Geochemistry of Natural Gases of the Anadarko Basin

Total Page:16

File Type:pdf, Size:1020Kb

Geochemistry of Natural Gases of the Anadarko Basin Chapter 4 Geochemistry of Natural Gases of the Anadarko Basin Click here to return to Volume Title Page By Geoffrey S. Ellis Chapter 4 of 13 Petroleum Systems and Assessment of Undiscovered Oil and Gas in the Anadarko Basin Province, Colorado, Kansas, Oklahoma, and Texas—USGS Province 58 Compiled by Debra K. Higley U.S. Geological Survey Digital Data Series DDS–69–EE U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior SALLY JEWELL, Secretary U.S. Geological Survey Suzette M. Kimball, Acting Director U.S. Geological Survey, Reston, Virginia: 2014 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment, visit http://www.usgs.gov or call 1–888–ASK–USGS. For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod To order this and other USGS information products, visit http://store.usgs.gov Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this information product, for the most part, is in the public domain, it also may contain copyrighted materials as noted in the text. Permission to reproduce copyrighted items must be secured from the copyright owner. Suggested citation: Ellis, G.S., 2014, Geochemistry of natural gases of the Anadarko Basin, chap. 4, in Higley, D.K., compiler, Petroleum systems and assessment of undiscovered oil and gas in the Anadarko Basin Province, Colorado, Kansas, Oklahoma, and Texas—USGS Province 58: U.S. Geological Survey Digital Data Series DDS–69–EE, 31 p., http://dx.doi.org/10.3133/ds69EE. ISSN 2327-638X (online) iii Contents Abstract ...........................................................................................................................................................1 Introduction.....................................................................................................................................................1 Geologic Setting and Gas Geochemistry ...................................................................................................1 Methods...........................................................................................................................................................3 Gas Sample Collection .........................................................................................................................3 Analytical Techniques ..........................................................................................................................3 Results .............................................................................................................................................................5 Gas Molecular Composition ................................................................................................................5 Stable Isotopic Composition ...............................................................................................................6 Discussion .....................................................................................................................................................24 Central Anadarko Basin .....................................................................................................................26 Panhandle Hugoton Field ..................................................................................................................27 Sooner Trend .......................................................................................................................................28 Central Kansas Uplift ..........................................................................................................................28 Conclusions...................................................................................................................................................28 Acknowledgments .......................................................................................................................................29 References Cited..........................................................................................................................................29 Figures 1. Map showing the locations of the Anadarko Basin Province (red line on inset map) and the interpretive regions used in this study: central Anadarko Basin (red line), Panhandle-Hugoton field (green line), Sooner trend (blue line), and central Kansas uplift (yellow line). The boundaries of the interpretive regions are modified from Rice and others (1988b) and Jenden and others (1988). The well locations for the gas geochemistry data used in this study are shown as black circles ...............................2 2. Generalized stratigraphic column for the Anadarko Basin Province with oil and gas source rocks highlighted (red text). Greater source rock potential is indicated by larger numbers. The expected hydrocarbons header indicates whether the source rock is more oil- or gas-prone (Burruss and Hatch, 1989; J. Hatch, oral communication, 2010). Vertical lines show a generalized time range of unconformity from Bebout and others (1993, fig. 5). Gp., Group; Fm., Formation ...............4 3. Plot of the stable carbon isotopic composition of methane, ethane, and propane versus the reciprocal of the carbon number of the hydrocarbon species. Data are average values for each of the interpretive regions of the study area. Heavy black lines indicate the expected