51437-18 Chemische En Fysische Tabellen.Indd

Total Page:16

File Type:pdf, Size:1020Kb

51437-18 Chemische En Fysische Tabellen.Indd CHEMISCHE EN FYSISCHE TABELLEN 0187 478 444 (24/7) www.nedlab.eu CHEMISCHE EN FYSISCHE TABELLEN In dit deel een uitgebreide compilatie van tabellen zoals: conversies, dichtheden van vloeistoffen en metalen, E- stoffen, elementen voorzien van atoomnummer, atoomgewicht, kookpunt en smeltpunt. ISO clean classification, mineralen, samen- stelling en additionele informatie, viscositeit SAE, ISO, AGMA en nog veel meer. 2 ALCOHOL TABEL Dichtheid ethanol Dichtheid ethanol 20°/20°C vol% 20°/20°C vol% 1,00000 0,0 0,90872 60,8 0,99813 1,3 0,90645 61,8 0,99629 2,5 0,90418 62,8 0,99451 3,8 0,90191 63,8 0,99279 5,0 0,89962 64,8 0,99113 6,2 0,89733 65,8 0,98955 7,5 0,89502 66,8 0,98802 8,7 0,89271 67,7 0,98653 10,0 0,89040 68,6 0,98505 11,2 0,88807 69,6 0,98361 12,4 0,88574 70,5 0,98221 13,6 0,88339 71,5 0,98084 14,8 0,88104 72,4 0,97948 16,1 0,87869 73,3 0,97816 17,3 0,87632 74,2 0,97687 18,5 0,87396 75,1 0,97560 19,7 0,87158 76,0 0,97431 20,9 0,86920 76,9 0,97301 22,1 0,86680 77,8 0,97169 23,3 0,86440 78,6 0,97063 24,5 0,86200 79,5 0,96901 25,7 0,85958 80,4 0,96763 26,9 0,85716 81,2 0,96624 28,1 0,85473 82,1 0,96483 29,2 0,85230 83,0 0,96339 30,4 0,84985 83,8 0,96190 31,6 0,84740 84,6 0,96037 32,7 0,84494 85,4 0,95880 33,9 0,84245 86,2 0,95717 35,1 0,83997 87,1 0,95551 36,1 0,83747 87,9 0,95381 37,4 0,83496 88,7 0,95207 38,5 0,83242 89,5 0,95028 39,6 0,82987 90,2 0,94847 40,7 0,82729 91,0 0,94662 41,9 0,82469 91,8 0,94473 43,0 0,82207 92,5 0,94281 44,1 0,81942 93,2 0,94086 45,2 0,81674 94,0 0,93886 46,3 0,81401 94,7 0,93684 47,4 0,81127 95,4 0,93479 48,4 0,80848 96,1 0,93272 49,5 0,80567 96,7 0,93062 50,6 0,80280 97,4 0,92849 51,6 0,79988 98,1 0,92636 52,6 0,79688 98,7 0,92421 53,7 0,79383 99,3 0,92204 54,7 0,79074 100,0 0,91986 55,8 0,91766 56,8 0,91546 57,8 0,91322 58,8 0,91097 59,8 determined in quality 3 ALUMINIUM samenstelling naar type Inter. DIN Si Fe Cu Mn Mg Cr Zn Ti Zr V B Other Total Marking Marking 1050 Al 99.5 0.25 0.40 0.05 0.05 0.05 0.05 0.05 0.03 0.05 0.03 1060 0.25 0.35 0.05 0.03 0.03 0.05 0.30 0.05 0.03 1070 Al 99.7 0.20 0.25 0.04 0.03 0.03 0.04 0.03 0.05 0.03 1080 Al 99.8 0.15 0.15 0.03 0.02 0.02 0.03 0.03 0.05 0.02 1100 Al 99 Cu +FE +SI 0.15 0.95 0.95 0.20 0.05 0.10 0.05 0.15 1145 +FE +SI 0.55 0.55 0.05 0.05 0.05 0.05 0.03 0.05 0.03 1200 Al 99 +FE +SI 1.00 1.00 0.05 0.05 0.10 0.05 0.05 0.15 1230 +FE +SI 0.70 0.70 0.10 0.05 0.05 0.10 0.03 0.05 0.03 1350 +V +TI 0.10 0.40 0.05 0.01 0.01 0.05 0.02 0.02 0.05 0.03 0.10 3003 Al Mn Cu 0.05 1.00 0.60 0.70 0.20 1.50 0.10 0.05 0.15 3004 Al Mn 1 Mg 1.00 0.80 0.30 0.70 0.25 0.51 1.30 0.25 0.05 0.15 3005 Al Mn 1 Mg 1.00 0.20 0.5 0.60 0.70 0.30 1.50 0.60 0.10 0.25 0.10 0.05 0.15 3103 Al Mn 1 0.90 +ZR +TI 0.50 0.70 0.10 1.50 0.30 0.10 0.20 0.10 0.10 0.05 0.15 3105 Al Mn 0.5 Mg 0.30 0.20 0.5 0.60 0.70 0.30 0.80 0.80 0.20 0.40 0.10 0.05 0.15 5005 Al Mg 1 0.50 0.30 0.70 0.20 0.20 1.10 0.10 0.25 0.05 0.15 5010 0.10 0.20 0.40 0.70 0.25 0.30 0.60 0.15 0.30 0.10 0.05 0.15 5050 Al Mg 1.5 1.00 0.40 0.70 0.20 0.10 1.80 0.10 0.25 0.05 0.15 5051 Al Mg 1.8 1.70 0.40 0.70 0.25 0.20 2.20 0.10 0.25 0.10 0.05 0.15 5083 Al Mg 4.5 Mn 0.40 4.00 0.05 0.40 0.40 0.10 1.00 4.90 0.25 0.25 