Purification and Crystallization of Complement

Total Page:16

File Type:pdf, Size:1020Kb

Purification and Crystallization of Complement Purication and crystallization of Complement C3b Abdul Ajees Abdul Salam ( [email protected] ) Center for Biophysical Sciences and Engineering, University of Alabama at Birmingham, 1530 3rd Avenue South, Birmingham AL, 35294 K. Gunasekaran Center for Biophysical Sciences and Engineering, University of Alabama at Birmingham, 1530 3rd Avenue South, Birmingham AL, 35294 John E. Volanakis Department of Medicine, University of Alabama at Birmingham, 1530 3rd Avenue South, Birmingham AL, 35294 S.V.L. Narayana Center for Biophysical Sciences and Engineering, University of Alabama at Birmingham, 1530 3rd Avenue South, Birmingham AL, 35294 Girish J. Kotwal Division of Medical Virology, Institute for Infectious Diseases and Molecular Medicine, University of Cape Town, HSC, Cape Town, South Africa, 7925 H.M. Krishna Murthy Center for Biophysical Sciences and Engineering, University of Alabama at Birmingham, 1530 3rd Avenue South, Birmingham AL, 35294 Method Article Keywords: C3b, N-Acetyl-L-Threonine, X-ray crystallography Posted Date: December 15th, 2006 DOI: https://doi.org/10.1038/nprot.2006.416 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/3 Abstract Introduction The human complement system is an important component of innate immunity. Complement-derived products mediate functions contributing to pathogen killing and elimination. However, inappropriate activation of the system contributes to pathogenesis of immunologic and inammatory diseases. Complement-component 3 \(C3) occupies a central position because of the manifold biologic activities of its activation fragments, including the major fragment, C3b, which anchors assembly of convertases effecting C3 and C5 activation. C3 is activated to C3b by proteolysis of its anaphylatoxin domain \(ANA), by either of two C3-convertases, activating a relatively stable thioester bond, leading to covalent attachment of C3b to cell-or protein-surface hydroxyl groups through trans-esterication. Cleavage/activation of C3 exposes binding sites for factors B, H, and I, properdin \(P), decay accelerating factor \(DAF, CD55), membrane cofactor protein \(MCP, CD46), complement receptor 1 \(CR1, CD35), and viral molecules such as vaccinia-virus complement-control protein \(VCP)4. C3b associates with these molecules in different congurations forming complexes, mediating activation, amplication and regulation of the complement response. Here, we present the purication and crystallization steps for C3b Reagents EDTA, KH2PO4, Benzamidine-Hcl, Trypsin, Soybean Trypsin Inhibitor, N-Acetyl-L-Threonine, Tris, NaCl, LiCl and PEG6000 Equipment DEAE and Blue sepharose anity chromatography Procedure **C3 Purication:** Step 1: Isolate Complement factor C3 by PEG precipitation from EDTA-treated human blood plasma and purify by DEAE and blue sepharose anity chromatography \(Smith, S.A., _et al._, Biochim Biophys Acta, **1650**, 30-39, 2003). **C3b preparation:** Step 2: Prepare puried C3b by performing limited trypsin digestion of C3 with sequencing grade trypsin \(Roche). Perform the cleavage in the presence of N-Acetlyl-L-Threonine \(AcT) to provide a nucleophile for covalent attachment of the side chain carbonyl of Gln991. Activate the internal thioester \(Law, A.S.K. & Dodds, A.W. Protein Science, **6**, 263-274, 1997) with 5% trypsin \(w/w) for 2 min at 37°C, before adding 5% \(w/w) soybean trypsin inhibitor \(SBTI) \(Sigma) to stop the reaction. Step 3: Remove trypsin and SBTI by perfusion chromatography using a BioCAD 20HQ column. Step 4: Visualize C3 and C3b by SDS-PAGE \(4–12% gel) with Coomassie blue staining. Step 5: Conrm esterication via mass spectroscopic analysis on tryptic digests of modied C3b. Step 6: Store modied protein at a concentration of 7.7 mg/ml in 20mM TRIS, pH 7.5 and a protein inhibitor cocktail \(1M KH2PO4, 0.2 M EDTA, 0.2 M Benzamidine-HCl and 1mM Page 2/3 PmSF). **Crystallization:** Step 7: Obtain crystals through vapor diffusion from 2 μl of the protein solution mixed with an equal volume of well solution. Wells should contain 200 mM TRIS, pH 7.5, 100 mM NaCl, 20 mM LiCl and 15% PEG6000. Timing 7 days Critical Steps Although crystals could also be grown with C3b prepared without AcT, they did not diffract beyond 6.5 Å. AcT modication improved diffraction to 2.3 Å. References 1. Smith, S.A., _et al._, _Biochim Biophys Acta_, **1650**, 30-39, 2003. 2. H.D. Gresham, D.F. Matthews, F.M. Grin Jr., _Anal. Biochem._ **154**, 454–459, 1986. 3. B.F. Tack, R.A. Harrison, J. Janatova, M.L. Thomas, J.W. Prahl, _Proc. Natl. Acad. Sci. U. S. A._ **77**, 5764– 5768, 1980. 4. Law, A.S.K. & Dodds, A.W. _Protein Science_, **6**, 263-274, 1997 Page 3/3.
