Geologie Und Paläontologie in Westfalen Heft 59

Total Page:16

File Type:pdf, Size:1020Kb

Geologie Und Paläontologie in Westfalen Heft 59 WESTFÄLISCHES MUSEUM FÜR NATURKUNDE Geologie und Paläontologie in Westfalen Heft 59 Die fossilen Insekten, Spinnentiere und Eurypteriden von Hagen-Vorhalle Garsten BRAUCKMANN, Lothar SCHÖLLMANN & Wolfgang SIPPEL 1111~·11~ 1 Landschaftsverband 1 · Westfalen-Lippe www.1w1.orv Hinweise für Autoren In der Schriftenreihe Geologie und Paläontologie in Westfalen werden geowissenschaftliche Beiträge veröf• fentlicht, die den Raum Westfalen betreffen. Druckfertige Manuskripte sind an die Schriftleitung zu schicken. Aufbau des Manuskriptes 1. Titel kurz und bezeichnend. 2. Klare Gliederung. 3. Zusammenfassung in Deutsch am Anfang der Arbeit. Äußere Form 4. Manuskriptblätter einseitig und weitzeilig beschreiben; Maschinenschrift, Verbesserungen in Druckschrift. 5. Unter der Überschrift: Name des Autors (ausgeschrieben), Anzahl der Abbildungen, Tabellen und Tafeln; An­ schrift des Autors auf der 1. Seite unten. 6. Literaturzitate im Text werden wie folgt ausgeführt: (AUTOR, Erscheinungsjahr: evtl. Seite) oder AUTOR (Er­ scheinungsjahr: evtl. Seite). Angeführte Schriften werden am Schluß der Arbeit geschlossen als Literaturver­ zeichnis nach den Autoren alphabetisch geordnet. Das Literaturverzeichnis ist nach folgendem Muster an­ zuordnen: SIEGFRIED,P.(1959):Das Mammut von Ahlen (Mammonteus primigenius BLUMENB.).-Paläont. Z.30,3:172- 184, 3 Abb., 4 Taf.; Stuttgart. WEGNER, T. (1926): Geologie Westfalens und der angrenzenden Gebiete. 2. Aufl. - 500 S„ 1 Taf., 244 Abb.; Paderborn (Schöningh). 7. Schrifttypen im Text: doppelt unterstrichen = Fettdruck einfach unterstrichen oder g e s p e r r t = S p e r r u n g. Gattungs- und Artnamen unterschlängeln = Kursivdruck Autorennamen durch GROSSBUCHSTABEN wiedergeben. Abbildungsvorlagen 8. In den Text eingefügte Bilddarstellungen sind Abbildungen (Abb. 2). Auf den Tafeln stehen Figuren {Taf. 3, Fig.2) oder Profile {Taf. 5, Profil 2). 9. Strichzeichnungen können auf Transparentpapier oder Photohochglanzpapier vorgelegt werden. Photogra­ phien müssen auf Hochglanzpapier abgezogen sein. Korrekturen 10. Korrekturfahnen werden den Autoren einmalig zugestellt. Korrekturen gegen das Manuskript gehen auf Rechnung des Autors. Für den Inhalt der Beiträge sind die Autoren allein verantwortlich. 2 Geologie und Paläontologie in Westfalen Heft 59 Die fossilen Insekten, Spinnentiere und Eurypteriden von Hagen-Vorhalle Garsten BRAUCKMANN, Lothar SCHÖLLMANN & Wolfgang SIPPEL Geol. Paläont. 24 Abb. Münster 59 89 s. Westf. 12 Tat. März 2003 3 Impressum Geologie und Paläontologie in Westfalen Herausgeber: Dr. Alfred Hendricks Landschaftsverband Westfalen-Lippe Westfälisches Museum für Naturkunde, Münster Sentruper Str. 285, 48161 Münster Telefon 02 51/5 91-05, Telefax: 02 51/5 91 60 98 Druck: LINDEN Print & Media GmbH, Münster Schriftleitung: Dr. Peter Lanser ISSN 0176-148X ISBN 3-924590-76-1 © 2003 Landschaftsverband Westfalen-Lippe Alle Rechte vorbehalten. Kein Teil des Werkes darf in irgendeiner Form ohne schriftliche Genehmigung des LWL reproduziert oder unter Verwendung elektronischer Systeme verarbeitet, vervielfältigt oder verbreitet werden. 4 Geol. Paläont. 24 Abb. Münster 59 89 S. Westf. 