0.15 0.05 0.15 5154 Al Mg3 3.10 0.15 0.25 0.40 0.10 0.10 3.90 0.35 0.20 0.20 0.05 0.15 5454 Al Mg 2.7 Mn 0.50 2.40 0.05 0.05 0.25 0.40 0.10 1.00 3.00 0.20 0.25 0.20 0.0008 0.05 0.15 8011 Al Fe Si 0.50 0.60 0.90 1.00 0.10 0.10 0.05 0.05 0.10 0.08 0.05 0.15 4 CELCIUS & FAHRENHEIT v.v. °C temp °F °C temp °F °C temp °F °C temp °F °C temp °F 121 250 482 93 200 392 66 150 302 38 100 212 10 50 122 121 249 480 93 199 390 65 149 300 37 99 210 9 49 120 120 248 478 92 198 388 64 148 298 37 98 208 9 48 118 119 247 477 92 197 387 64 147 297 36 97 207 8 47 117 119 246 475 91 196 385 63 146 295 36 96 205 8 46 115 118 245 473 91 195 383 63 145 293 35 95 203 7 45 113 118 244 471 90 194 381 62 144 291 34 94 201 7 44 111 117 243 469 89 193 379 62 143 289 34 93 199 6 43 109 117 242 468 89 192 378 61 142 288 33 92 198 6 42 108 116 241 466 88 191 376 61 141 286 33 91 196 5 41 106 116 240 464 88 190 374 60 140 284 32 90 194 4 40 104 115 239 462 87 189 372 59 139 282 32 89 192 4 39 102 114 238 460 87 188 370 59 138 280 31 88 190 3 38 100 114 237 459 86 187 369 58 137 279 31 87 189 3 37 99 113 236 457 86 186 367 58 136 277 30 86 187 2 36 97 113 235 455 85 185 365 57 135 275 29 85 185 2 35 95 112 234 453 84 184 363 57 134 273 29 84 183 1 34 93 112 233 451 84 183 361 56 133 271 28 83 181 1 33 91 111 232 450 83 182 360 56 132 270 28 82 180 0 32 90 111 231 448 83 181 358 55 131 268 27 81 178 -1 31 88 110 230 446 82 180 356 54 130 266 27 80 176 -1 30 86 109 229 444 82 179 354 54 129 264 26 79 174 -2 29 84 109 228 442 81 178 352 53 128 262 26 78 172 -2 28 82 108 227 441 81 177 351 53 127 261 25 77 171 -3 27 81 108 226 439 80 176 349 52 126 259 24 76 169 -3 26 79 107 225 437 79 175 347 52 125 257 24 75 167 -4 25 77 107 224 435 79 174 345 51 124 255 23 74 165 -4 24 75 106 223 433 78 173 343 51 123 253 23 73 163 -5 23 73 106 222 432 78 172 342 50 122 252 22 72 162 -6 22 72 105 221 430 77 171 340 49 121 250 22 71 160 -6 21 70 104 220 428 77 170 338 49 120 248 21 70 158 -7 20 68 104 219 426 76 169 336 48 119 246 21 69 156 -7 19 66 103 218 424 76 168 334 48 118 244 20 68 154 -8 18 64 103 217 423 75 167 333 47 117 243 19 67 153 -8 17 63 102 216 421 74 166 331 47 116 241 19 66 151 -9 16 61 102 215 419 74 165 329 46 115 239 18 65 149 -9 15 59 101 214 417 73 164 327 46 114 237 18 64 147 -10 14 57 101 213 415 73 163 325 45 113 235 17 63 145 -11 13 55 100 212 414 72 162 324 44 112 234 17 62 144 -11 12 54 99 211 412 72 161 322 44 111 232 16 61 142 -12 11 52 99 210 410 71 160 320 43 110 230 16 60 140 -12 10 50 98 209 408 71 159 318 43 109 228 15 59 138 -13 9 48 98 208 406 70 158 316 42 108 226 14 58 136 -13 8 46 97 207 405 69 157 315 42 107 225 14 57 135 -14 7 45 97 206 403 69 156 313 41 106 223 13 56 133 -14 6 43 96 205 401 68 155 311 41 105 221 13 55 131 -15 5 41 96 204 399 68 154 309 40 104 219 12 54 129 -16 4 39 95 203 397 67 153 307 39 103 217 12 53 127 -16 3 37 94 202 396 67 152 306 39 102 216 11 52 126 -17 2 36 94 201 394 66 151 304 38 101 214 11 51 124 -17 1 34 determined in quality 5 DICHTHEDEN VLOEISTOFFEN Naam temp, °C kg/m3 1,1,2-Trichlorotrifluoroethaan 25 1564.00 1,2,4-Trichlorobeenzeen 20 1454.00 1,4-Dioxaan 20 1033.60 2-Methoxyethanol 20 964.60 Aceton 25 784.58 Acetonitrile 20 782.20 Ammonia (waterig) 25 823.35 Analine 25 1018.93 Azijnzuur 25 1049.10 Benzeen 25 