trends for thermogenic and abiogenic sources of hydrocarbon gases. Microbial gases have isotopically depleted methane compositions as shown by the arrow .....................................................................................24 4. Plot of the stable carbon versus the stable hydrogen isotopic composition of methane. Note that stable hydrogen isotopic data for methane are not available for all of the gases in this study. Assoc. Gas, oil associated natural gas ...............................25 5. Plot of the gas wetness (ΣC2+/ΣC1+C2+) versus the stable carbon isotopic composition of methane ............................................................................................................26 iv Tables 1. Molecular compositional data (in mole percent) for natural gases from the Anadarko Basin Province by region ..........................................................................................6 2. Molecular and stable isotopic composition of gases from the central Anadarko Basin ...............................................................................................................................................7 3. Molecular and stable isotopic composition of gases from the Panhandle Hugoton region of the Anadarko Basin Province ..................................................................................16 4. Molecular and stable isotopic composition of gases from the Sooner trend region of the Anadarko Basin Province ..............................................................................................22 5. Molecular and stable isotopic composition of gases from the central Kansas uplift region of the Anadarko Basin Province ..................................................................................23 Geochemistry of Natural Gases of the Anadarko Basin By Geoffrey S. Ellis Abstract Anadarko Basin which is bounded by the Nemaha ridge to the east, the Amarillo-Wichita uplift to the south, and a broad shallow shelf (Hugoton embayment) to the west and northwest The sources and timing of natural gas generation as well of the basin proper (Higley, 2014). The Anadarko Basin is one as the migration pathways that lead to the distribution of gas of the deepest basins on the North American craton, containing accumulations throughout the Anadarko Basin Province were in excess of 40,000 feet of Paleozoic sedimentary rocks (Ham investigated using a geochemical dataset from more than 400 and Wilson, 1967); it is also the setting for the Bertha Rogers natural gas wells. The molecular and stable isotopic composi- 1 well, which at a total depth of 31,441 feet (9,583 meters) is tion of the hydrocarbon gases indicate that there is no signifi- the deepest well ever drilled in the United States (Johnson and cant contribution of gas from abiogenic sources, and that the others, 1988). majority of the gases are derived from thermal maturation of Oil and gas development in the province dates back to the organic matter. Limited contributions from microbial sources early 1900s. It contains one of the largest commercial accu- may be possible in localized areas, but this is not thought to mulations of hydrocarbons in the United States (Petroleum be a significant source of gas in the province. The molecular Information Corporation, 1982); as of mid-2011, the Anadarko and stable carbon and hydrogen isotopic compositions of Basin Province has produced approximately 5 billion barrels the hydrocarbon gases indicate mature (oil window) to post of oil and 150 trillion cubic feet of natural gas (IHS Energy, mature (dry gas window) sources for gas generation, which 2011). In 2009, the Hugoton gas field was ranked the 9th larg- is consistent with the findings of previous studies. Gases est natural gas accumulation in the United States in terms of produced from the deepest reservoirs in the central Anadarko proved reserves (Energy Information Administration, 2010). Basin show evidence for
Recommended publications
  • The Impact of Selling the Federal Helium Reserve O E
    o e h i ue t r use t are t ease l P breaks ed. age The Impact of Selling the Federal P iles. ally insert f Helium Reserve ng i t peset y http://www.nap.edu/catalog/9860.html The ImpactofSellingtheFederalHeliumReserve been accident have y a he original t t Committee on the Impact of Selling the Federal Helium Reserve m om r Board on Physics and Astronomy f not Commission on Physical Sciences, Mathematics, and Applications National Materials Advisory Board pographic errors Commission on Engineering and Technical Systems y t e National Research Council riginal paper book, and som , he o t ined a om r ed f be ret Copyright © National Academy ofSciences. Allrights reserved. iles creat cannot f L M X om however, r ng, i t at posed f rm o f ic recom ng-specif i t has been ion. peset ibut y r t r at her t o f original work e h and ot t version yles, ion of ive st at at horit heading aut e represent l h a as t breaks, ion word is new digit h hs, T is publicat ile: h t NATIONAL ACADEMY PRESS f F of line lengt D Washington D.C. is P h t version original; bout he print t A The Impact of Selling the Federal Helium Reserve http://www.nap.edu/catalog/9860.html ii NOTICE: The project that is the subject of this report was approved by the Governing Board of the National Research Council, whose members are drawn from the councils of the National Academy of Sciences, the National Academy of Engineering, and the Institute of Medicine.
