MDT Geotechnical Manual Laboratory Testing July 2008 9-I Table Of
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
SHEAR Axial and Direct Shear Module for GEOSYSTEM® for Windows
GEOSYSTEM® SHEAR Axial and Direct Shear Module for GEOSYSTEM® for Windows Copyright © 2004 Von Gunten Engineering Software, Inc. 363 West Drake #10 Fort Collins, CO 80526 www.geosystemsoftware.com Information in this document is subject to change without notice and does not represent a commitment on the part of Von Gunten Engineering Software, Inc. The software described in this document is furnished under a license agreement, and the software may be used or copied only in accordance with the terms of that agreement. The licensee may make copies of the software for backup purposes only. No part of this manual may be reproduced in any form for purposes other than the licensee’s personal use without the written consent of Von Gunten Engineering Software, Inc. Copyright © Von Gunten Engineering Software, Inc. 2004. All rights reserved. Published in the United States of America. GEOSYSTEM® is a registered trademark of VES, Inc. Windows® is a registered trademark of Microsoft Corporation Terms of License Agreement 1. The Licensee agrees not to sell or otherwise distribute the program or the program documentation. Each copy of the program is licensed only for use at a single address. 2. The Licensee agrees not to hold Von Gunten Engineering Software, Inc. (VES, Inc.) liable for any harm, damages claims, losses or expenses arising out of any act or occurrence related in any way to the use of the program. 3. The program is warranted to fully perform the tasks described in the program documentation. All results of the operation of the program are subject to the further engineering judgment, prudence, and study of the user. -
Geology and Soils
Section 3C Geology and Soils 3C.1 Summary The following is a summary of the proposed project’s potential impacts to geology and soils, any necessary mitigation measures, and the level of significance after mitigation. Significance Potential Impact Mitigation Measure(s) after Mitigation SANTIAGO HILLS II PLANNED COMMUNITY Potential Impact 3C-1. 2000 SEIR 1278 mitigation measures that continue to be applicable: Less than Exposure of People or MM G-1. All Grading Subject to City Grading Manual Regulations. significant Structures to Potential MM G-2. Removal of Unsuitable Earth Materials. Substantial Adverse Effects Including the Risk of Loss, MM G-3. Further Slope Stability Investigations. Injury, or Death Involving MM G-4. Detailed Geotechnical and Soil Engineering Reports. Rupture of a Known MM G-5. All Structures Designed and Constructed in Accordance Earthquake Fault; Strong with Seismic Safety Design Criteria. Seismic Ground Shaking; Seismic-related Ground MM 3C-1. Slopes Will Be Limited to 2:1. Failure, including MM 3C-2. Slopes Will Be Stabilized. Liquefaction; or Landslides MM 3C-3. Standard Grading Codes Will Be Applied. Potential Impact 3C-2. Location of Structures on a MM 3C-4. Compressible Soils Will Be Identified. Geologic Unit or Soil that is MM 3C-5. Compressible Soils Will Be Mitigated. Unstable, or that Would Become Unstable as a Result of the Project and Potentially Result in On- and Offsite Landslide, Lateral Spreading, Subsidence, Liquefaction, or Collapse Potential Impact 3C-3. No mitigation was included in 2000 SEIR 1278. Less than Substantial Soil Erosion or significant Loss of Topsoil MM 3C-6. -
Tennessee Erosion & Sediment Control Handbook
TENNESSEE EROSION & SEDIMENT CONTROL HANDBOOK A Stormwater Planning and Design Manual for Construction Activities Fourth Edition AUGUST 2012 Acknowledgements This handbook has been prepared by the Division of Water Resources, (formerly the Division of Water Pollution Control), of the Tennessee Department of Environment and Conservation (TDEC). Many resources were consulted during the development of this handbook, and when possible, permission has been granted to reproduce the information. Any omission is unintentional, and should be brought to the attention of the Division. We are very grateful to the following agencies and organizations for their direct and indirect contributions to the development of this handbook: TDEC Environmental Field Office staff Tennessee Division of Natural Heritage University of Tennessee, Tennessee Water Resources Research Center University of Tennessee, Department of Biosystems Engineering and Soil Science Civil and Environmental Consultants, Inc. North Carolina Department of Environment and Natural Resources Virginia Department of Conservation and Recreation Georgia Department of Natural Resources California Stormwater Quality Association ~ ii ~ Preface Disturbed soil, if not managed properly, can be washed off-site during storms. Unless proper erosion prevention and sediment control Best Management Practices (BMP’s) are used for construction activities, silt transport to a local waterbody is likely. Excessive silt causes adverse impacts due to biological alterations, reduced passage in rivers and streams, higher drinking water treatment costs for removing the sediment, and the alteration of water’s physical/chemical properties, resulting in degradation of its quality. This degradation process is known as “siltation”. Silt is one of the most frequently cited pollutants in Tennessee waterways. The division has experimented with multiple ways to determine if a stream, river, or reservoir is impaired due to silt. -