873.81 Benzine 60°F 737.22 Benzine (SR) 60°F 711.22 Bier 10 1010,00 Boterzuur 20 959,00 Brine 15 1230,00 Broom 25 3120.40 Butaan 25 599.09 Caproic acid 25 921.06 Carbon disulfide 25 1260.97 Carbon tetrachloride 25 1584.39 Carene 25 856.99 Castor olie 25 956.14 Chlorobenzeen 20 1105.80 Chloroform 20 1489.20 Chloroform 25 1464.73 Citroenzuur 25 1659.51 Cocosnoot olie 15 924.27 Creosote 15 1066.83 Cresol 25 1023.58 Crude oil, 32.6° API 60°F 862,00 Crude oil, 35.6° API 60°F 847,00 Crude oil, 40° API 60°F 825,00 Crude oil, 48° API 60°F 790,00 Crude oil, California 60°F 915,00 Crude oil, Mexican 60°F 973,00 Crude oil, Texas 60°F 873,00 Cumeen 25 860.19 Cyclohexaan 20 778.50 Cyclopentaan 20 745.40 Decaan 25 726.28 Dichloromethaan 20 1326.00 Dichloromethaan 20 1326.00 Diesel olie 15 820 - 950 Diethyl ether 20 714,00 Diethylene glycol 15 1120,00 Dimethyl Acetamide 20 941.50 Dimethyl Sulfoxide 20 1100.40 Dodecaan 25 754.63 Ethaan -89 570.26 Ethanol 20 789.20 Ether 25 72.72 Ethyl Acetaat 20 900.60 Ethyl Ether 20 713.30 6 DICHTHEDEN VLOEISTOFFEN Naam temp, °C kg/m3 Ethylalcohol 25 785.06 Ethylamine 16 680.78 Ethylene Dichloride 20 1253.00 Ethylene glycol 25 1096.78 Formaldehyde 45 812.14 Fosgeen 0 1377.59 Freon - 11 21 1490 Freon - 21 21 1370 Freon R-12 25 1310.95 Furan 25 1416.03 Furforol 25 1154.93 Gasolie 60°F 890 Glucose 60°F 1350 - 1440 Glycerin 25 1259.37 Glycerol 25 1126.10 Glyme 20 869.10 Heptaan 25 679.50 Hexaan 25 654.83 Hexanol 25 810.53 Hexene 25 671.17 Hydrazine 25 794.52 Ionene 25 932.27 Isobutyl Alcohol 20 801.60 Iso-Octaan 20 691.90 Isopropyl Alcohol 20 785.40 Isopropyl Myristate 20 853.20 Jodium 25 4927.28 Katoezaad olie 15 925.87 Kerosene 60°F 817.15 Lijnzaad olie 25 929.07 Linolenic Acid 25 898.64 MEK 25 802.52 Melk 15 1020 - 1050 Methaan -164 464.54 Methanol 25 786.51 Methanol 20 791.30 Methyl Ethyl Ketone (MEK) 20 804.90 Methyl Isoamyl Ketone 20 888.00 Methyl Isobutyl Ketone 20 800.80 Methyl n-Propyl Ketone 20 808.20 Methyl t-Butyl Ether 20 740.50 Mierezuur 10% 20 1025 Mierezuur 8-% 20 1221 N,N-Dimethylformamide 20 948.70 Naphtha 15 664.77 Napthalene 25 820.15 Natriumhydroxide 15 1250 n-Butylacetaat 20 879.60 n-Butylalcohol 20 809.70 n-Butylchloride 20 886.20 N-Methylpyrrolidone 20 1030.40 n-Propyl Alcohol 20 803.70 Ocimene 25 797.72 determined in quality 7 DICHTHEDEN VLOEISTOFFEN Naam temp, °C kg/m3 Octaan 15 917.86 o-Dichlorobenzeen 20 1305.80 Olijf olie 20 703.21 o-Xylene 20 880.20 Palmitic Acid 25 850.58 Pentaan 20 626.20 Pentaan 25 624.82 Petroleum 60°F 711.22 Petroleum Ether 20 640.00 Phenol 25 1072.28 Phytadiene 25 823.35 Pinene 25 856.99 Propaan -40 583.07 Propanol 25 799.96 Propanol 25 804.13 Propylene 25 514.35 Propylene Carbonate 20 1200.60 Propylene glycol 25 965.27 Pyridine 25 978.73 Pyrrole 25 965.91 Raapzaad olie 20 920 Resorcinol 25 1268.66 Rosin oil 15 980 Sabiname 25 812.14 Silane 25 717.63 Smeerolie 15 880 - 940 Soja olie 15 924 - 928 Sorbaldehyde 25 895.43 Stearic Acid 25 890.63 Stookolie 60°F 890.13 Styrene 25 903.44 Terpinene 25 847.38 Tetrahydrofuran 20 888.00 Tolueen 20 866.90 Tolueen 25 862.27 Triethylamine 20 727.60 Trifluorazijnzuur 20 1489.00 Turpentine
Recommended publications
  • Mineral Processing
    Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19
    [Show full text]
