Direct Phylogenetic Evidence for Lateral Transfer of Elongation Factor-Like Gene

Total Page:16

File Type:pdf, Size:1020Kb

Direct Phylogenetic Evidence for Lateral Transfer of Elongation Factor-Like Gene Direct phylogenetic evidence for lateral transfer of elongation factor-like gene Ryoma Kamikawa*, Yuji Inagaki†‡, and Yoshihiko Sako* *Laboratory of Marine Microbiology, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan; and †Center of Computational Sciences and Institute of Biological Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan Edited by W. Ford Doolittle, Dalhousie University, Halifax, NS, Canada, and approved March 18, 2008 (received for review November 26, 2007) Genes encoding elongation factor-like (EFL) proteins, which show veys of EFL genes revealed that (i) ‘‘EFL-containing’’ lineages high similarity to elongation factor-1␣ (EF-1␣), have been found in are scattered amongst ‘‘EF-1␣-containing’’ lineages and (ii) phylogenetically distantly related eukaryotes. The sporadic distri- EF-1␣ and EFL genes are mutually exclusively distributed bution of ‘‘EFL-containing’’ lineages within ‘‘EF-1␣-containing’’ amongst eukaryotes (9–12). Such EF-1␣/EFL distribution can be lineages indirectly, but strongly, suggests lateral gene transfer as achieved by the lateral gene transfer (LGT) scenario assumes the principal driving force in EFL evolution. However, one of the that all eukaryotes primarily lacked EFL genes, and the EFL most critical aspects in the above hypothesis, the donor lineages in genes were separately spread into distantly related lineages via any putative cases of lateral EFL gene transfer, remained unclear. LGT. The exogenous EFL likely took over EF-1␣ functions, and In this study, we provide direct evidence for lateral transfer of an the endogenous EF-1␣ genes eventually disappeared from the EFL gene through the analyses of 10 diatom EFL genes. All diatom genomes. Alternatively, the ‘‘gene-loss’’ scenario, in which as- EFL homologues tightly clustered in phylogenetic analyses, sug- sumes that eukaryotes originally possessed both EF-1␣ and EFL gesting acquisition of the exogenous EFL gene early in diatom genes, is also possible. After divergence of major eukaryotic evolution. Our survey additionally identified Thalassiosira pseud- groups, the mosaic EF-1␣/EFL distribution could have been onana as a eukaryote bearing EF-1␣ and EFL genes and secondary created by multiple independent EFL (or EF-1␣) gene-loss EFL gene loss in Phaeodactylum tricornutum, the complete genome events. Although the current data cannot definitely distinguish ␣ of which encodes only the EF-1 gene. Most importantly, the EFL the evolutionary mode of EFL genes, the LGT scenario is EVOLUTION phylogeny recovered a robust grouping of homologues from generally preferred over the alternative scenario based on a diatoms, the cercozoan Bigelowiella natans, and the foraminifer parsimony-based argument. Because EFL-containing lineages Planoglabratella opecularis, with the diatoms nested within the are currently minor amongst eukaryotes, the number of events Bigelowiella plus Planoglabratella (Rhizaria) grouping. The partic- required for the LGT scenario is equal to or smaller than the ular relationships recovered are further consistent with two char- number of EFL-containing lineages. However, in the gene-loss acteristic sequence motifs. The best explanation of our data anal- scenario, all EF-1␣-containing lineages—presumably the major- yses is an EFL gene transfer from a foraminifer to a diatom, the first ity of eukaryotes—would have had to experience EFL gene loss. case in which the donor–recipient relationship was clarified. Fi- Thus, the number of events required in this scenario would be nally, based on a reverse transcriptase quantitative PCR assay and much larger than that required in the LGT scenario. Neverthe- the genome information of Thalassiosira and Phaeodactylum,we less, the LGT scenario for EFL evolution currently depends propose the loss of elongation factor function in Thalassiosira solely on the observed mosaic EF-1␣/EFL distribution (9–12). EF-1␣. For any putative cases of