The Influence of Slenderness Ratios on Triaxial Shear Testing
Proceedings of the Iowa Academy of Science Volume 73 Annual Issue Article 41 1966 The Influence of Slenderness Ratios on riaxialT Shear Testing Eugene R. Moores Sunray D-X Oil Company J. M. Hoover Iowa State University Let us know how access to this document benefits ouy Copyright ©1966 Iowa Academy of Science, Inc. Follow this and additional works at: https://scholarworks.uni.edu/pias Recommended Citation Moores, Eugene R. and Hoover, J. M. (1966) "The Influence of Slenderness Ratios on riaxialT Shear Testing," Proceedings of the Iowa Academy of Science, 73(1), 285-292. Available at: https://scholarworks.uni.edu/pias/vol73/iss1/41 This Research is brought to you for free and open access by the Iowa Academy of Science at UNI ScholarWorks. It has been accepted for inclusion in Proceedings of the Iowa Academy of Science by an authorized editor of UNI ScholarWorks. For more information, please contact [email protected]. Moores and Hoover: The Influence of Slenderness Ratios on Triaxial Shear Testing The Influence of Slende,rness Ratios on Triaxial Sihear Testing 1 EUGENE R. MooRES AND J. M. Hoovm2 Abstract. Determination of the effect of the slenderness ratio on the results of the triaxial test depends, theoretically, on the boundary conditions induced by ( a) shape of the test specimen, ( o) manner of the transmission of the external load, and · ( c) deformations. From a practical point of view enough length should be available to develop two complete cones of failure and the length of the specimen should equal the diameter times the 0 tangent of (45 + .p/2) • Most workers in the field of triaxial testing of soils accept a slenderness ratio of from 1.5 to 3.0. -
CE2112: Laboratory Determination of Soil Properties and Soil Classification
CE2112: Laboratory Determination of Soil Properties and Soil Classification Laboratory Report G1: Index and Consolidation Properties G2 Shear Strength Year 2013/2014 Semester 2 PENG LE A0115443N 1 Table of Contents 1. Executive Summary ................................................................................................................ 4 2. Overview .................................................................................................................................. 5 3. Atterberg Limits Tests ........................................................................................................... 6 3.1. Principles ............................................................................................................................ 6 3.2. Plastic Limit (PL) ............................................................................................................... 7 3.3. Liquid Limit (LL) ............................................................................................................... 8 3.4. Classification of the Soil .................................................................................................... 9 3.5. Discussion......................................................................................................................... 10 4. One Dimension Consolidation Test .................................................................................... 11 4.1. Principles of One Dimension Consolidation Test ........................................................... -
Soil Mechanics Consolidation
Soil mechanics Consolidation References: 1. Rajapakse, Ruwan. Geotechnical Engineering Calculations and Rules of Thumb. 2. Schroeder, W.L., Dickenson, S.E, Warrington, Don, C. Soils in Construction. Fifth Edition. Upper Saddle River, New Jersey; Prentice Hall, 2004. Learning objectives: 1. What is Primary and secondary consolidation. 2. What is the difference of normally consolidated and overconsolidated clays We will discuss settlement in shallow foundation in that section. This section will just highlight the theory behind fine grained soil consolidation. Learning objective #1: Concept of consolidation: - Primary consolidation is the settlement due to water being squeezed out of the soil caused by the change in vertical stress being applied by a load. When all the water in the soil is squeezed out, the primary consolidation has been achieved. - In reality, it would not be feasibility to wait for all the water to be squeezed out in clay. Usually 90% consolidation is taken as the end of the process. Primary consolidation in clay can take a very long time, which is why for geotechnical engineering is usually the main concern for design purposes. - Secondary consolidation occurs during primary consolidation, but usually the practice is to compute the secondary compression after the primary consolidation is complete. This phenomenon is due to the fact that soil particles start to rearrange their orientation after the water is removed into a more stable consolidated formation. www.learncivilengineering.com 1 Soil mechanics Consolidation Learning objective #2: Normally Consolidated Clays - Clay soil usually originate from bodies of water (slow moving rivers, lakes, and ocean floors). The clay layer was normally only subject to the load due to the body of water. -