  • NEW MINERAL NAMES Micnabr, Frprschnn Mohrite
    THE AMERICAN MINERALOGIST, VOL. 50, MAY JUNE, 1965 NEW MINERAL NAMES MIcnaBr, FrprscHnn Mohrite canro L. Gana.vrr,r,r, Mohrite: un nuovo minerale della zona borifera toscana. Atti Aecad. Nozl. Lineei.,Rend.., Classe sci. f,s. mat. e nat.,36,52+533 (1964). Pale green incrustations were collected by Professor A. Pelloux in 7927 fuom the borif- erous soffioni of rravale, Val di Cecina, Tuscany, rtaly. They consisted of irregular Iamina and of minute quasieuhedral crystals; these were selected under the binoculars and analyzed separately, giving respectively: SO3 41.05,42.69; FeO 17.49,9.86; MnO 0 11, 0.34; MgO 0.56, 5.08; (NHr)zO 13.13, 13.40;IlrO 27.10,28.69; insol. in HrO 0.16, 0.15; sum 9960, 100.217a. These correspond to (NHn)r(Feo ean4gss5Mno r)(SOr)r.6HrO and (NHr)r (FeonMgonzMnou)(SOr)2.6H:O. The name mohiite is given to the end-member (NHr)zFe(SOn)z'6H2O;a complete solid solution seriesprobably existswith boussingaultite. X-ray study shows the mineral to be monoclinic, space grotp p21f c; the unit cell con- stants for the two analyzed samples are, respectively o 6.237,6.234; b 12.613, 12.618; c 9.292,9.290A.,B 106053'106"54',Gcalc. 1.870,1.805; meas. 1.862,1.800. X-ray powder data aregivenl the strongest lines for the first sampleare 3.801 (100) (031), 4.200 (65) (T02), 2 (28)(Is3), 460 3.1s3 (2s)(040), s.025 (20)811), s.40 (1s)(110).
    [Show full text]
  • STRONG and WEAK INTERLAYER INTERACTIONS of TWO-DIMENSIONAL MATERIALS and THEIR ASSEMBLIES Tyler William Farnsworth a Dissertati
    STRONG AND WEAK INTERLAYER INTERACTIONS OF TWO-DIMENSIONAL MATERIALS AND THEIR ASSEMBLIES Tyler William Farnsworth A dissertation submitted to the faculty at the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Chemistry. Chapel Hill 2018 Approved by: Scott C. Warren James F. Cahoon Wei You Joanna M. Atkin Matthew K. Brennaman © 2018 Tyler William Farnsworth ALL RIGHTS RESERVED ii ABSTRACT Tyler William Farnsworth: Strong and weak interlayer interactions of two-dimensional materials and their assemblies (Under the direction of Scott C. Warren) The ability to control the properties of a macroscopic material through systematic modification of its component parts is a central theme in materials science. This concept is exemplified by the assembly of quantum dots into 3D solids, but the application of similar design principles to other quantum-confined systems, namely 2D materials, remains largely unexplored. Here I demonstrate that solution-processed 2D semiconductors retain their quantum-confined properties even when assembled into electrically conductive, thick films. Structural investigations show how this behavior is caused by turbostratic disorder and interlayer adsorbates, which weaken interlayer interactions and allow access to a quantum- confined but electronically coupled state. I generalize these findings to use a variety of 2D building blocks to create electrically conductive 3D solids with virtually any band gap. I next introduce a strategy for discovering new 2D materials. Previous efforts to identify novel 2D materials were limited to van der Waals layered materials, but I demonstrate that layered crystals with strong interlayer interactions can be exfoliated into few-layer or monolayer materials.