    [Show full text]
  • Hydrogeologic Information on the Glorieta Sandstone and the Ogallala Formation in the Oklahoma Panhandle and Adioining Areas As Related to Underground Waste Disposal
    Hydrogeologic Information on the Glorieta Sandstone and the Ogallala Formation in the Oklahoma Panhandle and Adioining Areas as Related to Underground Waste Disposal GEOLOGICAL SURVEY CIRCULAR 630 Hydrogeologic Information on the Glorieta Sandstone and the Ogallala Formation in the Oklahoma Panhandle and Adioining Areas as Related to Underground Waste Disposal By James H. Irwin and Robert B. Morton GEOLOGICAL SURVEY CIRCULAR 630 Washington 1969 United States Department of the Interior CECIL D. ANDRUS, Secretary Geological Survey H. William Menard, Director First printing 1969 Second printing 1978 Free on application to Branch ol Distribution, U.S. Geological Survey 1200 South Eads Street, Arlington, Va. 22202 CONTENTS Page Page J\bstract -------------------------------------- 1 Character of the strata between the Glorieta Introduction ____________ ---------------------- 1 Sandstone and the Ogallala Formation ----- 9 Regional geologic setting ----------------------- 3 Hydrology ------------------------------------ 9 Structure --------------------------------­ 3 Ogallala Formation and younger rocks _______ 9 Subsurface rocks -------------------------­ 3 . Other aquifers ---------------------------- 10 Rocks of Permian age -----------------­ 6 Quality of water------------------------------- 11 Rocks of Triassic age -----------------­ 6 Ogallala Formation ------------------------ 11 Rocks of Jurassic age -----------------­ 7 Other aquifers ---------------------------- 11 Rocks of Cretaceous age --------------- 7 Rocks of Permian age ------.----------------
    [Show full text]
  • Isotopic Analyses of Helium from Wells Located in the Four Corners Area, Southwestern, Us
    ISOTOPIC ANALYSES OF HELIUM FROM WELLS LOCATED IN THE FOUR CORNERS AREA, SOUTHWESTERN, US By Daniel Thomas Halford Copyright by Daniel Halford (2018) All Rights Reserved A thesis submitted to the Faculty and the Board of Trustees of the Colorado School of Mines in partial fulfillment of the requirements for the degree of Master of Science (Geology). Golden, Colorado Date: ______________________________ Signed: ______________________________ Daniel Halford Signed: ______________________________ Dr. Stephen Sonnenberg Thesis Advisor Golden, Colorado Date: ______________________________ Signed: ______________________________ Dr. Steve Enders Professor and Head Department of Geology ii ABSTRACT Helium, the lightest noble gas, is a valuable resource located on the Colorado Plateau southwestern US. Helium, a proven, useful noble gas, has many applications in modern technology for its chemical, physical, and thermodynamic properties. As of this writing, the price of crude helium is ~40% greater than CH4, rendering the economic grade for direct and secondary extraction at 0.3% helium. The helium systems in the Four Corners area (i.e., the study area) are characterized utilizing the geochemistry of noble gases, hydrocarbons, and non- hydrocarbons (compositional and isotopic), as well as geologic mapping. The geochemistry delineates sources of gases, migration pathways, and potential trapping/sealing mechanisms of the helium system, which is a slight deviation from the petroleum system. Economic helium (>0.3%) is primarily found in Paleozoic intervals structurally trapped on the Four Corners Platform, the edge of the Defiance Uplift, and the edge of the Holbrook Basin. Thirty-one gas samples, isotopically analyzed, are from actively producing Paleozoic formations within five fields: Tocito Dome, Dineh-Bi-Keyah, Ratherford, Pinta Dome, and Navajo Springs.
