Anion Basicity and Ionicity of Protic Ionic Liquids by Mohammad Hasani a Dissertation Presented in Partial Fulfillment Of

Total Page:16

File Type:pdf, Size:1020Kb

Anion Basicity and Ionicity of Protic Ionic Liquids by Mohammad Hasani a Dissertation Presented in Partial Fulfillment Of Anion Basicity and Ionicity of Protic Ionic Liquids by Mohammad Hasani A Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Approved June 2016 by the Graduate Supervisory Committee: Chair: C. Austen Angell Jeffery Yarger Ian Gould ARIZONA STATE UNIVERSITY August 2016 ABSTRACT The field of Ionic Liquid (IL) research has received considerable attention during the past decade. Unique physicochemical properties of these low melting salts have made them very promising for applications in many areas of science and technology such as electrolyte research, green chemistry and electrodeposition. One of the most important parameters dictating their physicochemical behavior is the basicity of their anion. Using four sets of Protic Ionic Liquids (PILs) and spectroscopic characterization of them, a qualitative order for anion basicity of ILs is obtained. Protic Ionic Liquids are made by proton transfer form a Brønsted acid to a base. The extent of this transfer is determined by the free energy change of the proton transfer process. For the cases with large enough free energy change during the process, the result is a fully ionic material whereas if the proton transfer is not complete, a mixture of ions, neutral molecules and aggregates is resulted. NMR and IR spectroscopies along with electrochemical and mechanical characterization of four sets of PILs are used to study the degree of ionicity. i DEDICATION To My Family ii ACKNOWLEDGMENTS First and foremost, I would like to express my deep respect and gratitude to my advisor Reagent’s Professor C. Austen Angell not only for giving me the opportunity to work in his laboratory but for his continues support all throughout the years. I would also like to thank my dissertation committee members Professor Jeffrey Yarger and President’s Professor Ian Gould for their help and support. I am glad I had the opportunity to meet them. My coworkers in the lab, Dr. Zuofeng Zhao and Iolanda Klein, are acknowledged here for welcoming me in the group and for what they taught me of experimental techniques. I learned from them and will remember the setting up of new equipment, lab inspections, sink clogs, leaks and all the ups and downs we went through during these years. I am grateful to thank Dr. Stephen Davidowski and Dr. Brian Cherry for helping me with the NMR experiments and for teaching me what they knew without reservation. Dr. Brian Cherry is credited for keeping the NMR laboratory a place on which function one can count. I thank Dr. Jennifer Green for her understanding and support. I also thank Waunita Parrill, Martha McDowell, David Nutt and Gregory Memberto for their help and support during the years. iii TABLE OF CONTENTS Page LIST OF TABLES ................................................................................................................... vi LIST OF FIGURES .............................................................................................................. viii CHAPTER 1 INTRODUCTION TO IONIC LIQUIDS .................................................................. 1 Classes of Ionic Liquids ............................................................................. 3 Protic Ionic Liquids and Ionicity ............................................................... 8 Proton Free Energy Level Diagram ......................................................... 11 Acidity of Protic Ionic Liquids ................................................................ 12 Anion Basicity of Ionic Liquids .............................................................. 14 Works Cited .............................................................................................. 16 2 ON THE USE OF A PROTIC IONIC LIQUID WITH A NOVEL CATION TO STUDY ANION BASICITY ............................................................... 20 Introduction .............................................................................................. 21 Experimental and Results ........................................................................ 25 Discussion ................................................................................................ 45 Conclusion ................................................................................................ 63 Works Cited .............................................................................................. 64 3 NMR CHARACTERIZATION OF IONICITY AND TRANSPORT PROPERTIES FOR A SERIES OF TERTIARY AMINE BASED PROTIC IONIC LIQUIDS .............................................................................................. 69 Introduction .............................................................................................. 70 iv CHAPTER Page Experimental ............................................................................................ 79 Results and Discussion ............................................................................ 83 Conclusion ................................................................................................ 94 Works Cited .............................................................................................. 95 REFERENCES....... .............................................................................................................. 98 APPENDIX A RESPECTIVE COORDINATES OF OPTIMIZED STRUCTURES ................ 107 B 1H-1H AND 1H-14N J-COUPLING OF DEMAALCL4 PROTON ...................... 142 v LIST OF TABLES Table Page 2-1- Water Content KF Measurement Data for the PIL Samples. .................................... 