    [Show full text]
  • Sulfosalt Systematics: a Review
    Eur. J. Mineral. 2008, 20, 7–46 Published online February 2008 Sulfosalt systematics: a review. Report of the sulfosalt sub-committee of the IMA Commission on Ore Mineralogy Yves MOËLO1,*, Secretary, Emil MAKOVICKY2,**, Associate Secretary, Nadejda N. MOZGOVA3, past President of the Sulfosalt Sub-Committee, John L. JAMBOR4,Nigel COOK5,Allan PRING6,Werner PAAR7, Ernest H. NICKEL8,Stephan GRAESER9,Sven KARUP-MØLLER10,Tonciˇ BALIC-ŽUNIC2, William G. MUMME8,Filippo VURRO11,Dan TOPA7,Luca BINDI12, Klaus BENTE13 and Masaaki SHIMIZU14 1 Institut des Matériaux Jean Rouxel, UMR 6502 CNRS-Université de Nantes, 2, rue de la Houssinière, 44 322 Nantes Cedex 3, France *Corresponding author, e-mail: [email protected] 2 Department of Geography and Geology, University of Copenhagen, Østervoldgade 10, 1350 Copenhagen, Denmark **Corresponding author, e-mail: [email protected] 3 IGEM, Russian Academy of Sciences, Staromonetny per. 35, Moscow 109017, Russia 4 Leslie Research and Consulting, 316 Rosehill Wynd, Tsawwassen, B.C. V4M 3L9, Canada 5 Natural History Museum (Geology), University of Oslo, Postboks 1172 Blindern, 0318 Oslo, Norway 6 South Australian Museum, Department of Mineralogy, North Terrace, Adelaide, South Australia 5000, Australia 7 Department of Materials Engineering and Physics, University of Salzburg, Hellbrunnerstraße 34, 5020 Salzburg, Austria 8 CSIRO-Exploration & Mining, PO Box 5, Wembley, Western Australia 6913, Australia 9 Naturhistorisches Museum, Augustinerstraße 2, 4001 Basel, Switzerland 10 Institute of Mineral Industry, Danish
    [Show full text]
  • Dictionary of Geology and Mineralogy
    McGraw-Hill Dictionary of Geology and Mineralogy Second Edition McGraw-Hill New York Chicago San Francisco Lisbon London Madrid Mexico City Milan New Delhi San Juan Seoul Singapore Sydney Toronto All text in the dictionary was published previously in the McGRAW-HILL DICTIONARY OF SCIENTIFIC AND TECHNICAL TERMS, Sixth Edition, copyright ᭧ 2003 by The McGraw-Hill Companies, Inc. All rights reserved. McGRAW-HILL DICTIONARY OF GEOLOGY AND MINERALOGY, Second Edi- tion, copyright ᭧ 2003 by The McGraw-Hill Companies, Inc. All rights reserved. Printed in the United States of America. Except as permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written permission of the publisher. 1234567890 DOC/DOC 09876543 ISBN 0-07-141044-9 This book is printed on recycled, acid-free paper containing a mini- mum of 50% recycled, de-inked fiber. This book was set in Helvetica Bold and Novarese Book by the Clarinda Company, Clarinda, Iowa. It was printed and bound by RR Donnelley, The Lakeside Press. McGraw-Hill books are available at special quantity discounts to use as premi- ums and sales promotions, or for use in corporate training programs. For more information, please write to the Director of Special Sales, McGraw-Hill, Professional Publishing, Two Penn Plaza, New York, NY 10121-2298. Or contact your local bookstore. Library of Congress Cataloging-in-Publication Data McGraw-Hill dictionary of geology and mineralogy — 2nd. ed. p. cm. “All text in this dictionary was published previously in the McGraw-Hill dictionary of scientific and technical terms, sixth edition, —T.p.