lateral EFL gene transfer, phylogenetic analyses always failed to unveil the donor lineages (9–12). To EF-1␣ ͉ EFL ͉ eukaryotic phylogeny achieve better understanding of EFL evolution, information regarding the donor lineages of EFL genes would be ␣ ␣ indispensable. ranslation elongation factor 1 (EF-1 ) and its eubacterial ␣ Torthologue, EF-Tu, have been considered as indispensable We here conducted a survey of EF-1 /EFL genes in 11 diatom proteins involved in the elongation step of protein synthesis (1, species. Although no EFL gene has been officially reported for 2). Because of the critical tasks of translation elongation factors, diatoms, we sequenced and/or identified 10 diatom EFL genes. it is widely believed that EF-1␣/EF-Tu genes have been vertically Our data analyses indicated that an EFL gene was established inherited from the last universal common ancestor (3–5), and the early in diatom evolution and that the pennate diatom Phae- gene products are ubiquitous in all extant cells. However, odactylum tricornutum secondarily lost. Of utmost interest is the large-scale sequence data from phylogenetically diverged organ- origin of diatom EFL genes. An EFL phylogeny recovered a isms started unveiling cases that clearly violate the above pre- strongly supported clade of the EFL homologues from the Bigelowiella natans Planoglabratella conception about EF-1␣/EF-Tu evolution. First, multiple cases cercozoan , the foraminifer opecularis, and diatoms, with the diatoms nested inside a ‘‘Rhi- of lateral EF-1␣/EF-Tu gene transfer are described in refs. 6–8. zarian’’ grouping. Characteristic sequence motifs in the EFL Second, the absolute ubiquity of EF-1␣ has also been called into alignment are congruous with this relationship, arguing against question. For instance, no EF-1␣ gene has been identified in the complete nuclear genome of the green alga Chlamydomonas reinhardtii (genome.jgi-psf.org). Instead, this organism possesses Author contributions: R.K., Y.I., and Y.S. designed research; R.K. and Y.I. performed the gene encoding an elongation factor-like (EFL) protein that research; R.K. and Y.I. analyzed data; and R.K., Y.I., and Y.S. wrote the paper. ␣ bears sequence similarity to, but is clearly divergent from, EF-1 The authors declare no conflict of interest. (9). An in silico analysis of functional divergence between This article is a PNAS Direct Submission. ␣ EF-1 and EFL suggested that EFL possesses at least a primary Data deposition: The sequences reported in this paper have been deposited in the Gen- EF-1␣ function, such as the catalysis of nascent peptide elon- Bank, European Molecular Biology Laboratory, and DNA Data Bank of Japan databases gation (9). (accession nos. AB368767–AB368774). Although EF-1␣ and EFL likely share the same cellular ‡To whom correspondence should be addressed. E-mail: [email protected]. function, the postulated evolutionary mode of transmission for This article contains supporting information online at www.pnas.org/cgi/content/full/ EFL genes is significantly different from that for EF-1␣ genes, 0711084105/DCSupplemental. which mainly comprises vertical gene inheritance. Recent sur- © 2008 by The National Academy of Sciences of the USA www.pnas.org͞cgi͞doi͞10.1073͞pnas.0711084105 PNAS ͉ May 13, 2008 ͉ vol. 105 ͉ no. 19 ͉ 6965–6969 Downloaded by guest on September 25, 2021 ABC Fig. 1. Phylogenetic relationship among EFL homologues. (A) Maximum-likelihood EFL phylogeny estimated by IQPNNI. Only bootstrap values Ն70% are indicated. The results from PhyML and MrBayes analyses are not shown, because those estimates were not significantly different from that from IQPNNI. The P nodes supported by Bayesian posterior probabilities Ն 0.95 are highlighted by dots. (B) The /TKK motif exclusively shared among the diatom and Planoglabratella EFL homologues. Gaps are represented by dashes. Possible secondary structures deduced from a yeast EF-1␣ tertiary structure (PDB ID code 1IJF) are shown above P the alignment. Helix and sheet are shown by cylinder and arrow, respectively. Because the secondary structure of the /TKK motif (and the corresponding region in other EFL homologues) is unclear, question marks are inserted. Numbers below the alignment are the amino acid positions in Tharassiosira pseudonana EFL, and those in parentheses are the corresponding positions in yeast EF-1␣.