27 2-2- The Effect of Added Water on Chemical Shifts of Different Nuclei ........................ 28 2-3- Measured Resistance and Calculated Conductivity Data of DMI-H2SO4 at Different Temperatures..................................................................................................................... 31 2-4- Measured Resistance and Calculated Conductivity Data of DMI-HOMs at Different Temperatures..................................................................................................................... 31 2-5- Measured Resistance and Calculated Conductivity Data of DMI-HTFA at Different Temperatures..................................................................................................................... 32 2-6- Viscosity Data for DMI-H2SO4 at Different Temperatures ...................................... 34 2-7- Viscosity Data for DMI-HOMs at Different Temperatures ...................................... 35 2-8- Viscosity Data for DMI-HTFA at Different Temperatures ...................................... 35 2-9- Equivalent Conductivity fluidity Relationship for DMI-H2SO4 at Different Temperatures..................................................................................................................... 38 2-10- Equivalent Conductivity Fluidity Relationship for DMI-HOMs at Different Temperatures..................................................................................................................... 38 2-11- Equivalent Conductivity Fluidity Relationship for DMI-HTFA at Different Temperatures..................................................................................................................... 39 2-12- DMI-HAlBr4 Vibration Frequencies of Normal Modes ......................................... 40 2-13- DMI-HAlCl4 Vibration Frequencies of Normal Modes .......................................... 41 2-14- DMI-HBF4 Vibrational Frequencies of Normal Modes .......................................... 42 Table Page vi 2-15- Calculated Gas-Phase Enthalpies of Acids and their Conjugate Anions ................ 43 2-16- Calculated Gas-Phase Enthalpies and Free Energies of DMI Adducts ................... 44 2-17- Exchangeable Proton 1H, Carbonyl 13C and 15N Chemical Shifts of DMI in its 1:1 Mixtures with Different Acids. ......................................................................................... 46 2-18- Hammet Acidity Function Values ........................................................................... 53 2-19- 1H Chemical Shift of the Acidic Proton in PILs Made from DEMA ...................... 62 3-1- Summary of Proton Affinity Calculation Results at Various Levels of Theory and Literature Values. .............................................................................................................. 73 3-2- Results of Diffusion NMR Experiments and Conductivity Measurements. ............. 90 vii LIST OF FIGURES Figure Page 1-1- Phase Diagram of the System Ethylpyridinium Bromide + AlCl3 ............................. 5 1-2- Concept of Complex Cations in Solvate Ionic Liquids ............................................... 6 + 1-3- Crown Ether- and Glyme-Based [Li(ligand)1] Solvate Models ................................ 7 1-4- Walden Plot Showing the Classification of Ionic Liquids .......................................... 9 1-5- Gurney Free Energy Level Diagram for Acid/Base Pairs ......................................... 12 2-1. Protonation of DMI ................................................................................................... 23 2-2- Ionic Conductivity of DMI PILs as a Function of Temperature ............................... 32 2-3- Dynamic Viscosity of DMI PILs as a Function of Temperature .............................. 36 15 2-4- N Spectra of DMI PILs ........................................................................................... 47 13 15 2-5- C and N Spectra of DMI in Media with Varying Acid Strengths
Recommended publications
  • The Strongest Acid Christopher A
    Chemistry in New Zealand October 2011 The Strongest Acid Christopher A. Reed Department of Chemistry, University of California, Riverside, California 92521, USA Article (e-mail: [email protected]) About the Author Chris Reed was born a kiwi to English parents in Auckland in 1947. He attended Dilworth School from 1956 to 1964 where his interest in chemistry was un- doubtedly stimulated by being entrusted with a key to the high school chemical stockroom. Nighttime experiments with white phosphorus led to the Headmaster administering six of the best. He obtained his BSc (1967), MSc (1st Class Hons., 1968) and PhD (1971) from The University of Auckland, doing thesis research on iridium organotransition metal chemistry with Professor Warren R. Roper FRS. This was followed by two years of postdoctoral study at Stanford Univer- sity with Professor James P. Collman working on picket fence porphyrin models for haemoglobin. In 1973 he joined the faculty of the University of Southern California, becoming Professor in 1979. After 25 years at USC, he moved to his present position of Distinguished Professor of Chemistry at UC-Riverside to build the Centre for s and p Block Chemistry. His present research interests focus on weakly coordinating anions, weakly coordinated ligands, acids, si- lylium ion chemistry, cationic catalysis and reactive cations across the periodic table. His earlier work included extensive studies in metalloporphyrin chemistry, models for dioxygen-binding copper proteins, spin-spin coupling phenomena including paramagnetic metal to ligand radical coupling, a Magnetochemi- cal alternative to the Spectrochemical Series, fullerene redox chemistry, fullerene-porphyrin supramolecular chemistry and metal-organic framework solids (MOFs).