    [Show full text]
  • Kobe, Japan, July 23-28
    19TH GENERAL MEETING OF THE INTERNATIONAL MINERALOGICAL ASSOCIATION KOBE, JAPAN, JULY 23-28 COMMISSION ON ORE MINERALOGY REPORT OF THE SULFOSALT SUBCOMMITTEE BY Y. MOËLO (SECRETARY) AND E. MAKOVICKY (ASSOCIATE SECRETARY) & N.N. MOZGOVA (PAST PRESIDENT OF THE SULFOSALT SUBCOMMITTEE), J.L. JAMBOR, N. COOK, A. PRING, W. PAAR, E. H. NICKEL, S. GRAESER, S. KARUP-MOLLER, T. BALIĆ-ŽUNIĆ, W. G. MUMME, F. VURRO, D. TOPA, L. BINDI, K. BENTE - 1 - SULFOSALT SUB-COMMITTEE – INTERNAL REPORT Preamble Y. Moëlo & E. Makovicky This report deals with a general reexamination of the systematics of sulfosalts. In the Part I are presented generalities concerning the definition and chemistry of sulfosalts, as well as some basic principles relative to their crystal chemical classification. Part II is a detailed presentation of all known sulfosalts species, with selected references about their definition (if recent) and crystal structure (when solved). Problems concerning the definition and nomenclature of some species are discussed on the basis of published data. This internal report will be provided to members of the C.O.M. for critical reading, in order that they may give additional information, as well as suggest corrections. A copy will also be sent to the Chairman of the CNMMN of the IMA, for information of the national representatives of this commission, who are also invited to give their comments. While Part I was written by ourselves (E. M. & Y. M.), Part II reflects a fruitful collaboration, past or present, of many specialists of sulfosalt mineralogy. Their names are given at the beginning of part II. It is a provisional list, until the final approval of the official report these co-authors; some names may be added later when relevant.
    [Show full text]
  • The Crystal Structure of Wallisite\ Pbtlcuas2ss, the Cu Analogue of Hatchite, Pbtlagas2ss
    Zeitschrift fUr Kristallographie, Bd. 127, S. 349-365 (1968) The crystal structure of wallisite\ PbTlCuAs2Ss, the Cu analogue of hatchite, PbTlAgAs2Ss By Y. TAKEUCHI and M. OHMASA * Mineralogical Institute of the University of Tokyo and W. NOWACKI Department of Crystallography and Laboratory of X-Ray Microanalysis University of Bern (With electron microprobe analyses by C. BAHEZRE, Bureau de Recherches Geologiques et MiniereR, Paris, and G. BURRI, Laboratory of X-Ray Microanalysis, University of Bern) (Received October 27, 1967) Auszug Wallisit kristallisiert in der Raumgruppe pI mit a" = 9,21s :::I::0,01, b" = 8,524 :::I::0,01, e" = 7,980 :::I::0,01 A, ex" = 55°59' :::I::6', fl" = 62°30' :::I::6', y" = 69°24' :::I::6' und einem Zellinhalt von 2 [PbTlCuAs2S5]; dx = 5,71 g cm-3. Die reduzierte Zelle hat die Abmessungen a = 8,983 :::I::0,01, b = 7,761 :::I::0,01, y e = 7,980 :::I::0,01 A, ex = 65°33' :::I::6', fl = 65°30' :::I::6', = 73°55' :::I::6'. Die Struktur wurde mittels [001]- und [010]-Patterson-Projektionen unter Ver- wendung der y-Parameter der isomorphen Hatchit-Struktur ermittelt. Sie be- steht aus CU2As4S10-Doppelketten b", welche durch die Pb,Tl-Atome zusam- : mengehalten werden. Die Einzelkette hat die Zusammensetzung CUAS2S7. Jede Doppelkette ist aus Doppeltetraedergruppen CU2Sa und PyramidengrllPpen AS2S5 aufgebaut. Die Pb,Tl(l)-Position weist eine Achter-Koordination von S auf und ist hauptsachlich von Pb-Atomen besetzt, wahrend die Tl,Pb(2)-Position nur zwei nachste S-Nachbarn hat und wohl zur Hauptsache von Tl-Atomen besetzt ist.