(C) K indel exclusively shared among the diatom, Planoglabratella, and Bigelowiella EFL homologues. Details are as described in B. phylogenetic artifact. Thus, both the tree topology and sequence Skeletonema costatum, and four pennate diatoms, Asterionella features suggest that an EFL gene was most likely transferred glacialis, Cylindrotheca closterium, Achnanthes kuwaitensis, and from a foraminifer to a diatom. To our knowledge, this is the first Thalassionema nitzchioides (Table 1). The initial survey was case whereby the donor of an EFL gene is clear, making it conducted by using sets of degenerate PCR primers designed for significant for a deeper understanding of EF-1␣/EFL evolution. amplifying short DNA fragments encoding the N termini of We also discussed a potential loss of elongation factor (EF) EF-1␣ and EF-1␣-related proteins (i.e., EFL, eukaryotic release functions in EF-1␣ of Thalassiosira, an organism using both factor 3, hsp70 subfamily B suppressor 1). Subsequent cloning EF-1␣ and EFL. and sequencing of the amplified fragments revealed that two or more than two EF-1␣/EF-1␣-related genes were amplified by a Results and Discussion single PCR for all species examined except Ditylum
Recommended publications
  • A Six-Gene Phylogeny Provides New Insights Into Choanoflagellate Evolution Martin Carr, Daniel J
    A six-gene phylogeny provides new insights into choanoflagellate evolution Martin Carr, Daniel J. Richter, Parinaz Fozouni, Timothy J. Smith, Alexandra Jeuck, Barry S.C. Leadbeater, Frank Nitsche To cite this version: Martin Carr, Daniel J. Richter, Parinaz Fozouni, Timothy J. Smith, Alexandra Jeuck, et al.. A six- gene phylogeny provides new insights into choanoflagellate evolution. Molecular Phylogenetics and Evolution, Elsevier, 2017, 107, pp.166 - 178. 10.1016/j.ympev.2016.10.011. hal-01393449 HAL Id: hal-01393449 https://hal.archives-ouvertes.fr/hal-01393449 Submitted on 7 Nov 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Molecular Phylogenetics and Evolution 107 (2017) 166–178 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev A six-gene phylogeny provides new insights into choanoflagellate evolution ⇑ Martin Carr a, ,1, Daniel J. Richter b,1,2, Parinaz Fozouni b,3, Timothy J. Smith a, Alexandra Jeuck c, Barry S.C. Leadbeater d, Frank Nitsche c a School of Applied Sciences, University of Huddersfield, Huddersfield HD1 3DH, UK b Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3200, USA c University of Cologne, Biocentre, General Ecology, Zuelpicher Str.
    [Show full text]
  • Multigene Eukaryote Phylogeny Reveals the Likely Protozoan Ancestors of Opis- Thokonts (Animals, Fungi, Choanozoans) and Amoebozoa
    Accepted Manuscript Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opis- thokonts (animals, fungi, choanozoans) and Amoebozoa Thomas Cavalier-Smith, Ema E. Chao, Elizabeth A. Snell, Cédric Berney, Anna Maria Fiore-Donno, Rhodri Lewis PII: S1055-7903(14)00279-6 DOI: http://dx.doi.org/10.1016/j.ympev.2014.08.012 Reference: YMPEV 4996 To appear in: Molecular Phylogenetics and Evolution Received Date: 24 January 2014 Revised Date: 2 August 2014 Accepted Date: 11 August 2014 Please cite this article as: Cavalier-Smith, T., Chao, E.E., Snell, E.A., Berney, C., Fiore-Donno, A.M., Lewis, R., Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opisthokonts (animals, fungi, choanozoans) and Amoebozoa, Molecular Phylogenetics and Evolution (2014), doi: http://dx.doi.org/10.1016/ j.ympev.2014.08.012 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. 1 1 Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opisthokonts 2 (animals, fungi, choanozoans) and Amoebozoa 3 4 Thomas Cavalier-Smith1, Ema E. Chao1, Elizabeth A. Snell1, Cédric Berney1,2, Anna Maria 5 Fiore-Donno1,3, and Rhodri Lewis1 6 7 1Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK.
    [Show full text]
  • Evidence for Glycolytic Reactions in the Mitochondrion?