12 Tat. März 2003 Die fossilen Insekten, Spinnentiere und Eurypteriden von Hagen-Vorhalle Garsten BRAUCKMANN, Lothar SCHÖLLMANN & Wolfgang SIPPEL Kurzfassung In den letzten 20 Jahren ist im Ruhrgebiet, in der ehemaligen Ziegeleigrube Hagen-Vorhalle, eine ein­ zigartige Flora und Fauna ausgegraben worden. Unter den ca. 16000 Fundstücken der Grabungskampag­ nen befinden sich 157 Insekten. Mit den Funden der Privatsammler erhöht sich die Zahl der Insekten von dieser Lokalität auf 310. Ein Großteil der Exemplare liegt vollständig erhalten vor. Es handelt sich hierbei um die ältesten vollständigen Fluginsekten überhaupt. Die Insektenfauna umfasst 18 Arten, die sich auf 5 Ordnungen verteilen. Wesentlich seltener als die Insekten sind' die Spinnentiere vertreten. Es liegen sechs Einzelfunde aus drei Ordnungen vor. Zu den Raritäten zählen Funde von Eurypteriden. Neben einigen wenigen fragmentarischen Resten wird ein weit­ gehend vollständiges Exemplar vorgestellt. Die Fossilien stammen aus feinlaminierten Tonsteinen der Vorhaller Schichten, die mit Ammonoideen in die Zone R2c (Namur B, höheres Marsdenium) eingestuft worden sind. Die Vorhalle-Schichten kamen in einer Lagune bzw. in einer Bucht zwischen den Verteilerarmen eines Deltas zur Ablagerung. Abstract During the last 20 years, a unique flora and fauna has been recovered in the former brickyard quarry at Hagen-Vorhalle in the Ruhr area. Among the approximately 16 000 samples from the excavation by the offi­ ce for "Paläontologische Bodendenkmalpflege" in Münster there are 157 insects. Together with specimens held by private collectors, the total numbers of insects increases to 310 individuals. A large proportion of the material is quite completely preserved, including the oldest known complete pterygote insects ever dis­ covered. The insect fauna comprises 18 species, distributed among 5 orders. Arachnids are known from only 6 specimens from 3 different orders. Extreme rarities also include eurypterids which, beyond some isolated fragments, are represented by a single, largely complete specimen. The fossils have been collected from laminated shales of the Vorhalle beds which are principally alloca­ ted to the R2c zone (Namurian B, late Marsdenian) by the occurrence index ammonoids. The Vorhalle beds were deposited in a lagoonal environment or in a bay between the arms of a deltaic river mouth. Key words: Hagen-Vorhalle, Carboniferous, lagoonal environment, insects, arachnids, eurypterids. Einleitung Die Insekten sind in der heutigen Fauna mit vermutlich über 1 Million beschriebenen Arten die weitaus größte Tiergruppe. Ihre Überlieferung beginnt im Devon vor etwa 400 Millionen Jahren. Aus diesem Zeit- Anschriften der Verfasser: Garsten BRAUCKMANN, Institut für Geologie und Paläontologie, Technische Universität Clausthal, Leibnizstraße 10, D-38678 Clausthal-Zellerfeld, email: [email protected]; Lothar SCHÖLLMANN, Westfälisches Museum für Naturkunde - Landesmuseum und Planetarium, Paläontologische Bodendenkmalpflege, Sentruper Straße 285, D-48161 Münster/Westfalen, email: [email protected]; Wolfgang SIPPEL, Friedenshöhe 31 , D-58256 Ennepetal. abschnitt sind aber bisher nur sehr wenige Reste von urtümlichen flügellosen Insekten (= Apterygota) aus der Verwandtschaft der Springschwänze und Felsenspringer bekannt, deren Nachfahren noch heute in fast unveränderter Form leben. Die ältesten bisher bekannten Fluginsekten (= Pterygota) sind wesentlich jünger. Sie stammen aus dem jüngsten Unter-Karbon und dem ältesten Ober-Karbon, einem Zeitabschnitt, der nach der belgischen Stadt Namur als Namurium (oder Namur-Stufe) bezeichnet wird und rund 315 Mio. Jahre zurück liegt. Bis vor wenigen Jahren waren aus dem Namurium weltweit insgesamt nur knapp 30 spärlich erhaltene Reste von Fluginsekten bekannt, die meisten davon aus dem Mährischen Steinkohlengebiet; Teile von Kopf, Körper und Beinen waren an diesen Funden nicht überliefert. Erst mit dem Mittleren und besonders mit dem Oberen Ober-Karbon (= Westfalium bzw. Stephanium) wird die Überlieferung der Insekten etwas reichhaltiger. Ins Stephanium einzustufen ist z. B. die „klassi• sche" ober-karbonische lnsekten-Fundstelle Commentry in Zentral-Frankreich mit ihren berühmten Rie­ sen-Libellen; die von dort stammenden Funde sind rund 300 Mio. Jahre alt. In den letzten 20 Jahren sind nun im Ruhrgebiet, in der inzwischen bekannt gewordenen ehemaligen Ziegeleigrube Hagen-Vorhalle, über 300 namur-zeitliche