    [Show full text]
  • A Guide to Acids, Acid Strength, and Concentration
    A GUIDE TO ACIDS, ACID STRENGTH, AND CONCENTRATION What’s the difference between acid strength and concentration? And how does pH fit in with these? This graphic explains the basics. CH COOH HCl H2SO4 HNO3 H3PO4 HF 3 H2CO3 HYDROCHLORIC ACID SULFURIC ACID NITRIC ACID PHOSPHORIC ACID HYDROFLUORIC ACID ETHANOIC ACID CARBONIC ACID pKa = –7 pKa = –2 pKa = –2 pKa = 2.12 pKa = 3.45 pKa = 4.76 pKa = 6.37 STRONGER ACIDS WEAKER ACIDS STRONG ACIDS VS. WEAK ACIDS ACIDS, Ka AND pKa CONCENTRATION AND pH + – The H+ ion is transferred to a + A decrease of one on the pH scale represents + [H+] [A–] pH = –log10[H ] a tenfold increase in H+ concentration. HA H + A water molecule, forming H3O Ka = pKa = –log10[Ka] – [HA] – – + + A + + A– + A + A H + H H H H A H + H H H A Ka pK H – + – H a A H A A – + A– A + H A– H A– VERY STRONG ACID >0.1 <1 A– + H A + + + – H H A H A H H H + A – + – H A– A H A A– –3 FAIRLY STRONG ACID 10 –0.1 1–3 – – + A A + H – – + – H + H A A H A A A H H + A A– + H A– H H WEAK ACID 10–5–10–3 3–5 STRONG ACID WEAK ACID VERY WEAK ACID 10–15–10–5 5–15 CONCENTRATED ACID DILUTE ACID + – H Hydrogen ions A Negative ions H A Acid molecules EXTREMELY WEAK ACID <10–15 >15 H+ Hydrogen ions A– Negative ions Acids react with water when they are added to it, The acid dissociation constant, Ka, is a measure of the Concentration is distinct from strength.
    [Show full text]
  • Superacid Chemistry
    SUPERACID CHEMISTRY SECOND EDITION George A. Olah G. K. Surya Prakash Arpad Molnar Jean Sommer SUPERACID CHEMISTRY SUPERACID CHEMISTRY SECOND EDITION George A. Olah G. K. Surya Prakash Arpad Molnar Jean Sommer Copyright # 2009 by John Wiley & Sons, Inc. All rights reserved Published by John Wiley & Sons, Inc., Hoboken, New Jersey Published simultaneously in Canada No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permission. Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation.
    [Show full text]
  • Introduction to Ionic Mechanisms Part I: Fundamentals of Bronsted-Lowry Acid-Base Chemistry
    INTRODUCTION TO IONIC MECHANISMS PART I: FUNDAMENTALS OF BRONSTED-LOWRY ACID-BASE CHEMISTRY HYDROGEN ATOMS AND PROTONS IN ORGANIC MOLECULES - A hydrogen atom that has lost its only electron is sometimes referred to as a proton. That is because once the electron is lost, all that remains is the nucleus, which in the case of hydrogen consists of only one proton. The large majority of organic reactions, or transformations, involve breaking old bonds and forming new ones. If a covalent bond is broken heterolytically, the products are ions. In the following example, the bond between carbon and oxygen in the t-butyl alcohol molecule breaks to yield a carbocation and hydroxide ion. H3C CH3 H3C OH H3C + OH CH3 H3C A tertiary Hydroxide carbocation ion The full-headed curved arrow is being used to indicate the movement of an electron pair. In this case, the two electrons that make up the carbon-oxygen bond move towards the oxygen. The bond breaks, leaving the carbon with a positive charge, and the oxygen with a negative charge. In the absence of other factors, it is the difference in electronegativity between the two atoms that drives the direction of electron movement. When pushing arrows, remember that electrons move towards electronegative atoms, or towards areas of electron deficiency (positive, or partial positive charges). The electron pair moves towards the oxygen because it is the more electronegative of the two atoms. If we examine the outcome of heterolytic bond cleavage between oxygen and hydrogen, we see that, once again, oxygen takes the two electrons because it is the more electronegative atom.