    Broad Distribution of TPI-GAPDH Fusion Proteins among Eukaryotes: Evidence for Glycolytic Reactions in the Mitochondrion? Takuro Nakayama1, Ken-ichiro Ishida2, John M. Archibald1* 1 Department of Biochemistry & Molecular Biology, Canadian Institute for Advanced Research, Program in Integrated Microbial Biodiversity, Dalhousie University, Halifax, Nova Scotia, Canada, 2 Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan Abstract Glycolysis is a central metabolic pathway in eukaryotic and prokaryotic cells. In eukaryotes, the textbook view is that glycolysis occurs in the cytosol. However, fusion proteins comprised of two glycolytic enzymes, triosephosphate isomerase (TPI) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH), were found in members of the stramenopiles (diatoms and oomycetes) and shown to possess amino-terminal mitochondrial targeting signals. Here we show that mitochondrial TPI- GAPDH fusion protein genes are widely spread across the known diversity of stramenopiles, including non-photosynthetic species (Bicosoeca sp. and Blastocystis hominis). We also show that TPI-GAPDH fusion genes exist in three cercozoan taxa (Paulinella chromatophora, Thaumatomastix sp. and Mataza hastifera) and an apusozoan protist, Thecamonas trahens. Interestingly, subcellular localization predictions for other glycolytic enzymes in stramenopiles and a cercozoan show that a significant fraction of the glycolytic enzymes in these species have mitochondrial-targeted isoforms. These results suggest that part
    [Show full text]
  • Protist Phylogeny and the High-Level Classification of Protozoa
    Europ. J. Protistol. 39, 338–348 (2003) © Urban & Fischer Verlag http://www.urbanfischer.de/journals/ejp Protist phylogeny and the high-level classification of Protozoa Thomas Cavalier-Smith Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK; E-mail: [email protected] Received 1 September 2003; 29 September 2003. Accepted: 29 September 2003 Protist large-scale phylogeny is briefly reviewed and a revised higher classification of the kingdom Pro- tozoa into 11 phyla presented. Complementary gene fusions reveal a fundamental bifurcation among eu- karyotes between two major clades: the ancestrally uniciliate (often unicentriolar) unikonts and the an- cestrally biciliate bikonts, which undergo ciliary transformation by converting a younger anterior cilium into a dissimilar older posterior cilium. Unikonts comprise the ancestrally unikont protozoan phylum Amoebozoa and the opisthokonts (kingdom Animalia, phylum Choanozoa, their sisters or ancestors; and kingdom Fungi). They share a derived triple-gene fusion, absent from bikonts. Bikonts contrastingly share a derived gene fusion between dihydrofolate reductase and thymidylate synthase and include plants and all other protists, comprising the protozoan infrakingdoms Rhizaria [phyla Cercozoa and Re- taria (Radiozoa, Foraminifera)] and Excavata (phyla Loukozoa, Metamonada, Euglenozoa, Percolozoa), plus the kingdom Plantae [Viridaeplantae, Rhodophyta (sisters); Glaucophyta], the chromalveolate clade, and the protozoan phylum Apusozoa (Thecomonadea, Diphylleida). Chromalveolates comprise kingdom Chromista (Cryptista, Heterokonta, Haptophyta) and the protozoan infrakingdom Alveolata [phyla Cilio- phora and Miozoa (= Protalveolata, Dinozoa, Apicomplexa)], which diverged from a common ancestor that enslaved a red alga and evolved novel plastid protein-targeting machinery via the host rough ER and the enslaved algal plasma membrane (periplastid membrane).