    [Show full text]
  • Pressure Architecture of the Permian And
    - , , PRESSURE ARCHITECTURE OF THE PERMIAN AND PENNSYLVANIAN SECTION IN CARSON, MOORE, HUTCHINSON, AND POTTBR COUNTIES, TEXAS PANHANDLE By DANIELA. HANNAH Bachelor of Science Oklahoma State University Stillwater. Oklahoma 1992 Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of YlASTER OF SCIENCE August. 200 I - PRESSURE ARCHITECTURE OF THE PERMIAN AND PENNSYLVANIAN SECTION IN CARSON, MOORE, HUTCHINSON, AND POTTER COUNTlES, TEXAS PANHANDLE Thesis Approved: ----~·-Ile-g-e----- 11 '- PREFACE This study was undertaken in an attempt to improve current understanding of the hydrodynamics and pressure architecture of a specific region within the Texas portion of the Panhandle-Hugoton gas field, the largest gas field in the coterminous United States. Data suggest that certain reservoir units within the area of study are underpressured with respect to a normal hydrostatic gradient, and might serve as possible disposal (injection) zones for oilfield brines and other types of liquid waste (municipal, industrial, etc.). Specific objectives of this research were to a) construct stratigraphic cross sections in order to better understand the geologic sequencing of formations within the study area, and b) construct contour maps displaying equipotential surfaces (hydraulic head elevation) over the study area. Both a) and b) were accompli hed using Rockwork 99™ software developed by Rockware, Inc. I sincerely thank my masters committee-Drs. Jim Puckette (Chair), Zuhair Al­ Shaieb, and Richard A. Marston-for guidance, support, and advice in the completion of this research. III ACKNOWLEDGMENTS I wish to express my sincerest appreciation to my principaJ advisor and committee Chair, Dr.
    [Show full text]
  • Chapter 10 Remaining Gas in Hugoton and Panoma
    CHAPTER 11. CONCLUSIONS Martin K. Dubois, Alan P. Byrnes, and Saibal Bhattacharya The 108-million cell, 10,000 mi2 (26,000 km2), 3-D geologic and petrophysical property geomodel of the Hugoton presented in this study demonstrates application of a detailed reservoir characterization and modeling workflow for a giant field. Core-based calibration of neural-net prediction of lithofacies using wireline-log signatures, coupled with geologically constraining variables, provided accurate lithofacies models at well to field scales. Differences in petrophysical properties among lithofacies and within a lithofacies among different porosities illustrate the importance of integrated lithologic- petrophysical modeling and of the need for closely defining these properties and their relationships. Lithofacies models, coupled with lithofacies-dependent petrophysical properties, allowed the construction of a 3-D geomodel for the Hugoton that has been effective at the well, section (1mi2, 2.6 km2), and multi-section scales. Validity of the model workflow and model itself are supported by 1) pressure and production history- match simulations of multi-section extracts of the model, and 2) comparisons of the three-dimensional lithofacies patterns with earlier work at smaller scales and with depositional models that have been proposed for the area and for Upper Paleozoic cyclic depositional systems in general. The model is a tool for predicting lithofacies and petrophysical properties distribution, water saturations, and OGIP that provides a quantitative basis for evaluating remaining- gas-in-place, particularly in low-permeability intervals. The model may prove instrumental in evaluating current practices and consideration of modified well-bore geometry and completion practices that will potentially enhance ultimate recovery.
    [Show full text]
  • Analysis of Kansas Hugoton Infill Drilling: Part I-Total Field Results
    SPE Society of Petroleum Engineef's SPE 20756 Analysis of Kansas Hugoton Infill Drilling: Part I-Total Field Resu Its T.F. McCoy, M.J. Fetkovich, R.B. Needham, and D.E. Reese, Phillips Petroleum CO. SPE Members Copyright 1990, Society of Petroleum Engineers Inc. This paper was prepared for presentation at the 65th Annual Technical Conference and Exhibition of the Society of Petroleum Engineers held in New Orleans, LA, September 23-26,1990. This paper was selected for presentation by an SPE Program Committee following review of information contained in an abstract submitted by the author(s). Contents of the paper, as presented, have not been reviewed by the Society of Petroleum Engineers and are subject to correction by the author(s). The material, as presented, does not necessarily reflect any position of the Society of Petroleum Engineers, its officers, or members. Papers presented at SPE meetings are subject to publication review by Editorial Committees of the Society of Petroleum Engineers. Permission to copy is restricted to an abstract of not more than 300 words. Illustrations may not be copied. The abstract should contain conspicuous acknowledgment of where and by whom the paper is presented. Write Publications Manager, SPE, P.O. Box 833836, Richardson, TX 75083-3836. Telex, 730989 SPEDAL. ABSTRACT HISTORY This paper compares the performance of infill wells The Hugoton Field is the largest gas accumulation drilled in the Kansas Hugoton to the companion in the lower 48 states covering approximately 6500 original wells - regionally, by operator, and the square miles in three states. Approximately two­ field as a whole, using official deliverability thirds of the field lies in southwest Kansas on all tests and production history.