    [Show full text]
  • Title a Hydronium Solvate Ionic Liquid
    A Hydronium Solvate Ionic Liquid: Facile Synthesis of Air- Title Stable Ionic Liquid with Strong Bronsted Acidity Kitada, Atsushi; Takeoka, Shun; Kintsu, Kohei; Fukami, Author(s) Kazuhiro; Saimura, Masayuki; Nagata, Takashi; Katahira, Masato; Murase, Kuniaki Journal of the Electrochemical Society (2018), 165(3): H121- Citation H127 Issue Date 2018-02-22 URL http://hdl.handle.net/2433/240665 © The Author(s) 2018. Published by ECS. This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 License (CC BY, Right http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse of the work in any medium, provided the original work is properly cited. Type Journal Article Textversion publisher Kyoto University Journal of The Electrochemical Society, 165 (3) H121-H127 (2018) H121 A Hydronium Solvate Ionic Liquid: Facile Synthesis of Air-Stable Ionic Liquid with Strong Brønsted Acidity Atsushi Kitada, 1,z Shun Takeoka,1 Kohei Kintsu,1 Kazuhiro Fukami,1,∗ Masayuki Saimura,2 Takashi Nagata,2 Masato Katahira,2 and Kuniaki Murase1,∗ 1Department of Materials Science and Engineering, Kyoto University, Yoshida-honmachi, Sakyo, Kyoto 606-8501, Japan 2Institute of Advanced Energy, Gokasho, Uji, Kyoto 611-0011, Japan + A new kind of ionic liquid (IL) with strong Brønsted acidity, i.e., a hydronium (H3O ) solvate ionic liquid, is reported. The IL can + + be described as [H3O · 18C6]Tf2N, where water exists as the H3O ion solvated by 18-crown-6-ether (18C6), of which the counter – – + anion is bis(trifluoromethylsulfonyl)amide (Tf2N ;Tf= CF3SO2). The hydrophobic Tf2N anion makes [H3O · 18C6]Tf2N stable + in air.
    [Show full text]
  • Solvent Effects on the Thermodynamic Functions of Dissociation of Anilines and Phenols
    University of Wollongong Research Online University of Wollongong Thesis Collection 1954-2016 University of Wollongong Thesis Collections 1982 Solvent effects on the thermodynamic functions of dissociation of anilines and phenols Barkat A. Khawaja University of Wollongong Follow this and additional works at: https://ro.uow.edu.au/theses University of Wollongong Copyright Warning You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following: This work is copyright. Apart from any use permitted under the Copyright Act 1968, no part of this work may be reproduced by any process, nor may any other exclusive right be exercised, without the permission of the author. Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form. Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily represent the views of the University of Wollongong. Recommended Citation Khawaja, Barkat A., Solvent effects on the thermodynamic functions of dissociation of anilines and phenols, Master of Science thesis, Department of Chemistry, University of Wollongong, 1982.
    [Show full text]
  • Characterization of the Acidity of Sio2-Zro2 Mixed Oxides
    Characterization of the acidity of SiO2-ZrO2 mixed oxides Citation for published version (APA): Bosman, H. J. M. (1995). Characterization of the acidity of SiO2-ZrO2 mixed oxides. Technische Universiteit Eindhoven. https://doi.org/10.6100/IR436698 DOI: 10.6100/IR436698 Document status and date: Published: 01/01/1995 Document Version: Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication: • A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal.