Recommended publications
  • Complement Component 3 (C3) Concentrations in Cancer Patients: a Systematic Review and Meta-Analysis
    Complement Component 3 (C3) Concentrations in Cancer Patients: A Systematic Review and Meta-Analysis Zipeng Yang South China Agricultural University Zi-Guo Yuan ( [email protected] ) Anqun Yang Dapeng New District Nan'ao Peolple's Hospital of Shenzhen, Guangdong Province, China Xiu-Xiang Zhang South China Agricultural University College of Agriculture Xiaohu Wang Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong Province Miao Yu Dongfeng Xiyuan District, Stomatological Hospital Aliated to Guangzhou Medical University, Guangzhou Yasser S.Mahmmod Zagazig University Jorge A Hernandez University of Florida Zhaowen Ren South China Agricultural University Xirui Zhang South China Agricultural University Wei Cong Shandong University Research article Keywords: Complement Component 3, Cancer Patients, Meta-Analysis Posted Date: March 26th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-18256/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/17 Abstract Background The aim of this study was to investigate the association between the serum complement component 3 “C3” level and the patients with different types of cancer. Our study nding would ultimately provide reliable scientic conclusions to guide clinical practice. Methods PubMed, Embase, The Chorane Library and Google Scholar were systematically searched to identify all studies on serum C3 concentrations in cancer patients published as of September 2019. Additionally, we conducted a clinical study on serum C3 in lung cancer patients and healthy people. The levels of serum complement C3 in 84 lung cancer patients and 30 healthy people were examined by ELISA. We used standardized mean differences (SMD) to report the pooled estimation, and I² statistics were calculated to examine the heterogeneity.
    [Show full text]
  • Trypsin Inhibitor from Glycine Max (Soybean) (T6522)
    Trypsin inhibitor from Glycine max (soybean) Cell Culture Tested Product Number T 6522 Storage Temperature 2-8 °C Product Description Precautions and Disclaimer CAS Number: 9035-81-8 For Laboratory Use Only. Not for drug, household or Extinction Coefficient: E1% = 9.94 (280 nm, other uses. pH 7.6 buffer) pI: 4.51 Preparation Instructions Synonyms: Kunitz Trypsin Inhibitor, Tia1, STI, and Trypsin inhibitor is soluble in water and phosphate SBT1 buffers at 10 mg/ml. It is soluble in balanced salt solutions (1 mg/ml) and in serum-free media. This product is cell culture tested and is appropriate Solutions at concentrations higher than 10 mg/ml may for use in cell culture applications. It is extensively be hazy and have a yellow to amber color. dialyzed against water. After dialysis, sodium phosphate buffer, pH 7.6, is added, and the inhibitor is Storage/Stability lyophilized. The final product consists of about 90% A 10 mg/ml sterile-filtered solution stored for greater protein and 10% sodium phosphate buffer salts (by than 3 years at 2-8 °C showed no loss in trypsin mass). inhibition activity. Solutions are stable in frozen aliquots at -20 °C, but freeze-thaw cycles should be 2 Soybean trypsin inhibitor was first isolated by Kunitz. avoided. This protein is reversibly denatured by short Several other related inhibitors are also found in heating to 80 °C and irreversibly inhibited by heating to 3 soybeans. Trypsin inhibitor from soybeans is a 90 °C.3 monomeric protein containing 181 amino acid residues in a single polypeptide chain crosslinked by two 4,5,6 Procedure disulfide bridges.