    [Show full text]
  • Chromerid Genomes Reveal the Evolutionary Path From
    RESEARCH ARTICLE elifesciences.org Chromerid genomes reveal the evolutionary path from photosynthetic algae to obligate intracellular parasites Yong H Woo1*, Hifzur Ansari1,ThomasDOtto2, Christen M Klinger3†, Martin Kolisko4†, Jan Michalek´ 5,6†, Alka Saxena1†‡, Dhanasekaran Shanmugam7†, Annageldi Tayyrov1†, Alaguraj Veluchamy8†§, Shahjahan Ali9¶,AxelBernal10,JavierdelCampo4, Jaromır´ Cihla´ rˇ5,6, Pavel Flegontov5,11, Sebastian G Gornik12,EvaHajduskovˇ a´ 5, AlesHorˇ ak´ 5,6,JanJanouskovecˇ 4, Nicholas J Katris12,FredDMast13,DiegoMiranda- Saavedra14,15, Tobias Mourier16, Raeece Naeem1,MridulNair1, Aswini K Panigrahi9, Neil D Rawlings17, Eriko Padron-Regalado1, Abhinay Ramaprasad1, Nadira Samad12, AlesTomˇ calaˇ 5,6, Jon Wilkes18,DanielENeafsey19, Christian Doerig20, Chris Bowler8, 4 10 3 21,22 *For correspondence: yong. Patrick J Keeling , David S Roos ,JoelBDacks, Thomas J Templeton , 12,23 5,6,24 5,6,25 1 [email protected] (YHW); arnab. Ross F Waller , Julius Lukesˇ , Miroslav Obornık´ ,ArnabPain* [email protected] (AP) 1Pathogen Genomics Laboratory, Biological and Environmental Sciences and Engineering † These authors contributed Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia; equally to this work 2Parasite Genomics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Present address: ‡Vaccine and Cambridge, United Kingdom; 3Department of Cell Biology, University of Alberta, Infectious Disease Division, Fred Edmonton, Canada; 4Canadian Institute for Advanced Research, Department of Botany,
    [Show full text]
  • Testing the Effect of in Planta RNA Silencing on Plasmodiophorabrassicae Infection
    Testing the effect of in planta RNA silencing on Plasmodiophorabrassicae infection A thesis submitted in partial fulfilment of the requirements for the Degree of Doctor of Philosophy at Lincoln University S. R. Bulman 2006 ii Contents Abstract. ...................................................................................................., ................ v Acknowledgements .................................................................................................. vii List of Tables ........................................................................................................... viii List of Figures ........................................................................................................... ix CHAPTER 1. Literature Review ................................................................................ 1 Plasmodiophora brassicae ............................................................................................. 1 RNA silencing .................................................................................................................. 5 Plant defence by RNA silencing .................................................................................... 8 RNA silencing versus P. brassicae ............................................................................. 10 Molecular biology of P. brassicae ................................................................................ 10 Choice of cDNA cloning strategy in P. brassicae ......................................................
    [Show full text]
  • A Unicellular Relative of Animals Generates a Layer of Polarized Cells
    RESEARCH ARTICLE A unicellular relative of animals generates a layer of polarized cells by actomyosin- dependent cellularization Omaya Dudin1†*, Andrej Ondracka1†, Xavier Grau-Bove´ 1,2, Arthur AB Haraldsen3, Atsushi Toyoda4, Hiroshi Suga5, Jon Bra˚ te3, In˜ aki Ruiz-Trillo1,6,7* 1Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain; 2Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom; 3Section for Genetics and Evolutionary Biology (EVOGENE), Department of Biosciences, University of Oslo, Oslo, Norway; 4Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Japan; 5Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Hiroshima, Japan; 6Departament de Gene`tica, Microbiologia i Estadı´stica, Universitat de Barcelona, Barcelona, Spain; 7ICREA, Barcelona, Spain Abstract In animals, cellularization of a coenocyte is a specialized form of cytokinesis that results in the formation of a polarized epithelium during early embryonic development. It is characterized by coordinated assembly of an actomyosin network, which drives inward membrane invaginations. However, whether coordinated cellularization driven by membrane invagination exists outside animals is not known. To that end, we investigate cellularization in the ichthyosporean Sphaeroforma arctica, a close unicellular relative of animals. We show that the process of cellularization involves coordinated inward plasma membrane invaginations dependent on an *For correspondence: actomyosin network and reveal the temporal order of its assembly. This leads to the formation of a [email protected] (OD); polarized layer of cells resembling an epithelium. We show that this stage is associated with tightly [email protected] (IR-T) regulated transcriptional activation of genes involved in cell adhesion.