Insekten-Reste geborgen worden, von denen ein großer Teil vorzüglich und nahezu vollständig erhalten ist. Es sind dies somit die ältesten komplett überlie• ferten Fluginsekten überhaupt. Mit ihnen wird nunmehr erstmals eine ganz frühe Entwicklungsstufe dieser Tiergruppe besser zugänglich. Zusätzlich zu den Insekten-Funden wurden an dieser Lokalität auch einige - zum Teil ebenfalls hervor­ ragend erhaltene - Überreste von Spinnentieren und "Tausendfüßern" entdeckt. Wegen des hohen erdgeschichtlichen Alters, der großen Anzahl von Einzelfunden und der ungewöhn• lich vollständigen Erhaltung von Insekten und Spinnentieren kommt der ehemaligen Ziegeleigrube Hagen­ Vorhalle eine außerordentliche Bedeutung zu, die sich seit der ersten Publikation durch BRAUCKMANN & KOCH (1982) auch in einer größeren Anzahl von wissenschaftlichen und populärwissenschaftlichen Veröf• fentlichungen während der letzten Jahre dargelegt hat. Die Fundstelle Die ehemalige Ziegeleigrube Hagen-Vorhalle gilt schon seit längerer Zeit weltweit als eine der Feichhal­ tigsten Fundstellen für Floren und Faunen aus dem tiefen Ober-Karbon. Zu einer Lokalität von internatio­ nal bedeutendem Rang wurde sie durch die Entdeckung fossiler Spinnentiere und Insekten in einer über• raschend vollständigen Erhaltung, wie sie bisher aus diesem Zeitabschnitt nicht bekannt war. Daß der Bestand der Fundstelle trotz der paläontologischen Bedeutung durch Verfüllung bedroht war und aufgrund veränderter Abbaumethoden der Ziegeleibetriebe schon längere Zeit keine Fundmöglichkei• ten mehr bestanden, wurde zuerst von KOCH (1990) ausführlich dargestellt. Im Jahre 1989 stellten die Vorhaller Klinkerwerke die Ziegelproduktion ein. Da die Abgrabungsgenehmi­ gung noch um weitere zwei Jahre (bis Ende 1991) verlängert wurde, haben die neuen Besitzer den Stein­ bruch völlig umgestaltet. Beim Umbau der Grube wurden im Sommer 1990 die fossilführenden Horizonte erneut aufgeschlossen. Im Bereich
Recommended publications
  • The Engineering of the Giant Dragonflies of the Permian: Revised Body Mass, Power, Air Supply, Thermoregulation and the Role of Air Density Alan E
    © 2018. Published by The Company of Biologists Ltd | Journal of Experimental Biology (2018) 221, jeb185405. doi:10.1242/jeb.185405 COMMENTARY The engineering of the giant dragonflies of the Permian: revised body mass, power, air supply, thermoregulation and the role of air density Alan E. R. Cannell ABSTRACT abdomen as well as spiny and surprisingly robust legs. Illustrations An engineering examination of allometric and analogical data on the of M. monyi and a female Meganeurula selysii (Shear and flight of giant Permian insects (Protodonata, Meganeura or griffinflies) Kukalova-Peck, 1990) also indicate creatures with strong mouth indicates that previous estimates of the body mass of these insects parts, well-developed pincers and strong long thick legs. In both are too low and that the largest of these insects (wingspan of 70 cm or drawings, the abdomen is similar in diameter to the thorax, unlike more) would have had a mass of 100–150 g, several times greater the structure of most modern dragonflies, which have much more – – than previously thought. Here, the power needed to generate lift and slender abdomens. This large size and consequently high mass fly at the speeds typical of modern large dragonflies is examined has attracted attention for over a hundred years as there are no extant together with the metabolic rate and subsequent heat generated by insects of this size and their physiology in terms of power generation the thoracic muscles. This evaluation agrees with previous work and thermoregulation is not understood. This Commentary suggesting that the larger specimens would rapidly overheat in the examines the questions of mass, power generation to fly and high ambient temperatures assumed in the Permian.