    [Show full text]
  • Complement Component 4 Genes Contribute Sex-Specific Vulnerability in Diverse Illnesses
    bioRxiv preprint doi: https://doi.org/10.1101/761718; this version posted September 9, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Complement component 4 genes contribute sex-specific vulnerability in diverse illnesses Nolan Kamitaki1,2, Aswin Sekar1,2, Robert E. Handsaker1,2, Heather de Rivera1,2, Katherine Tooley1,2, David L. Morris3, Kimberly E. Taylor4, Christopher W. Whelan1,2, Philip Tombleson3, Loes M. Olde Loohuis5,6, Schizophrenia Working Group of the Psychiatric Genomics Consortium7, Michael Boehnke8, Robert P. Kimberly9, Kenneth M. Kaufman10, John B. Harley10, Carl D. Langefeld11, Christine E. Seidman1,12,13, Michele T. Pato14, Carlos N. Pato14, Roel A. Ophoff5,6, Robert R. Graham15, Lindsey A. Criswell4, Timothy J. Vyse3, Steven A. McCarroll1,2 1 Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA 2 Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA 3 Department of Medical and Molecular Genetics, King’s College London, London WC2R 2LS, UK 4 Rosalind Russell / Ephraim P Engleman Rheumatology Research Center, Division of Rheumatology, UCSF School of Medicine, San Francisco, California 94143, USA 5 Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA 6 Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, California 90095, USA 7 A full list of collaborators is in Supplementary Information.
    [Show full text]
  • High-Throughput Proteomic Profiling of the Fish Liver Following Bacterial
    Causey et al. BMC Genomics (2018) 19:719 https://doi.org/10.1186/s12864-018-5092-0 RESEARCH ARTICLE Open Access High-throughput proteomic profiling of the fish liver following bacterial infection Dwight R Causey1, Moritz A N Pohl1, David A Stead2, Samuel A M Martin1, Christopher J Secombes1 and Daniel J Macqueen1* Abstract Background: High-throughput proteomics was used to determine the role of the fish liver in defense responses to bacterial infection. This was done using a rainbow trout (Oncorhynchus mykiss) model following infection with Aeromonas salmonicida, the causative agent of furunculosis. The vertebrate liver has multifaceted functions in innate immunity, metabolism, and growth; we hypothesize this tissue serves a dual role in supporting host defense in parallel to metabolic adjustments that promote effectiveimmunefunction.Whilepaststudieshavereported mRNA responses to A. salmonicida in salmonids, the impact of bacterial infection on the liver proteome remains uncharacterized in fish. Results: Rainbow trout were injected with A. salmonicida or PBS (control) and liver extracted 48 h later for analysis on a hybrid quadrupole-Orbitrap mass spectrometer. A label-free method was used for protein abundance profiling, which revealed a strong innate immune response along with evidence to support parallel rewiring of metabolic and growth systems. 3076 proteins were initially identified against all proteins (n = 71,293 RefSeq proteins) annotated in a single high-quality rainbow trout reference genome, of which 2433 were maintained for analysis post-quality filtering. Among the 2433 proteins, 109 showed significant differential abundance following A. salmonicida challenge, including many upregulated complement system and acute phase response proteins, in addition to molecules with putative functions that may support metabolic re-adjustments.
    [Show full text]
  • Highly Potent and Selective Plasmin Inhibitors Based on the Sunflower Trypsin Inhibitor-1 Scaffold Attenuate Fibrinolysis in Plasma
    Highly Potent and Selective Plasmin Inhibitors Based on the Sunflower Trypsin Inhibitor-1 Scaffold Attenuate Fibrinolysis in Plasma Joakim E. Swedberg,‡† Guojie Wu,§† Tunjung Mahatmanto,‡# Thomas Durek,‡ Tom T. Caradoc-Davies,∥ James C. Whisstock,§* Ruby H.P. Law§* and David J. Craik‡* ‡Institute for Molecular Bioscience, The University of Queensland, Brisbane QLD 4072, Australia §ARC Centre of Excellence in Advanced Molecular Imaging, Department of Biochemistry and Molecular Biology, Biomedical Discovery Institute, Monash University, VIC 3800, Australia. ∥Australian Synchrotron, 800 Blackburn Road, Clayton, Melbourne, VIC 3168, Australia. †J.E.S. and G.W. contributed equally to this work. Keywords: Antifibrinolytics; Fibrinolysis; Inhibitors; Peptides; Plasmin ABSTRACT Antifibrinolytic drugs provide important pharmacological interventions to reduce morbidity and mortality from excessive bleeding during surgery and after trauma. Current drugs used for inhibiting the dissolution of fibrin, the main structural component of blood clots, are associated with adverse events due to lack of potency, high doses and non-selective inhibition mechanisms. These deficiencies warrant the development of a new generation highly potent and selective fibrinolysis inhibitors. Here we use the 14-amino acid backbone-cyclic sunflower trypsin inhibitor-1 scaffold to design a highly potent (Ki = 0.05 nM) inhibitor of the primary serine protease in fibrinolysis, plasmin. This compound displays a million-fold selectivity over other serine proteases in blood, inhibits fibrinolysis in plasma more effectively than the gold-standard therapeutic inhibitor aprotinin and is a promising candidate for development of highly specific fibrinolysis inhibitors with reduced side effects. 1 INTRODUCTION The physiological process of fibrinolysis regulates the dissolution of blood clots and thrombosis.
