bruno Poizat, Stable groups, 2001 86 Stanley N. Burris, Number theoretic density and logical limit laws, 2001 85 V. A. Kozlov, V. G. Maz'ya, and J. Rossmann, Spectral problems associated with corner singularities of solutions to elliptic equations, 2001 84 Laszlo Fuchs and Luigi Salce, Modules over non-Noetherian domains, 2001 83 Sigurdur Helgason, Groups and geometric analysis: Integral geometry, invariant differential operators, and spherical functions, 2000 82 Goro Shimura, Arithmeticity in the theory of automorphic forms, 2000 81 Michael E. Taylor, Tools for PDE: Pseudodifferential operators, paradifferential operators, and layer potentials, 2000 80 Lindsay N. Childs, Taming wild extensions: Hopf algebras and local Galois module theory, 2000 79 Joseph A. Cima and William T. Ross, The backward shift on the Hardy space, 2000 78 Boris A. Kupershmidt, KP or mKP: Noncommutative mathematics of Lagrangian, Hamiltonian, and integrable systems, 2000 77 Fumio Hiai and Denes Petz, The semicircle law, free random variables and entropy, 2000 76 Frederick P. Gardiner and Nikola Lakic, Quasiconformal Teichmuller theory, 2000 75 Greg Hjorth, Classification and orbit equivalence relations, 2000 74 Daniel W. Stroock, An introduction to the analysis of paths on a Riemannian manifold, 2000 73 John Locker, Spectral theory of non-self-adjoint two-point differential operators, 2000 72 Gerald Teschl, Jacobi operators and completely integrable nonlinear lattices, 1999 71 Lajos Pukanszky, Characters of connected Lie groups, 1999 70 Carmen Chicone and Yuri Latushkin, Evolution semigroups in dynamical systems and differential equations, 1999 69 C.
    [Show full text]
  • Synthetic Topology and Constructive Metric Spaces
    University of Ljubljana Faculty of Mathematics and Physics Department of Mathematics Davorin Leˇsnik Synthetic Topology and Constructive Metric Spaces Doctoral thesis Advisor: izr. prof. dr. Andrej Bauer arXiv:2104.10399v1 [math.GN] 21 Apr 2021 Ljubljana, 2010 Univerza v Ljubljani Fakulteta za matematiko in fiziko Oddelek za matematiko Davorin Leˇsnik Sintetiˇcna topologija in konstruktivni metriˇcni prostori Doktorska disertacija Mentor: izr. prof. dr. Andrej Bauer Ljubljana, 2010 Abstract The thesis presents the subject of synthetic topology, especially with relation to metric spaces. A model of synthetic topology is a categorical model in which objects possess an intrinsic topology in a suitable sense, and all morphisms are continuous with regard to it. We redefine synthetic topology in order to incorporate closed sets, and several generalizations are made. Real numbers are reconstructed (to suit the new background) as open Dedekind cuts. An extensive theory is developed when metric and intrinsic topology match. In the end the results are examined in four specific models. Math. Subj. Class. (MSC 2010): 03F60, 18C50 Keywords: synthetic, topology, metric spaces, real numbers, constructive Povzetek Disertacija predstavi podroˇcje sintetiˇcne topologije, zlasti njeno povezavo z metriˇcnimi prostori. Model sintetiˇcne topologije je kategoriˇcni model, v katerem objekti posedujejo intrinziˇcno topologijo v ustreznem smislu, glede na katero so vsi morfizmi zvezni. Definicije in izreki sintetiˇcne topologije so posploˇseni, med drugim tako, da vkljuˇcujejo zaprte mnoˇzice. Realna ˇstevila so (zaradi sin- tetiˇcnega ozadja) rekonstruirana kot odprti Dedekindovi rezi. Obˇsirna teorija je razvita, kdaj se metriˇcna in intrinziˇcna topologija ujemata. Na koncu prouˇcimo dobljene rezultate v ˇstirih izbranih modelih. Math. Subj. Class. (MSC 2010): 03F60, 18C50 Kljuˇcne besede: sintetiˇcen, topologija, metriˇcni prostori, realna ˇstevila, konstruktiven 8 Contents Introduction 11 0.1 Acknowledgements .................................
    [Show full text]