    [Show full text]
  • (Chelicerata: Eurypterida), a Large Sweep-Feeder from the Carboniferous of South Africa C
    Transactions of rhe Royal Society of Edinburgh, 76, 339-358, J985 CyrtoctefJUS wittebergensis sp. nov. (Chelicerata: Eurypterida), a large sweep-feeder from the Carboniferous of South Africa C. D. Waterston, B. W. Oelofsen, R. D. F. Oosthuizen ABSTRACT: Cyrtoctenus winebergensis sp. nov. is described from a unique holotype from the Witteberg Group of the Cape Supergroup. It is a giant hibbertopteroid eurypterid having combs and specialised movable spines of crytoctenid type (St0rmer & Waterston 1968) on the more distal podomeres of the second to fourth prosoroal appendages. The function of the combs and their associated movable spines is discussed and it is suggested that together they formed a unique adaptation of eurypterid structures to sweep filter~feeding, the combs forming the filters and the spines the cleaners. The digestive tract is remarkably preserved and shows a spiral valve, posterior to tbe stomach, which is interpreted as an adaptive feature in this large arthropod to increase tbe absorptive area of the gut. The new evidence provided by the South African specimen bas required the re~interpretation of the disarticulated Cyrloclenus specimens previously described from Europe. Disjecla membra recently obtained from the Tournaisian of Foulden, Berwickshire, whicb may belong to CynoClenus, are described and show characters previously unknown in Scottish material but similar to certain features in the South African specimen. The taxonomic relationships within the Hibbertopteroidea are discussed in the light of tbe new combination of characters found in C. wittebergensis. Two families are recognised in the superfamily, the Hibbertopteridae, including Hibber/opterus and Campylocephalus, and the new family Cyrtoctenidae which is here erected to include Cyrtoclenus, Dunsoprerus and possibly also Haslimima.
    [Show full text]
  • Frank Morton Carpenter (1902-1994): Academic Biography and List of Publications
    FRANK MORTON CARPENTER (1902-1994): ACADEMIC BIOGRAPHY AND LIST OF PUBLICATIONS BY DAVID G. FURTH 18 Hamilton Rd., Arlington, MA 02174 The present paper is meant to accompany the preceding one by Elizabeth Brosius, Assistant Editor at the University of Kansas, Paleontological Institute, who was extremely instrumental in aid- ing Prof. Frank Carpenter to finish his Treatise on Invertebrate Paleontology volumes on fossil insects. The Brosius paper is a brief profile taken from her personal interaction with Prof. Carpen- ter as well as numerous interviews about him with his friends, stu- dents, and colleagues. The present paper is intended to be more of an account of Prof. Carpenter's academic background and accom- plishments with the addition of some personal and academic accounts of the author's interaction with Frank Carpenter. Frank Morton Carpenter was born in Boston on 6 September 1902. When he was three years old his family (father Edwin A. and mother Maude Wall) moved from Boston to Revere and at age six his family moved to Melrose where he began to attend Lincoln School the following year. His father worked for the American Express Company but had a strong interest in natural history and taught his elder son (Edwin, four years older than Frank) about the constellations. Edwin later graduated from Harvard, studied astronomy, and became Director of the Astronomical Laboratory at the University of Arizona in Tucson. When Frank Carpenter was a sixth grader at Lincoln School his father encouraged his interest in butterflies and moths. In ninth grade Frank Carpenter began taking out books about insects from the Melrose Public Library.