    [Show full text]
  • Proton Affinity Changes Driving Unidirectional Proton Transport In
    doi:10.1016/S0022-2836(03)00903-3 J. Mol. Biol. (2003) 332, 1183–1193 Proton Affinity Changes Driving Unidirectional Proton Transport in the Bacteriorhodopsin Photocycle Alexey Onufriev1, Alexander Smondyrev2 and Donald Bashford1* 1Department of Molecular Bacteriorhodopsin is the smallest autonomous light-driven proton pump. Biology, The Scripps Research Proposals as to how it achieves the directionality of its trans-membrane Institute, 10550 North Torrey proton transport fall into two categories: accessibility-switch models in Pines Road, La Jolla, CA 92037 which proton transfer pathways in different parts of the molecule are USA opened and closed during the photocycle, and affinity-switch models, which focus on changes in proton affinity of groups along the transport 2Schro¨dinger Inc., 120 West chain during the photocycle. Using newly available structural data, and Forty-Fifth Street, 32nd Floor adapting current methods of protein protonation-state prediction to the Tower 45, New York, NY non-equilibrium case, we have calculated the relative free energies of pro- 10036-4041, USA tonation microstates of groups on the transport chain during key confor- mational states of the photocycle. Proton flow is modeled using accessibility limitations that do not change during the photocycle. The results show that changes in affinity (microstate energy) calculable from the structural models are sufficient to drive unidirectional proton trans- port without invoking an accessibility switch. Modeling studies for the N state relative to late M suggest that small structural re-arrangements in the cytoplasmic side may be enough to produce the crucial affinity change of Asp96 during N that allows it to participate in the reprotonation of the Schiff base from the cytoplasmic side.
    [Show full text]
  • Proton Affinity of SO3
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Proton Affinity of SO3 Cynthia Ann Pommerening, Steven M. Bachrach, and Lee S. Sunderlin Department of Chemistry, Northern Illinois University, DeKalb, Illinois, USA ϩ Collision-induced dissociation (CID) of the radical cation H2SO4 gives the product pairs ϩ ϩ ϩ ϩ H2O SO3 and HO HSO3 with a 1:3 ratio that is essentially independent of collision energy. Statistical analysis of the two channels indicates that the proton affinity of HO is 3 Ϯ ϭ Ϯ 4 kJ/mol lower than that of SO3. This can be used to derive PA(SO3) 591 4 kJ/mol at 0 K and 596 Ϯ 4 kJ/mol at 298 K. Previously, Munson and Smith bracketed the proton affinity as PA(HBr) ϭ 584 kJ/mol Ͻ PA(SO ) Ͻ PA(CO) ϭ 594 kJ/mol. The threshold of 152 Ϯ 16 ϩ 3 kJ/mol for formation of H O ϩ SO indicates that the barrier to CID is small or nonexistent, 2 3 ϩ in contrast to the substantial barriers to decomposition for H3SO4 and H2SO4. (JAmSoc Mass Spectrom 1999, 10, 856–861) © 1999 American Society for Mass Spectrometry he development of extensive scales of proton this work provide an independent measurement of the ⌬ affinity (PA), gas basicity (GB), and acidity ( Ha) PA of SO3. values has provided a framework for the quanti- The gas-phase addition of H2OtoSO3 to form T ϭϪ⌬ tative understanding of ion properties. (PA H for sulfuric acid has a substantial barrier, as indicated by addition of a proton, GB ϭϪ⌬G for addition of a reaction rate measurements [4–6] and computational ⌬ ϭ⌬ proton, and Ha H for deprotonation.) The history results [7, 8].
    [Show full text]
  • Acid Dissociation Constant - Wikipedia, the Free Encyclopedia Page 1
    Acid dissociation constant - Wikipedia, the free encyclopedia Page 1 Help us provide free content to the world by donating today ! Acid dissociation constant From Wikipedia, the free encyclopedia An acid dissociation constant (aka acidity constant, acid-ionization constant) is an equilibrium constant for the dissociation of an acid. It is denoted by Ka. For an equilibrium between a generic acid, HA, and − its conjugate base, A , The weak acid acetic acid donates a proton to water in an equilibrium reaction to give the acetate ion and − + HA A + H the hydronium ion. Key: Hydrogen is white, oxygen is red, carbon is gray. Lines are chemical bonds. K is defined, subject to certain conditions, as a where [HA], [A−] and [H+] are equilibrium concentrations of the reactants. The term acid dissociation constant is also used for pKa, which is equal to −log 10 Ka. The term pKb is used in relation to bases, though pKb has faded from modern use due to the easy relationship available between the strength of an acid and the strength of its conjugate base. Though discussions of this topic typically assume water as the solvent, particularly at introductory levels, the Brønsted–Lowry acid-base theory is versatile enough that acidic behavior can now be characterized even in non-aqueous solutions. The value of pK indicates the strength of an acid: the larger the value the weaker the acid. In aqueous a solution, simple acids are partially dissociated to an appreciable extent in in the pH range pK ± 2. The a actual extent of the dissociation can be calculated if the acid concentration and pH are known.