The Influence of Several Factors on the Rate of Secondary Compression of Soil
Scholars' Mine Masters Theses Student Theses and Dissertations 1969 The influence of several factors on the rate of secondary compression of soil William Joel Green Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses Part of the Civil Engineering Commons Department: Recommended Citation Green, William Joel, "The influence of several factors on the rate of secondary compression of soil" (1969). Masters Theses. 7065. https://scholarsmine.mst.edu/masters_theses/7065 This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact [email protected]. THE INFLUENCE OF SEVERAL FACTORS ON THE RATE OF SECOND&RY COMPRESSION OF SOIL BY WILLIAM JOEL GREEN, 1945 - A THESIS submitted to the fac~lty of UNIVERSITY OF MISSOURI-ROLLA in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE IN CIVIL ENGINEERING Rolla, Missouri 1969 T 2276 c. I 55 pages ii ABSTRACT This research program has been undertaken to study the influence of load increment ratio, temperature, and sample thickness on c~ (rate of secondary consolidation) for a high organic content and low organic content soil. Consolidation equipment was designed to produce constant temperatures both above and below ambient, and to accommodate both 3/4 and 1~ inch thick samples. Samples were molded into oedometer rings at the liquid limit. It was found that Ca was independent of the sample thickness and load increment ratio for both the high organic and low organic soils. -
Appendix a Settlement and Slope Stability Analyses
Appendix A Settlement and Slope Stability Analyses SETTLEMENT & SLOPE STABILITY ANALYSES Saugus RESCO Landfill Saugus, Massachusetts Prepared for: June, 2008 Prepared by: 11 Northeastern Boulevard Salem, NH 03079-1953 Project 119504 Table of Contents________________________________________________ List of Tables ..................................................................................................................................................ii List of Attachments .........................................................................................................................................ii 1.0 Introduction.....................................................................................................................................1-1 2.0 General Subsurface Conditions ......................................................................................................2-1 3.0 Settlement Analysis ........................................................................................................................3-1 3.1 General.................................................................................................................................3-1 3.2 Settlement Model..................................................................................................................3-1 3.3 Calculations..........................................................................................................................3-2 4.0 Static and Seismic Slope Stability Analyses ...................................................................................4-1 -
Shear Strength Examples.Pdf
444 Chapter 12: Shear Strength of Soil Example 12.2 Following are the results of four drained direct shear tests on an overconsolidated clay: • Diameter of specimen ϭ 50 mm • Height of specimen ϭ 25 mm Normal Shear force at Residual shear Test force, N failure, Speak force, Sresidual no. (N) (N) (N) 1 150 157.5 44.2 2 250 199.9 56.6 3 350 257.6 102.9 4 550 363.4 144.5 © Cengage Learning 2014 t t Determine the relationships for peak shear strength ( f) and residual shear strength ( r). Solution 50 2 Area of the specimen 1A2 ϭ 1p/42 a b ϭ 0.0019634 m2. Now the following 1000 table can be prepared. Residual S shear peak S force, T ϭ residual ؍ Normal Normal Peak shearT S f r Test force, N stress, force, Speak A Sresidual A no. (N) (kN/m2) (N) (kN/m2) (N) (kN/m2) 1 150 76.4 157.5 80.2 44.2 22.5 2 250 127.3 199.9 101.8 56.6 28.8 3 350 178.3 257.6 131.2 102.9 52.4 4 550 280.1 363.4 185.1 144.5 73.6 © Cengage Learning 2014 t t sЈ The variations of f and r with are plotted in Figure 12.19. From the plots, we find that t 2 ϭ ؉ S Peak strength: f (kN/m ) 40 tan 27 t 2 ϭ S Residual strength: r(kN/m ) tan 14.6 (Note: For all overconsolidated clays, the residual shear strength can be expressed as t ϭ sœ fœ r tan r fœ ϭ where r effective residual friction angle.) Copyright 2012 Cengage Learning. -
Overconsolidated Clays: Shales