    [Show full text]
  • Utah Geological Survey
    PROVEN AND HYPOTHETICAL HELIUM RESOURCES IN UTAH by Tyler J. Wiseman and Marc T. Eckels MISCELLANEOUS PUBLICATION 174 SCHOOL AND INSTITUTIONAL TRUST LANDS ADMINISTRATION Produced in collaboration with UTAH GEOLOGICAL SURVEY UTAH DEPARTMENT OF NATURAL RESOURCES 2020 Blank pages are intentional for printing purposes. PROVEN AND HYPOTHETICAL HELIUM RESOURCES IN UTAH by Tyler J. Wiseman 1 and Marc T. Eckels 2 1 Utah Trust Lands Administration, Salt Lake City, Utah 2 Consultant, Park City, Utah Cover photo: Lisbon gas processing facility in San Juan County, Utah. This plant recently re-started processing helium. Suggested citation: Wiseman, T.J., and Eckels, M.T., 2020, Proven and hypothetical helium resources in Utah: Utah Geological Survey Miscellaneous Publication 174, 44 p., 1 plate, scale 1:850,000, https://doi.org/10.34191/MP-174. MISCELLANEOUS PUBLICATION 174 SCHOOL AND INSTITUTIONAL TRUST LANDS ADMINISTRATION Produced in collaboration with UTAH GEOLOGICAL SURVEY UTAH DEPARTMENT OF NATURAL RESOURCES 2020 STATE OF UTAH Gary R. Herbert, Governor DEPARTMENT OF NATURAL RESOURCES Brian Steed, Executive Director UTAH GEOLOGICAL SURVEY R. William Keach II, Director PUBLICATIONS contact Natural Resources Map & Bookstore 1594 W. North Temple Salt Lake City, UT 84116 telephone: 801-537-3320 toll-free: 1-888-UTAH MAP website: utahmapstore.com email: [email protected] UTAH GEOLOGICAL SURVEY contact 1594 W. North Temple, Suite 3110 Salt Lake City, UT 84116 telephone: 801-537-3300 website: geology.utah.gov The Miscellaneous Publication series provides non-UGS authors with a high-quality format for documents concerning Utah geology. Although review comments have been incorporated, this document does not necessarily conform to UGS technical, editorial, or policy standards.
    [Show full text]
  • Helium: Exploration Methodology for a Strategic Resource
    Helium: Exploration Methodology for a Strategic Resource Diveena Danabalan A Thesis presented for the degree of Doctor of Philosophy Department of Earth Sciences Durham University United Kingdom June 2017 Contents List of Figures 5 List of Tables 7 Abstract 9 Declaration 10 Copyright Statement 10 About the author 10 Acknowledgements 11 Chapter One: Introduction 13 1.1. Helium Exploration 14 1.1.1 Helium in the modern world 14 1.1.2. Types of helium reservoir 18 1.1.2.1. CO2-rich fields 19 1.1.2.2. CH4-rich fields 20 1.1.2.3. N2-rich fields 21 1.1.3. Introducing helium as a noble gas 22 1.1.3.1. Sources of helium 23 1.2. The other noble gases 24 1.2.1. Neon 24 1.2.2. Argon 25 1.2.3. Krypton and Xenon 26 1.3. The noble gases as geochemical tracers in natural gas systems 26 1.3.1. Crustal contributions to natural gas systems 28 1.3.2. Mantle contributions to natural gas systems 28 1.3.3. Groundwater contributions to natural gas systems 29 1.4. Literature review of the helium system 30 1.4.1. Generation and accumulation 30 1.4.2. Primary migration 32 1.4.3. Helium and associated carrier gases 33 1.4.4. Secondary migration 34 1.4.5. Entrapment and escape 36 1.5. Objectives and thesis outline 38 Chapter Two: Methods 40 2.1. Introduction 41 2.2. Sampling in the field 41 2.3. Analytical equipment 44 2.3.1.