    [Show full text]
  • The Crystal Structure of Marrite, Pbagassa
    Zeitschrift fUr Kristallographie, Bd. 125, S. 459-488 (1967) The crystal structure of marrite, PbAgAsSa By B. J. WUENSCH Ceramics Division, Department of Metallurgy Massachusetts Institute of Technology, Cambridge, Massachusetts and W. NOWACKI Abteilung fUr Kristallographie und Strukturlehre, Universitat Bern * Dedicated to Prof. Dr. G. Menzer on the occasion of his 70th birthday (Received April 17, 1967) Auszug Marrit aus dem Binnatal (Schweiz) der Zusammensetzung PbAgAsSa kristal. lisiert monoklin mit a = 7,2705, b = 12,6319, c = 5,9853 A, fJ = 91°13,7', in der Raumgruppe O~h- P 21/a. Die Struktur ist eine Uberstruktur des PbS.Gitters. Sie wurde durch eine systematische Untersuchung aller moglichen Anordnungen, welche sich aus der Beziehung Sub.Superzelle ergaben, gefunden. Die Verfeine- rung wurde bis zu R = 10,9% getrieben, einem Wert, welcher durch die Zuver. lassigkeit der MeJ3daten gegeben war. Die Struktur gleicht nur in sehr bedingter Weise der PbS.Struktur. As hat wie ublich drei nachste S.Nachbarn (2,26-2,28 A) in trigonal.pyramidaler Koor. dination. Ag weist drei nachste Nachbarn in Abstanden zwischen 2,47 und 2,68 A bei fast ebener Anordnung auf. Ein viertes S.Atom befindet sich ungefahr normal zur Dreiecksebene im Abstande 2,91 A. Pb ist von sechs Schwefelatomen unregel. maJ3ig-oktaedrisch (2,80-3,26 A) umgeben. Die S.Atome sind bis zu 1,09 A aus den idealen Substrukturlagen verschoben. Dies bedingt eine tetraedrische Koor. dination von zwei der drei S.Atome im asymmetrischen Fundamentalbereich. Abstract Marrite, a rare sulfosalt from the Binnatal, Switzerland, has been shown to have composition PbAgAsSa.
    [Show full text]
  • The Crystal Structure of Dufrenoysite, Pb16as16s40*
    Zeitschrift fiir Kristallographie, Bd. 124, S. 409-419 (1967) The crystal structure of dufrenoysite, Pb16As16S40* By F. MARUMO ** and W. NOWACKI Abteilung fUr Kristallographie und Strukturlehre, Universitat Bern (Received July 8, 1966) Auszug Dufrenoysit wurde strukturell untersucht. In der Einheitszelle befinden sich zwei Formeleinheiten PbgAsgS20' Die Raumgruppe ist O~-P21 und die Gitter- konstanten sind a = 7,90, b = 25,74, c = 8,37 A, fJ = 90°21'. Die Grundstruktur ist dieselbe wie bei Rathit-I, Rathit-Ia und Rathit-III; die Unterschiede liegen in der chemischen Zusammensetzung und in kleinen da- durch bedingten Atomverschiebungen. Jedes von vier der acht unabhangigen Pb-Atome ist von neun, jedes der anderen vier Pb-Atome von sieben (6 + 1) S-Atomen umgeben. Das siebente der nachsten S-Atome des letzten Typus ist relativ weit weg gelegen. AIle As-Atome scheinen eine trigonal-pyramidale S-Koordination aufzuweisen. Sieben unabhangige AsSa-Pyramiden sind iiber S-Atome unter Bildung von AS4S9- und AsaS7-Gruppen miteinander verkniipft. Die achte AsSa-Pyramide ist wahrscheinlich isoliert. Abstract A structural investigation of dufrenoysite has been carried out. There are two chemical units of PbgAsaS20 in a unit cell. The space group is O~-P 21> and the unit-cell constants are a = 7.90A, b = 25.74A,c = 8.37 A,fJ = 90°21'. The main structure is the same as that ofrathite-I, rathite-Ia and rathite-III, the differences among them lying in the chemical composition and in small shifts of atoms due to the difference in composition. Each of four out of eight indepen- dent Pb atoms is surrounded by nine S atoms, the other four Pb atoms each being surrounded by seven (6 + 1) S atoms.