    [Show full text]
  • Chapter Fourteen Acids and Bases
    CHAPTER FOURTEEN ACIDS AND BASES For Review 1. a. Arrhenius acid: produce H+ in water b. Bρrnsted-Lowry acid: proton (H+) donor c. Lewis acid: electron pair acceptor The Lewis definition is most general. The Lewis definition can apply to all Arrhenius and Brρnsted-Lowry acids; H+ has an empty 1s orbital and forms bonds to all bases by accepting a pair of electrons from the base. In addition, the Lewis definition incorporates other reactions not typically considered acid-base reactions, e.g., BF3(g) + NH3(g) → F3B−NH3(s). NH3 is something we usually consider a base and it is a base in this reaction using the Lewis definition; NH3 donates a pair of electrons to form the N−B bond. 2. a. The Ka reaction always refers to an acid reacting with water to produce the conjugate + base of the acid and the hydronium ion (H3O ). For a general weak acid HA, the Ka reaction is: − + − HA(aq) + H2O(l) ⇌ A (aq) + H3O (aq) where A = conjugate base of the acid HA This reaction is often abbreviated as: HA(aq) ⇌ H+(aq) + A−(aq) b. The Ka equilibrium constant is the equilibrium constant for the Ka reaction of some sub- stance. For the general Ka reaction, the Ka expression is: − + + − [A ][H3O ] [H ][A ] Ka = or K = (for the abbreviated Ka reaction) [HA] a [HA] c. The Kb reaction alwlays refers to a base reacting with water to produce the conjugate acid − of the base and the hydroxide ion (OH ). For a general base, B, the Kb reaction is: + − + B(aq) + H2O(l) ⇌ BH (aq) + OH (aq) where BH = conjugate acid of the base B [BH+ ][OH− ] d.
    [Show full text]
  • The Strongest Acid Yet Gentlest – How Could It Be?
    THE STRONGEST ACID YET GENTLEST – HOW COULD IT BE? It was reported last year that the carborane superacid H-(CHB11F11) (see Fig. 1) was synthesized and that its primacy of the strength over all other known superacids was confirmed 1. This is an extremely sensitive to moisture solid which was prepared by a treatment of the [(C2H5)3Si-H- Si(C2H5)3][CHB11F11] compound with the anhydrous HCl. This new compound dethroned another carborane related superacid, i.e. H-(CHB11Cl11), the latter being ¨the king of strength¨ among acids during few last years, till 2014. This is interesting that the carborane superacids are gentle and non-corrosive compounds. How could it be? One may expect the strongest acid to be extremely reactive, toxic etc, note that a strong mineral HF acid dissolves glass! Figure 1. The carborane superacid H-(CHB11F11), blue circles – fluorine atoms, pink – boron atoms, black – carbon atom, grey – hydrogen atoms. This is possible since the acid strength is defined as the possibility to release the hydrogen (proton); the strongest acid loses the proton the easiest according to the commonly known + - reaction HA ® H + A . In a case of the H-(CHB11F11) acid the hydrogen connected with fluorine (see Fig. 1) determines its acidity. This is worth to mention here that the corrosiveness of the acid is connected with the chemistry of the anion (A-). This is why the strong HF acid dissolves the glass since the fluorine anion as a strong nucleophile reacts with silicon breaking the Si-O bond. The anion of the strongest acid is the least basic; one may say that the acid, HA, loses easily the proton and that the corresponding base, A- anion, attracts this proton with difficulty.
    [Show full text]