    [Show full text]
  • Plasmodiophora Brassicae
    Bi et al. Phytopathology Research (2019) 1:12 https://doi.org/10.1186/s42483-019-0018-6 Phytopathology Research RESEARCH Open Access Comparative genomics reveals the unique evolutionary status of Plasmodiophora brassicae and the essential role of GPCR signaling pathways Kai Bi1,2, Tao Chen2, Zhangchao He1,2, Zhixiao Gao1,2, Ying Zhao1,2, Huiquan Liu3, Yanping Fu2, Jiatao Xie1,2, Jiasen Cheng1,2 and Daohong Jiang1,2* Abstract Plasmodiophora brassicae is an important biotrophic eukaryotic plant pathogen and a member of the rhizarian protists. This biotrophic pathogen causes clubroot in cruciferous plants via novel intracellular mechanisms that are markedly different from those of other biotrophic organisms. To date, genomes from six single spore isolates of P. brassicae have been sequenced. An accurate description of the evolutionary status of this biotrophic protist, however, remains lacking. Here, we determined the draft genome of the P. brassicae ZJ-1 strain. A total of 10,951 protein-coding genes were identified from a 24.1 Mb genome sequence. We applied a comparative genomics approach to prove the Rhizaria supergroup is an independent branch in the eukaryotic evolutionary tree. We also found that the GPCR signaling pathway, the versatile signal transduction to multiple intracellular signaling cascades in response to extracellular signals in eukaryotes, is significantly enriched in P. brassicae-expanded and P. brassicae-specific gene sets. Additionally, treatment with a GPCR inhibitor relieved the symptoms of clubroot and significantly suppressed the development of plasmodia. Our findings suggest that GPCR signal transduction pathways play important roles in the growth, development, and pathogenicity of P. brassicae.
    [Show full text]
  • Phylogenomics Supports the Monophyly of the Cercozoa T ⁎ Nicholas A.T
    Molecular Phylogenetics and Evolution 130 (2019) 416–423 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Phylogenomics supports the monophyly of the Cercozoa T ⁎ Nicholas A.T. Irwina, , Denis V. Tikhonenkova,b, Elisabeth Hehenbergera,1, Alexander P. Mylnikovb, Fabien Burkia,2, Patrick J. Keelinga a Department of Botany, University of British Columbia, Vancouver V6T 1Z4, British Columbia, Canada b Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok 152742, Russia ARTICLE INFO ABSTRACT Keywords: The phylum Cercozoa consists of a diverse assemblage of amoeboid and flagellated protists that forms a major Cercozoa component of the supergroup, Rhizaria. However, despite its size and ubiquity, the phylogeny of the Cercozoa Rhizaria remains unclear as morphological variability between cercozoan species and ambiguity in molecular analyses, Phylogeny including phylogenomic approaches, have produced ambiguous results and raised doubts about the monophyly Phylogenomics of the group. Here we sought to resolve these ambiguities using a 161-gene phylogenetic dataset with data from Single-cell transcriptomics newly available genomes and deeply sequenced transcriptomes, including three new transcriptomes from Aurigamonas solis, Abollifer prolabens, and a novel species, Lapot gusevi n. gen. n. sp. Our phylogenomic analysis strongly supported a monophyletic Cercozoa, and approximately-unbiased tests rejected the paraphyletic topologies observed in previous studies. The transcriptome of L. gusevi represents the first transcriptomic data from the large and recently characterized Aquavolonidae-Treumulida-'Novel Clade 12′ group, and phyloge- nomics supported its position as sister to the cercozoan subphylum, Endomyxa. These results provide insights into the phylogeny of the Cercozoa and the Rhizaria as a whole.