    [Show full text]
  • Segmentation and Tagmosis in Chelicerata
    Arthropod Structure & Development 46 (2017) 395e418 Contents lists available at ScienceDirect Arthropod Structure & Development journal homepage: www.elsevier.com/locate/asd Segmentation and tagmosis in Chelicerata * Jason A. Dunlop a, , James C. Lamsdell b a Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstrasse 43, D-10115 Berlin, Germany b American Museum of Natural History, Division of Paleontology, Central Park West at 79th St, New York, NY 10024, USA article info abstract Article history: Patterns of segmentation and tagmosis are reviewed for Chelicerata. Depending on the outgroup, che- Received 4 April 2016 licerate origins are either among taxa with an anterior tagma of six somites, or taxa in which the ap- Accepted 18 May 2016 pendages of somite I became increasingly raptorial. All Chelicerata have appendage I as a chelate or Available online 21 June 2016 clasp-knife chelicera. The basic trend has obviously been to consolidate food-gathering and walking limbs as a prosoma and respiratory appendages on the opisthosoma. However, the boundary of the Keywords: prosoma is debatable in that some taxa have functionally incorporated somite VII and/or its appendages Arthropoda into the prosoma. Euchelicerata can be defined on having plate-like opisthosomal appendages, further Chelicerata fi Tagmosis modi ed within Arachnida. Total somite counts for Chelicerata range from a maximum of nineteen in Prosoma groups like Scorpiones and the extinct Eurypterida down to seven in modern Pycnogonida. Mites may Opisthosoma also show reduced somite counts, but reconstructing segmentation in these animals remains chal- lenging. Several innovations relating to tagmosis or the appendages borne on particular somites are summarised here as putative apomorphies of individual higher taxa.
    [Show full text]
  • Geological History and Phylogeny of Chelicerata
    Arthropod Structure & Development 39 (2010) 124–142 Contents lists available at ScienceDirect Arthropod Structure & Development journal homepage: www.elsevier.com/locate/asd Review Article Geological history and phylogeny of Chelicerata Jason A. Dunlop* Museum fu¨r Naturkunde, Leibniz Institute for Research on Evolution and Biodiversity at the Humboldt University Berlin, Invalidenstraße 43, D-10115 Berlin, Germany article info abstract Article history: Chelicerata probably appeared during the Cambrian period. Their precise origins remain unclear, but may Received 1 December 2009 lie among the so-called great appendage arthropods. By the late Cambrian there is evidence for both Accepted 13 January 2010 Pycnogonida and Euchelicerata. Relationships between the principal euchelicerate lineages are unre- solved, but Xiphosura, Eurypterida and Chasmataspidida (the last two extinct), are all known as body Keywords: fossils from the Ordovician. The fourth group, Arachnida, was found monophyletic in most recent studies. Arachnida Arachnids are known unequivocally from the Silurian (a putative Ordovician mite remains controversial), Fossil record and the balance of evidence favours a common, terrestrial ancestor. Recent work recognises four prin- Phylogeny Evolutionary tree cipal arachnid clades: Stethostomata, Haplocnemata, Acaromorpha and Pantetrapulmonata, of which the pantetrapulmonates (spiders and their relatives) are probably the most robust grouping. Stethostomata includes Scorpiones (Silurian–Recent) and Opiliones (Devonian–Recent), while
    [Show full text]
  • PRISCUM the Newsletter of the Paleontological Society Volume 13, Number 2, Fall 2004
    PRISCUM The Newsletter of the Paleontological Society Volume 13, Number 2, Fall 2004 Paleontological PRESIDENT’S Society Officers COLUMN: Inside... President Treasurer’s Report 2 William I. Ausich WE NEED YOU! GSA Information 2 President-Elect by William I. Ausich Reviews of PS- David Bottjer Sponsored Sessions 3 Past-President Why are you a member of The Paleontology Portal 5 Patricia H. Kelley The Paleontological Society? In PS Lecture Program 6 Secretary the not too distance past, the Books for Review 9 Roger D. K. Thomas only way to receive a copy of the Journal of Book Reviews 9 Treasurer Paleontology and Paleobiology was to pay your dues Conference Announce- and belong to the Society. I suppose one could Mark E. Patzkowsky have borrowed a copy from a friend or wander over ments 14 JP Managing Editors to the library. However, this was probably done Ann (Nancy) F. Budd with a heavy burden of guilt. Now, as we move Christopher A. Brochu into the digital age of scientific journal publishing, Jonathan Adrain one can have copies of the Journal of Paleontology and Paleobiology transmitted right to your Paleobiology Editors computer. It actually may arrive faster than the Tomasz Baumiller U.S. mail, you do not have to pay anything, and Robyn Burnham you do not even have to walk over to the library. Philip Gingerich No need for shelf space, no hassle, no dues, no Program Coordinator guilt – isn’t the Web great? The Web is great, but the Society needs dues-paying members in order Mark A. Wilson to continue to publish in paper, digitally, or both.