    [Show full text]
  • Characterization of a Bowman–Birk Type Trypsin Inhibitor Purified From
    www.nature.com/scientificreports OPEN Characterization of a Bowman–Birk type trypsin inhibitor purifed from seeds of Solanum surattense Abhijeet P. Herwade1, Sainath S. Kasar1,2, Niraj R. Rane3, Shadab Ahmed4, Jaswinder Singh Maras5 & Pankaj K. Pawar6* A Bowman–Birk type trypsin inhibitor protein (SSTI) from seeds of the medicinal plant Solanum surattense was isolated, purifed and characterized. SSTI showed a single band on SDS-PAGE corresponding to 11.4 kDa molecular weight. It is a glycoprotein (2.8% glycosylation) that diferentially interacted with trypsin and chymotrypsin in a concentration-dependent manner. Its peptide sequence is similar to other Bowman–Birk type protease inhibitors found in Glycine max and Phaseolus acutifolius. The inhibitory activity was stable over a wide range of pH (1–10) and temperatures (10–100° C). Far-UV Circular Dichroism (CD) studies showed that SSTI contains β sheets (~ 23%) and α helix (~ 6%) and demonstrated structural stability at wide pH and high temperature. The kinetic analysis revealed a noncompetitive (mixed) type nature of SSTI and low inhibitor constant (Ki) −8 values (16.6 × ­10 M) suggested strong inhibitory activity. Isothermal titration calorimetric analysis revealed its high afnity towards trypsin with dissociation constant (Kd) 2.28 µM. Biotic stress induces the generation and accumulation of phenolic compounds and pathogenesis-related (PR) proteins which subsequently prevent an invasion of pests like insects and microbial pathogens1. Most of the plant PR proteins are acid-soluble, low molecular weight and protease enzyme inhibitors 2,3. Protease inhibitors are mainly harbored by four plant families’ viz. Fabaceae, Gramineae, Leguminosae, and Solanaceae4,5.
    [Show full text]
  • Complement in Cancer: Untangling an Intricate Relationship
    REVIEWS Complement in cancer: untangling an intricate relationship Edimara S. Reis1*, Dimitrios C. Mastellos2*, Daniel Ricklin3, Alberto Mantovani4 and John D. Lambris1 Abstract | In tumour immunology, complement has traditionally been considered as an adjunctive component that enhances the cytolytic effects of antibody-based immunotherapies, such as rituximab. Remarkably, research in the past decade has uncovered novel molecular mechanisms linking imbalanced complement activation in the tumour microenvironment with inflammation and suppression of antitumour immune responses. These findings have prompted new interest in manipulating the complement system for cancer therapy. This Review summarizes our current understanding of complement-mediated effector functions in the tumour microenvironment, focusing on how complement activation can act as a negative or positive regulator of tumorigenesis. It also offers insight into clinical aspects, including the feasibility of using complement biomarkers for cancer diagnosis and the use of complement inhibitors during cancer treatment. An enormous body of data produced by converging indicated, however, that this versatile innate immune disciplines has provided unprecedented insight into the effector system mediates key homeostatic functions in intricate and dynamic relationship that exists between processes ranging from early vertebrate development developing tumours and the host immune system1–3. and tissue morphogenesis to tissue regeneration, cen­ It is widely accepted that neoplastic transformation