    [Show full text]
  • Author's Manuscript (764.7Kb)
    1 BROADLY SAMPLED TREE OF EUKARYOTIC LIFE Broadly Sampled Multigene Analyses Yield a Well-resolved Eukaryotic Tree of Life Laura Wegener Parfrey1†, Jessica Grant2†, Yonas I. Tekle2,6, Erica Lasek-Nesselquist3,4, Hilary G. Morrison3, Mitchell L. Sogin3, David J. Patterson5, Laura A. Katz1,2,* 1Program in Organismic and Evolutionary Biology, University of Massachusetts, 611 North Pleasant Street, Amherst, Massachusetts 01003, USA 2Department of Biological Sciences, Smith College, 44 College Lane, Northampton, Massachusetts 01063, USA 3Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, 7 MBL Street, Woods Hole, Massachusetts 02543, USA 4Department of Ecology and Evolutionary Biology, Brown University, 80 Waterman Street, Providence, Rhode Island 02912, USA 5Biodiversity Informatics Group, Marine Biological Laboratory, 7 MBL Street, Woods Hole, Massachusetts 02543, USA 6Current address: Department of Epidemiology and Public Health, Yale University School of Medicine, New Haven, Connecticut 06520, USA †These authors contributed equally *Corresponding author: L.A.K - [email protected] Phone: 413-585-3825, Fax: 413-585-3786 Keywords: Microbial eukaryotes, supergroups, taxon sampling, Rhizaria, systematic error, Excavata 2 An accurate reconstruction of the eukaryotic tree of life is essential to identify the innovations underlying the diversity of microbial and macroscopic (e.g. plants and animals) eukaryotes. Previous work has divided eukaryotic diversity into a small number of high-level ‘supergroups’, many of which receive strong support in phylogenomic analyses. However, the abundance of data in phylogenomic analyses can lead to highly supported but incorrect relationships due to systematic phylogenetic error. Further, the paucity of major eukaryotic lineages (19 or fewer) included in these genomic studies may exaggerate systematic error and reduces power to evaluate hypotheses.
    [Show full text]
  • New Phylogenomic Analysis of the Enigmatic Phylum Telonemia Further Resolves the Eukaryote Tree of Life
    bioRxiv preprint doi: https://doi.org/10.1101/403329; this version posted August 30, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. New phylogenomic analysis of the enigmatic phylum Telonemia further resolves the eukaryote tree of life Jürgen F. H. Strassert1, Mahwash Jamy1, Alexander P. Mylnikov2, Denis V. Tikhonenkov2, Fabien Burki1,* 1Department of Organismal Biology, Program in Systematic Biology, Uppsala University, Uppsala, Sweden 2Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Yaroslavl Region, Russia *Corresponding author: E-mail: [email protected] Keywords: TSAR, Telonemia, phylogenomics, eukaryotes, tree of life, protists bioRxiv preprint doi: https://doi.org/10.1101/403329; this version posted August 30, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract The broad-scale tree of eukaryotes is constantly improving, but the evolutionary origin of several major groups remains unknown. Resolving the phylogenetic position of these ‘orphan’ groups is important, especially those that originated early in evolution, because they represent missing evolutionary links between established groups. Telonemia is one such orphan taxon for which little is known. The group is composed of molecularly diverse biflagellated protists, often prevalent although not abundant in aquatic environments.
    [Show full text]
  • Genetic Tool Development in Marine Protists: Emerging Model Organisms for Experimental Cell Biology
    RESOURCE https://doi.org/10.1038/s41592-020-0796-x Genetic tool development in marine protists: emerging model organisms for experimental cell biology Diverse microbial ecosystems underpin life in the sea. Among these microbes are many unicellular eukaryotes that span the diversity of the eukaryotic tree of life. However, genetic tractability has been limited to a few species, which do not represent eukaryotic diversity or environmentally relevant taxa. Here, we report on the development of genetic tools in a range of pro- tists primarily from marine environments. We present evidence for foreign DNA delivery and expression in 13 species never before transformed and for advancement of tools for eight other species, as well as potential reasons for why transformation of yet another 17 species tested was not achieved. Our resource in genetic manipulation will provide insights into the ancestral eukaryotic lifeforms, general eukaryote cell biology, protein diversification and the evolution of cellular pathways. he ocean represents the largest continuous planetary ecosys- Results tem, hosting an enormous variety of organisms, which include Overview of taxa in the EMS initiative. Taxa were selected from Tmicroscopic biota such as unicellular eukaryotes (protists). multiple eukaryotic supergroups1,7 to maximize the potential of cel- Despite their small size, protists play key roles in marine biogeo- lular biology and to evaluate the numerous unigenes with unknown chemical cycles and harbor tremendous evolutionary diversity1,2. functions found in marine protists (Fig. 1). Before the EMS initia- Notwithstanding their significance for understanding the evolution tive, reproducible transformation of marine protists was limited to of life on Earth and their role in marine food webs, as well as driv- only a few species such as Thalassiosira pseudonana, Phaeodactylum ing biogeochemical cycles to maintain habitability, little is known tricornutum and Ostreococcus tauri (Supplementary Table 1).
    [Show full text]