    [Show full text]
  • Rasnitsynala Sigambrorum Gen. Et Sp. N., a Small Odonatopterid
    A peer-reviewed open-access journal ZooKeys 130: 57–66 (2011)Rasnitsynala sigambrorum gen. et sp. n., a small odonatopterid... 57 doi: 10.3897/zookeys.130.1458 RESEARCH ARTICLE www.zookeys.org Launched to accelerate biodiversity research Rasnitsynala sigambrorum gen. et sp. n., a small odonatopterid (“Eomeganisoptera”, “Erasipteridae”) from the early Late Carboniferous of Hagen-Vorhalle (Germany) Wolfgang Zessin1,†, Carsten Brauckmann2,‡, Elke Gröning2,§ 1 Lange Straße 9, 19230 Jasnitz, Germany 2 Clausthal University of Technology, Institute of Geology and Paleontology, Leibnizstraße 10, 38678 Clausthal-Zellerfeld, Germany † urn:lsid:zoobank.org:author:EE854837-A2FB-457C-82F1-60406627EC58 ‡ urn:lsid:zoobank.org:author:A9B536B4-6DEF-48C4-980A-9EB8A9467F8B § urn:lsid:zoobank.org:author:6D085012-9A15-4937-B408-FEFDF39B4907 Corresponding author: Wolfgang Zessin ([email protected]) Academic editor: D. Shcherbakov | Received 2 May 2011 | Accepted 26 August 2011 | Published 24 September 2011 urn:lsid:zoobank.org:pub:708DBB4C-244E-4606-992B-D10129016158 Citation: Zessin W, Brauckmann C, Gröning E (2011) Rasnitsynala sigambrorum gen. et sp. n., a small odonatopterid (“Eomeganisoptera”, “Erasipteridae”) from the early Late Carboniferous of Hagen-Vorhalle (Germany). In: Shcherbakov DE, Engel MS, Sharkey MJ (Eds) Advances in the Systematics of Fossil and Modern Insects: Honouring Alexandr Rasnitsyn. ZooKeys 130: 57–66. doi: 10.3897/zookeys.130.1458 Abstract Besides Erasipteroides valentini (Brauckmann in Brauckmann, Koch & Kemper, 1985), Zessinella siope Brauckmann, 1988, and Namurotypus sippeli Brauckmann & Zessin, 1989, Rasnitsynala sigambrorum gen. et sp. n. is the fourth species of the Odonatoptera from the early Late Carboniferous (Early Penn- sylvanian: Namurian B, Marsdenian) deposits of the important Hagen-Vorhalle Konservat-Lagerstätte in Germany.
    [Show full text]
  • Evolution of the Insects David Grimaldi and Michael S
    Cambridge University Press 0521821495 - Evolution of the Insects David Grimaldi and Michael S. Engel Index More information INDEX 12S rDNA, 32, 228, 269 Aenetus, 557 91; general, 57; inclusions, 57; menageries 16S rDNA, 32, 60, 237, 249, 269 Aenigmatiinae, 536 in, 56; Mexican, 55; parasitism in, 57; 18S rDNA, 32, 60, 61, 158, 228, 274, 275, 285, Aenne, 489 preservation in, 58; resinite, 55; sub-fossil 304, 307, 335, 360, 366, 369, 395, 399, 402, Aeolothripidae, 284, 285, 286 resin, 57; symbioses in, 303; taphonomy, 468, 475 Aeshnoidea, 187 57 28S rDNA, 32, 158, 278, 402, 468, 475, 522, 526 African rock crawlers (see Ambermantis wozniaki, 259 Mantophasmatodea) Amblycera, 274, 278 A Afroclinocera, 630 Amblyoponini, 446, 490 aardvark, 638 Agaonidae, 573, 616: fossil, 423 Amblypygida, 99, 104, 105: in amber, 104 abdomen: function, 131; structure, 131–136 Agaoninae, 423 Amborella trichopoda, 613, 620 Abies, 410 Agassiz, Alexander, 26 Ameghinoia, 450, 632 Abrocomophagidae, 274 Agathiphaga, 560 Ameletopsidae, 628 Acacia, 283 Agathiphagidae, 561, 562, 567, 630 American Museum of Natural History, 26, 87, acalyptrate Diptera: ecological diversity, 540; Agathis, 76 91 taxonomy, 540 Agelaia, 439 Amesiginae, 630 Acanthocnemidae, 391 ages, using fossils, 37–39; using DNA, 38–40 ametaboly, 331 Acari, 99, 105–107: diversity, 101, fossils, 53, Ageniellini, 435 amino acids: racemization, 61 105–107; in-Cretaceous amber, 105, 106 Aglaspidida, 99 ammonites, 63, 642 Aceraceae, 413 Aglia, 582 Amorphoscelidae, 254, 257 Acerentomoidea, 113 Agrias, 600 Amphientomidae,
    [Show full text]
  • Libro 34(1).Indb 115 19/12/2007 20:39:30 116 Nel Et Al