    [Show full text]
  • Reasonable Foreseeable Development Scenario for Oil and Gas Cimarron and Comanche National Grasslands, Kansas and Colorado Fina
    REASONABLE FORESEEABLE DEVELOPMENT SCENARIO FOR OIL AND GAS CIMARRON AND COMANCHE NATIONAL GRASSLANDS, KANSAS AND COLORADO Point of Rocks, Kansas, Cimarron National Grasslands(USDA Forest Service photograph) DEAN P. STILWELL, AMBER L. ROBBINS, ALFRED M. ELSER, Ph.D., and STAN W. DAVIS-LAWRENCE UNITED STATES DEPARTMENT OF THE INTERIOR BUREAU OF LAND MANAGEMENT prepared for: U.S.D.A. FOREST SERVICE PIKE AND SAN ISABEL NATIONAL FORESTS, CIMARRON AND COMANCHE NATIONAL GRASSLANDS FINAL REPORT September 15, 2011 GEOLOGIC OVERVIEW 11 EXPLORATORY AND PRODUCTION ACTIVITY AND OPERATIONS 11 EXPLORATORY ACTIVITY AND OPERATIONS 12 FEDERAL DEVELOPMENT CONTRACTS 16 FEDERAL OIL AND GAS UNIT AGREEMENTS 16 TYPICAL DRILLING AND COMPLETION SEQUENCE 18 DRAINAGE PROTECTION 19 HISTORICAL DRILLING AND COMPLETION ACTIVITY AND TECHNIQUES EMPLOYED FOR CONVENTIONAL OIL AND GAS 19 1898 TO 1031 20 1931 TO 1950 20 1951 TO 1960 21 1961 TO 1970 21 1971 TO 1980 21 1981 TO 1990 22 1991 TO 2000 22 2001 TO 2010 23 TECHNOLOGY DEVELOPMENT 23 DRILLING AND COMPLETION ACTIVITY 23 DEEP WELL DRILLING 25 SHALLOWER WELL DRILLING: 5,000 FEET AND GREATER 25 SHALLOWEST WELL DRILLING: LESS THAN 5,000 FEET 26 SUMMARY OF CURRENT DRILLING TECHNIQUES 27 Directional and Horizontal Drilling and Completion Activity 27 Slimhole Drilling and Coiled Tubing 28 Light Modular Drilling Rigs and Pad Drilling 29 Pneumatic Drilling 30 Measurement-While-Drilling 30 Improved Drill Bits 30 SUMMARY OF CURRENT COMPLETION TECHNIQUES 30 SUMMARY OF CONVENTIONAL OIL AND GAS PRODUCTION AND ABANDONMENT TECHNIQUES 32 OIL AND GAS PRODUCTION 33 HYDROGEN SULFIDE OCCURRENCE 34 CARBON DIOXIDE 35 HELIUM GAS 36 NITROGEN GAS 36 ACID GAS REMOVAL AND RECOVERY 37 ARTIFICIAL LIFT OPTIMIZATION 37 GLYCOL DEHYDRATION 37 PRODUCED WATER MANAGEMENT 37 Wyoming State Office Reservoir Management Group - 1 - LEAK DETECTION AND LOW-BLEED EQUIPMENT 38 VAPOR RECOVERY UNITS 38 UNDERGROUND GAS STORAGE 38 PREVIOUS ASSESSMENTS OF OIL AND GAS RESOURCES 39 POTENTIAL GAS COMMITTEE 39 ATLAS OF MAJOR ROCKY MOUNTAIN RESERVOIRS 39 U.S.
    [Show full text]