    [Show full text]
  • Supp Table 6.Pdf
    Supplementary Table 6. Processes associated to the 2037 SCL candidate target genes ID Symbol Entrez Gene Name Process NM_178114 AMIGO2 adhesion molecule with Ig-like domain 2 adhesion NM_033474 ARVCF armadillo repeat gene deletes in velocardiofacial syndrome adhesion NM_027060 BTBD9 BTB (POZ) domain containing 9 adhesion NM_001039149 CD226 CD226 molecule adhesion NM_010581 CD47 CD47 molecule adhesion NM_023370 CDH23 cadherin-like 23 adhesion NM_207298 CERCAM cerebral endothelial cell adhesion molecule adhesion NM_021719 CLDN15 claudin 15 adhesion NM_009902 CLDN3 claudin 3 adhesion NM_008779 CNTN3 contactin 3 (plasmacytoma associated) adhesion NM_015734 COL5A1 collagen, type V, alpha 1 adhesion NM_007803 CTTN cortactin adhesion NM_009142 CX3CL1 chemokine (C-X3-C motif) ligand 1 adhesion NM_031174 DSCAM Down syndrome cell adhesion molecule adhesion NM_145158 EMILIN2 elastin microfibril interfacer 2 adhesion NM_001081286 FAT1 FAT tumor suppressor homolog 1 (Drosophila) adhesion NM_001080814 FAT3 FAT tumor suppressor homolog 3 (Drosophila) adhesion NM_153795 FERMT3 fermitin family homolog 3 (Drosophila) adhesion NM_010494 ICAM2 intercellular adhesion molecule 2 adhesion NM_023892 ICAM4 (includes EG:3386) intercellular adhesion molecule 4 (Landsteiner-Wiener blood group)adhesion NM_001001979 MEGF10 multiple EGF-like-domains 10 adhesion NM_172522 MEGF11 multiple EGF-like-domains 11 adhesion NM_010739 MUC13 mucin 13, cell surface associated adhesion NM_013610 NINJ1 ninjurin 1 adhesion NM_016718 NINJ2 ninjurin 2 adhesion NM_172932 NLGN3 neuroligin
    [Show full text]
  • Trypsin-Like Proteases and Their Role in Muco-Obstructive Lung Diseases
    International Journal of Molecular Sciences Review Trypsin-Like Proteases and Their Role in Muco-Obstructive Lung Diseases Emma L. Carroll 1,†, Mariarca Bailo 2,†, James A. Reihill 1 , Anne Crilly 2 , John C. Lockhart 2, Gary J. Litherland 2, Fionnuala T. Lundy 3 , Lorcan P. McGarvey 3, Mark A. Hollywood 4 and S. Lorraine Martin 1,* 1 School of Pharmacy, Queen’s University, Belfast BT9 7BL, UK; [email protected] (E.L.C.); [email protected] (J.A.R.) 2 Institute for Biomedical and Environmental Health Research, School of Health and Life Sciences, University of the West of Scotland, Paisley PA1 2BE, UK; [email protected] (M.B.); [email protected] (A.C.); [email protected] (J.C.L.); [email protected] (G.J.L.) 3 Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University, Belfast BT9 7BL, UK; [email protected] (F.T.L.); [email protected] (L.P.M.) 4 Smooth Muscle Research Centre, Dundalk Institute of Technology, A91 HRK2 Dundalk, Ireland; [email protected] * Correspondence: [email protected] † These authors contributed equally to this work. Abstract: Trypsin-like proteases (TLPs) belong to a family of serine enzymes with primary substrate specificities for the basic residues, lysine and arginine, in the P1 position. Whilst initially perceived as soluble enzymes that are extracellularly secreted, a number of novel TLPs that are anchored in the cell membrane have since been discovered. Muco-obstructive lung diseases (MucOLDs) are Citation: Carroll, E.L.; Bailo, M.; characterised by the accumulation of hyper-concentrated mucus in the small airways, leading to Reihill, J.A.; Crilly, A.; Lockhart, J.C.; Litherland, G.J.; Lundy, F.T.; persistent inflammation, infection and dysregulated protease activity.