    ISSN (print): 1698-6180. ISSN (online): 1886-7995 www.ucm.es /info/estratig/journal.htm Journal of Iberian Geology 34 (1) 2008: 115-122 The Odonatoptera of the Late Permian Lodève Basin (Insecta) Odonatoptera del Pérmico Superior de la Cuenca de Lòdeve (Insecta) A. N. Nel1*, G. Fleck1, R. Garrouste1, G. Gand2 1CNRS UMR 5202, Muséum National d’Histoire Naturelle, CP 50, Entomologie, 45 rue Buffon, F-75005, Paris, France e-mail: [email protected] 2 Laboratoire de Biogéosciences, CNRS, Université de Bourgogne, Centre des Sciences de la Terre; 6, boulevard Gabriel, F-21000 Dijon, France Received: 15/07/06 /Accepted: 27/12/06 Abstract The discovery of numerous and very diverse Odonatoptera in the Red Late Permian Lodève Basin questions its current recons- tructions of a dry to very dry palaeoclimate and palaeoenvironment. It rather suggests the presence of more or less permanent water bodies, surrounded by a diversity of terrestrial biotas. The discovery of large to very large Meganeuridae contradicts the alleged relations between the decrease of body and wing sizes of the insects during the late Permian as a direct consequence of the decrease of the oxygen atmospheric concentrations at that time. Keywords: Insecta, Odonatoptera, Late Permian, Lodève Basin, diversity, palaeoecology, gigatism, oxygen atmospheric concentrations. Resumen El descubrimiento de una numerosa y variada fauna de Odonatoptera en el Pérmico Superior rojo de la cuenca de Lodève pone en cuestión la hipótesis de un paleoclima seco a muy seco para este yacimiento. Sugiere la presencia de masas de agua más o menos permanentes, rodeadas por una importante diversidad de medios terrestres.
    [Show full text]
  • Bulletin of the Peabody Museum of Natural History Yale Univ
    Hallipterus excelsior, a Stylonurid (Chelicerata: Eurypterida) from the Late Devonian Catskill Delta Complex, and Its Phylogenetic Position in the Hardieopteridae O. Erik Tetlie Department of Geology and Geophysics, Yale University, P. O. Box 208109, New Haven CT 06520-8109 USA — email: [email protected] Abstract The priority of the names Stylonurus excelsior and S. lacoanus from the Late Devonian of the east- ern United States has been disputed since they were first recognized as synonyms. The genus Hal- lipterus was later erected for the two known specimens, and they were again separated into distinct species, based on six listed differences, seemingly resolving the priority dispute. However, four of the differences are not present or can be interpreted as ontogenetically or taphonomically induced, and the remaining two are putatively interpreted as sexually dimorphic based on com- parisons with Tarsopterella, a closely related taxon. The two species are therefore synonymized again and the species epithet excelsior is considered to have priority. Advocates of both names also provided different reconstructions, mainly based on other stylonurids. Hallipterus is placed in the Hardieopteridae based on putative synapomorphies with Hardieopterus and particularly Tarsop- terella, the latter also clearly a hardieopterid, and the phylogenetic position of the Hardieopteri- dae is discussed. Although only the original two specimens of H. excelsior are known today, as a century ago, a new reconstruction is provided, supported by phylogenetic evidence, to replace the two earlier versions. Keywords Carapace, Catskill delta, chelicerates, eurypterid, ICZN, North America, synonymy. Introduction Some of the stylonurids (forms without swim- ming legs) were also very large, especially those Eurypterids, commonly referred to as sea scorpi- of Devonian to Permian age, when they chiefly ons, are chelicerate arthropods that lived in mar- occur in deposits of fluvial and lacustrine origin.