    [Show full text]
  • A Review. Report of the Sulfosalt Sub-Committee of the IMA Commission on Ore Mineralogy
    Eur. J. Mineral. 2008, 20, 7–46 Published online February 2008 Sulfosalt systematics: a review. Report of the sulfosalt sub-committee of the IMA Commission on Ore Mineralogy Yves MOËLO1,*, Secretary, Emil MAKOVICKY2,**, Associate Secretary, Nadejda N. MOZGOVA3, past President of the Sulfosalt Sub-Committee, John L. JAMBOR4,Nigel COOK5,Allan PRING6,Werner PAAR7, Ernest H. NICKEL8,Stephan GRAESER9,Sven KARUP-MØLLER10,Tonciˇ BALIC-ŽUNIC2, William G. MUMME8,Filippo VURRO11,Dan TOPA7,Luca BINDI12, Klaus BENTE13 and Masaaki SHIMIZU14 1 Institut des Matériaux Jean Rouxel, UMR 6502 CNRS-Université de Nantes, 2, rue de la Houssinière, 44 322 Nantes Cedex 3, France *Corresponding author, e-mail: [email protected] 2 Department of Geography and Geology, University of Copenhagen, Østervoldgade 10, 1350 Copenhagen, Denmark **Corresponding author, e-mail: [email protected] 3 IGEM, Russian Academy of Sciences, Staromonetny per. 35, Moscow 109017, Russia 4 Leslie Research and Consulting, 316 Rosehill Wynd, Tsawwassen, B.C. V4M 3L9, Canada 5 Natural History Museum (Geology), University of Oslo, Postboks 1172 Blindern, 0318 Oslo, Norway 6 South Australian Museum, Department of Mineralogy, North Terrace, Adelaide, South Australia 5000, Australia 7 Department of Materials Engineering and Physics, University of Salzburg, Hellbrunnerstraße 34, 5020 Salzburg, Austria 8 CSIRO-Exploration & Mining, PO Box 5, Wembley, Western Australia 6913, Australia 9 Naturhistorisches Museum, Augustinerstraße 2, 4001 Basel, Switzerland 10 Institute of Mineral Industry, Danish
    [Show full text]
  • A Review. Report of the Sulfosalt Sub-Committee of the IMA Commission on Ore Mineralogy
    Eur. J. Mineral. 2008, 20, 7–46 Published online February 2008 Sulfosalt systematics: a review. Report of the sulfosalt sub-committee of the IMA Commission on Ore Mineralogy Yves MOËLO1,*, Secretary, Emil MAKOVICKY2,**, Associate Secretary, Nadejda N. MOZGOVA3, past President of the Sulfosalt Sub-Committee, John L. JAMBOR4,Nigel COOK5,Allan PRING6,Werner PAAR7, Ernest H. NICKEL8,Stephan GRAESER9,Sven KARUP-MØLLER10,Tonciˇ BALIC-ŽUNIC2, William G. MUMME8,Filippo VURRO11,Dan TOPA7,Luca BINDI12, Klaus BENTE13 and Masaaki SHIMIZU14 1 Institut des Matériaux Jean Rouxel, UMR 6502 CNRS-Université de Nantes, 2, rue de la Houssinière, 44 322 Nantes Cedex 3, France *Corresponding author, e-mail: [email protected] 2 Department of Geography and Geology, University of Copenhagen, Østervoldgade 10, 1350 Copenhagen, Denmark **Corresponding author, e-mail: [email protected] 3 IGEM, Russian Academy of Sciences, Staromonetny per. 35, Moscow 109017, Russia 4 Leslie Research and Consulting, 316 Rosehill Wynd, Tsawwassen, B.C. V4M 3L9, Canada 5 Natural History Museum (Geology), University of Oslo, Postboks 1172 Blindern, 0318 Oslo, Norway 6 South Australian Museum, Department of Mineralogy, North Terrace, Adelaide, South Australia 5000, Australia 7 Department of Materials Engineering and Physics, University of Salzburg, Hellbrunnerstraße 34, 5020 Salzburg, Austria 8 CSIRO-Exploration & Mining, PO Box 5, Wembley, Western Australia 6913, Australia 9 Naturhistorisches Museum, Augustinerstraße 2, 4001 Basel, Switzerland 10 Institute of Mineral Industry, Danish
    [Show full text]
  • New Mineral Names
    THE AMERICA1\' MINERALOGIST, VOL. 50, MAY-]U!\'E, 1965 NEW MINERAL NAMES MICHAEL FLEISCHER Mohrite CARLO L. GARAVELLI, Mohrite: un nuovo minerale delia zona borifera toscana. Atti Accad. Nazi. Lincei, Rend., Classe sci.fis. mat. e nat., 36,524-533 (1964). Pale green incrustations were collected by Professor A. Pelloux in 1927 from the borif- erous soffioni of Travale, Val di Cecina, Tuscany, Italy. They consisted of irregular lamina and of minute quasieuhedral crystals; these were selected under the binoculars and analyzed separately, giving respectively: S03 41.05, 42.69; FeO 17.49, 9.86; MnO 0.11, 0.34; MgO 0.56, 5.08; (NH.)20 13.13, 13.40; H20 27.10, 28.69; insol. in H20 0.16, 0.15; sum 99.60, 100.21 %. These correspond to (NH.),(Feo,9.Mgo.o5Mno,01) (SO.),- 6H20 and (NH.)2 (FeO,51Mgo.47Mno,o2)(SO.),-6H20. The name mohrite is given to the end-member (NH')2Fe(SO.),. 6H20; a complete solid solution series probably exists with boussingaultite. X-ray study shows the mineral to be monoclinic, space group P21/c; the unit cell con- stants for the two analyzed samples are, respectively a 6.237, 6.234; b 12.613, 12.618; c 9.292,9.290 A., {3106°53' 106°54', G calc. 1.870, 1.805; meas. 1.862, 1.800. X-ray powder data are given; the strongest lines for the first sample are 3.801 (100) (031),4.200 (65) (I02), 2.460 (28)(133), 3.153 (25)(040),3.025 (20)(211),5.40 (18)(110).
    [Show full text]