    [Show full text]
  • Structural Insight on the Recognition of Surface-Bound Opsonins by the Integrin I Domain of Complement Receptor 3
    Structural insight on the recognition of surface-bound opsonins by the integrin I domain of complement receptor 3 Goran Bajica, Laure Yatimea, Robert B. Simb, Thomas Vorup-Jensenc,1, and Gregers R. Andersena,1 Departments of aMolecular Biology and Genetics and cBiomedicine, Aarhus University, DK-8000 Aarhus, Denmark; and bDepartment of Pharmacology, University of Oxford, Oxford OX1 3QT, United Kingdom Edited by Douglas T. Fearon, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom, and approved August 28, 2013 (received for review June 13, 2013) Complement receptors (CRs), expressed notably on myeloid and degranulation, and changes in leukocyte cytokine production (2, lymphoid cells, play an essential function in the elimination of 5–7). CR3, and to a lesser degree CR4, are essential for the complement-opsonized pathogens and apoptotic/necrotic cells. In phagocytosis of complement-opsonized particles or complexes addition, these receptors are crucial for the cross-talk between the (6, 8, 9). Complement-opsonized immune complexes are cap- innate andadaptive branches ofthe immune system. CR3 (also known tured in the lymph nodes by CR3-positive subcapsular sinus as Mac-1, integrin α β , or CD11b/CD18) is expressed on all macro- macrophages (SSMs) and conveyed directly to naïve B cells or M 2 γ phages and recognizes iC3b on complement-opsonized objects, en- through follicular dendritic cells (10) using CR1, CR2, and Fc abling their phagocytosis. We demonstrate that the C3d moiety of receptors for antigen capture (11, 12). Hence, antigen-presenting iC3b harbors the binding site for the CR3 αI domain, and our structure cells such as SSMs may act as antigen storage and provide B of the C3d:αI domain complex rationalizes the CR3 selectivity for iC3b.
    [Show full text]
  • Complement Component 3 Expressed by the Endometrial Ectopic Tissue Is
    bioRxiv preprint doi: https://doi.org/10.1101/2020.11.19.389536; this version posted November 20, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 2 Title 3 4 • Complement Component 3 expressed by the endometrial ectopic tissue is involved in 5 the endometriotic lesion formation through mast cell activation 6 7 Short Title: 8 • Role of complement component 3 in endometriosis 9 10 Authors 1 2 2 1 1 2 11 C. Agostinis , S. Zorzet , A. Balduit *, G. Zito , A. Mangogna , Paolo Macor , F. 1 1 3 4 2 1,5 6 12 Romano , M. Toffoli , B. Belmonte , A. Martorana , V. Borelli , G. Ricci , U. Kishore and R. 2 13 Bulla 14 15 Affiliations 1 16 Institute for Maternal and Child Health, IRCCS Burlo Garofolo, 34137, Trieste, Italy. 2 17 Department of Life Sciences, University of Trieste, 34127, Trieste, Italy. 3 18 Tumor Immunology Unit, Human Pathology Section, Department of Health Sciences, 19 University of Palermo, Palermo, Italy. 20 4Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical 21 Specialties, University of Palermo, Palermo, Italy. 22 5Department of Medical, Surgical and Health Science, University of Trieste, Trieste, Italy. 6 23 Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, 24 London, United Kingdom. 25 26 *Corresponding author: Andrea Balduit, Department of Life Sciences, via Valerio, 28. 27 University of Trieste, 34127, Trieste, Italy.
    [Show full text]
  • Complement Receptor CD46 Co-Stimulates Optimal Human CD8 T
    ARTICLE DOI: 10.1038/s41467-018-06706-z OPEN Complement receptor CD46 co-stimulates optimal human CD8+ T cell effector function via fatty acid metabolism Giuseppina Arbore1,2, Erin E. West3, Jubayer Rahman3, Gaelle Le Friec2, Nathalie Niyonzima3,4, Mehdi Pirooznia 3, Ilker Tunc3, Polychronis Pavlidis2, Nicholas Powell2, Yuesheng Li3, Poching Liu3, Aude Servais5, Lionel Couzi6, Veronique Fremeaux-Bacchi7, Leo Placais3, Alastair Ferraro8, Patrick R. Walsh9, David Kavanagh9, Behdad Afzali 3,10, Paul Lavender2, Helen J. Lachmann11 & Claudia Kemper2,3,12 1234567890():,; The induction of human CD4+ Th1 cells requires autocrine stimulation of the complement receptor CD46 in direct crosstalk with a CD4+ T cell-intrinsic NLRP3 inflammasome. However, it is unclear whether human cytotoxic CD8+ T cell (CTL) responses also rely on an intrinsic complement-inflammasome axis. Here we show, using CTLs from patients with CD46 deficiency or with constitutively-active NLRP3, that CD46 delivers co-stimulatory signals for optimal CTL activity by augmenting nutrient-influx and fatty acid synthesis. Sur- prisingly, although CTLs express NLRP3, a canonical NLRP3 inflammasome is not required for normal human CTL activity, as CTLs from patients with hyperactive NLRP3 activity function normally. These findings establish autocrine complement and CD46 activity as integral components of normal human CTL biology, and, since CD46 is only present in humans, emphasize the divergent roles of innate immune sensors between mice and men. 1 Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milano, Italy. 2 School of Immunology and Microbial Sciences, King’s College London, London, UK. 3 Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, USA.
    [Show full text]