TRANSPORTATION RESEARCH RECORD 873 Overconsolidated Clays: 11 Shales 001411672 Transportation Research Record Issue : 873 - ------ - --------------1 ~IT"ID TRANSPORTATION RESEARCH BOARD NATIONAL ACADEMY OF SCIENCES 1982 TRANSPORTATION RESEARCH BOARD EXECUTIVE COMMITTEE Officers DARRELL V MANNING, Chairman LAWRENCE D. DAHMS, Vice Chairman THOMAS B. DEEN, Executive Director Members RAY A. BARNHART, JR., Administrator, Federal Highway Administration, U.S. Department of Transportation (ex officio) FRANCIS B. FRANCOIS, Executive Director, American Association of State Highway and Transportation Officials (ex officio) WILLIAM J. HARRIS, JR., Vice President, Research and Test Depart1111mt, Association of American Raili'oads (ex officio) J. LYNN HFLMS, Admi11istro1or, Ji'f!deral A11iatio11 Admi11is1ratio11, U.S. D<:par/111(1 111 of 1'rrmsportation (ex officio) Tl IOMAS D. LARSON, Secretory of '/)'a11spor1a/io11, Pen11sylva11ia Deµart111 e111 of 1'ra11sporration (ex officio, Past Chair111an , 1981) RAYMOND A. PECK, JR., Administrator, National Highway Traffic Safety Ad111i11ls1rotio11, U.S. Department of 'f'ronsporta1io11 (ex officio) ARTHUR E. TEELE, JR., Administrator, Urban Mass Transportation Admi11istrotio11, U.S. Deparrmenr of Tro11spor1ation (ex officio) CHARLEY V. WOOTAN, Director, Texas Transportation Institute, Texas A&M University (ex officio, Past Chairman, 1980) GEORGE J. BEAN, Director of Aviation, Hillsborough County (F1orida) Aviation Authority JOHN R. BORCHERT, Professor, Department of Geography, University of Minnesota RICHARD P. BRAUN, Commissioner, Minnesota Deportment of Transportation ARTHUR J. BRUEN, JR., Vice President, Con tinentol Illinois National Bank and Trust Company of Chicago JOSEPH M. CLAPP, Senior Vice President and Member, Board of Directors, Roadway Express, Inc. ALAN G. DUSTIN, President, Chief Executive, and Chief Operating Officer, Boston and Maine Corporation ROBERT E. FARRIS, Commissioner, Tennessee Department of 1'ronsportation ADRIANA GIANTURCO, Director, California Department of Transportation JACK R. -
Tunnel-Nan Lu.Pdf
This is a repository copy of Study of long-termed displacements of a tunnel boring machine during its stoppage. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/141885/ Version: Accepted Version Article: Yao, Y, Lu, N, Yang, Y et al. (2 more authors) (2019) Study of long-termed displacements of a tunnel boring machine during its stoppage. Tunnelling and Underground Space Technology, 84. pp. 432-439. ISSN 0886-7798 https://doi.org/10.1016/j.tust.2018.11.041 © 2018 Elsevier Ltd. All rights reserved. Licensed under the Creative Commons Attribution-Non Commercial No Derivatives 4.0 International License (https://creativecommons.org/licenses/by-nc-nd/4.0/). Reuse This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long as you credit the authors, but you can’t change the article in any way or use it commercially. More information and the full terms of the licence here: https://creativecommons.org/licenses/ Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ S L-T D T B M S Y Y N L Y Y Y C H-S Y N ‘ T C C L N P‘ C D C I D I C U N N C N P‘ C N N N M I U N N C N P‘ C S C U L L LS JT UK C N LU A T - TBM I N C T PLAXIS - D T W TBM T K T TBM L- S C S 1. -
Investigation of Soft Soil Subway Tunnel Subsidence Based on Multiple Factors
International Conference on Mechatronics, Control and Electronic Engineering (MCE 2014) Investigation of Soft Soil Subway Tunnel Subsidence Based on Multiple Factors Li Guihua Zhao Bingshuai School of Earth Science and Engineering School of Earth Science and Engineering Hohai University Hohai University Nanjing, China Nanjing, China [email protected] [email protected] Tang Wei Guo Xiantao School of Earth Science and Engineering School of Earth Science and Engineering Hohai University Hohai University Nanjing, China Nanjing, China [email protected] [email protected] Abstract—Objective: the subsidence of soft soil subway key drivers to research the settlement of subway tunnel in tunnel structure is a key threat to the safe operation of soft soil. subway system. In order to detect and respond the problems At present, the subway tunnel settlement monitoring timely, it is necessary to constantly monitor the subsidence of mechanisms during the operation period are not perfect soft soil subway tunnel structure and to analyze its variation enough, with limited capability to meet the demand of over time. Methods: a subway tunnel is buried in the ground practicability, reliability and accuracy of the settlement and is usually in operation all the time, making it difficult to monitoring. Also, it is difficult to meet the long-term use common methods of monitoring the deformation of the demand during the operation of subway tunnel settlement tunnel structure. This difficulty can be overcome by monitoring. As a result, it is urgent to find new research deploying sensors. In this study, based on the characteristics means and methods. This study used a variety of relevant of soft soil subway tunnel subsidence, data of various influencing factors have been monitored.