    [Show full text]
  • Wielkie Ważki Paleozoiku. Dlaczego Były Tak Wielkie I Dlaczego Nie Ma Obecnie Podobnie Wielkich? the Large Dragonflies of the Palaeozoic
    Odonatrix 16_4 (2020) Wielkie ważki paleozoiku. Dlaczego były tak wielkie i dlaczego nie ma obecnie podobnie wielkich? The large dragonflies of the Palaeozoic. Why were they so large and why do similar huge insects not exist nowadays? Edwin SIEREDZIŃSKI autor niezależny, ul. Górna 24, 26-600 Radom, mail: [email protected] Abstract The body sizes of recent insects are rather small; enormous body lengths or wingspans of several dozen cm are rare. For example, the largest contemporary damselfly Megaloprepus caerulatus has a wingspan of 19 cm. But during the Carboniferous and Permian periods, bigger “dragonflies” (griffenflies from the order Meganisoptera) did exist; with wingspans of over 70 cm, the Meganeuridae were the largest ever flying insects. To explain these great sizes, factors such as oxygen concentration and the evolutionary arms race between herbivorous and carnivorous insects have been invoked. However, these explanations do not go far enough, because many other factors have not been taken into consideration, for example, the evolution of higher verte- brates during the late Palaeozoic, and the morphological and physiological limitations of the in- sect body. These aspects will have been crucial to the existence of giant insects such as Meganeura and Meganeuropsis. Most probably, such large dragonflies and damselflies (as well as other insects) are no longer extant because the bodies of higher vertebrates are more efficient. Large insects simply lose out against small and medium-sized vertebrates, as demonstrated by the competition between the New Zealand weta and rodents (kiore and brown rat), and the ex- tinction of Labidura herculeana. Key Words. Palaeozoic, Odonata, dragonflies, size, Meganeura, palaeontology Wstęp Współczesne owady najczęściej kojarzą się ze zwierzętami o relatywnie niewielkich rozmiarach ciała.
    [Show full text]
  • Odonatological Abstract Service
    Odonatological Abstract Service published by the INTERNATIONAL DRAGONFLY FUND (IDF) in cooperation with the WORLDWIDE DRAGONFLY ASSOCIATION (WDA) Editors: Dr. Martin Lindeboom, Silberdistelweg 11, D-72113 Ammerbuch, Germany. Tel. ++49 (0)7073 300770; E-mail: [email protected] Dr. Klaus Reinhardt, Dept Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK. Tel. ++44 114 222 0105; E-mail: [email protected] Martin Schorr, Schulstr. 7B, D-54314 Zerf, Germany. Tel. ++49 (0)6587 1025; E-mail: [email protected] Published in Rheinfelden, Germany and printed in Trier, Germany. ISSN 1438-0269 1997 than 500 taxa below the family level were inventoried, and each listing includes relative frequency of en- 7574. He, J.-r.; Jiang B.-h.; Chen, T.-s. (1997): The counter, life stages collected, and dominant role in the aquatic insects of Rainbow Lake. Conservation Quar- greenleaf manzanita community. Specific host relation- terly, summer quarterly, June,1997,18: 37-41. (in Chi- ships are included for some predators and parasitoids. nese) [Rainbow Lake is an alpine Lake in Taiwan. The Herbivores, predators, and parasitoids comprised the paper provides brief information on Aeshna petalura majority (80 percent) of identified insects and related and Polycanthagyna erythromelas. (Abstract by Hao- taxa." (Authors) The list of Odonata includes the follow- miao Zhang)] ing taxa: Aeshna palmata, Anax junius, Cordulegaster dorsalis, Libellula sp., Pantala hymenea, Tarnetrum cor- 7575. Liebherr, J.K.; Polhemus, D.A. (1997): R.C.L. rupturn, Lestidae species undet., and Coenagrionidae Perkins: 100 years of Hawaiian entomology. Pacif. Sci. species undet..] Address: http://www.fs.fed.us/psw/pub- 51(4): 343-355, 1 pl.
    [Show full text]