Scheme of Instruction for Academic Year 2020-21

Total Page:16

File Type:pdf, Size:1020Kb

Scheme of Instruction for Academic Year 2020-21 Scheme of Instruction Academic Year 2020-21 Index Department Course Prefix Page No Preface : SCC Chair 4 Division of Biological Sciences Preface 6 Biological Science DB 9 Biochemistry BC 11 Ecological Sciences EC 12 Molecular Biophysics Unit MB 15 Microbiology and Cell Biology MC 18 Molecular Reproduction Development and Genetics RD 22 Neuroscience NS 24 Division of Chemical Sciences Preface 26 Chemical Science CD 28 Inorganic and Physical Chemistry IP 32 Materials Research Centre MR 35 Organic Chemistry OC 36 Solid State and Structural Chemistry SS 38 Division of Physical and Mathematical Sciences Preface 40 Instrumentation and Applied Physics IN 41 Mathematics MA 46 Physics PH 59 High Energy Physics HE 71 Division of Electrical, Electronics and Computer Sciences (EECS) Preface 76 Computer Science and Automation E0, E1 77 Electrical Communication Engineering CN,E1,E2,E3,E8,E9,MV 95 Electrical Engineering E0,E1,E4,E5,E6,E8,E9 113 Electronic Systems Engineering E0,E2,E3,E9 128 Division of Mechanical Sciences Preface 141 Aerospace Engineering AE 142 Atmospheric and Oceanic Sciences AS 150 Civil Engineering CE 154 Chemical Engineering CH 168 Mechanical Engineering ME 172 Materials Engineering MT 182 Product Design and Manufacturing MN, PD 190 Sustainable Technologies ST 196 Earth Sciences ES 197 Division of Interdisciplinary Research Preface 202 Biosystems Science and Engineering BE 203 Scheme of Instruction 2020 - 2021 2 Energy Research ER 207 Computational and Data Sciences DS 208 Nanoscience and Engineering NE 215 Management Studies MG 221 Cyber Physical Systems CP 227 Scheme of Instruction 2020 - 2021 3 Preface The Scheme of Instruction (SoI) and Student Information Handbook (Handbook) contain the courses and rules and regulations related to student life in the Indian Institute of Science. The courses listed in the SoI and the rules in the Handbook are primarily meant for post-graduate students of the Institute. Undergraduate students are allowed to credit or audit the courses listed in the SoI with the consent of the instructors. The course listings are in conformance with the Divisional structure of the Institute, with the courses of each department of a Division listed in a separate subsection. For instance, all courses of the Aerospace Engineering department have the prefix AE, and are listed in the Aerospace Engineering subsection within the Mechanical Sciences Division. The only exception to this pattern is the Electrical Sciences Division, where the courses are organized under the sub-sections E0 through E9, according to the areas to which they belong. For instance, all Computer Science and Automation courses of the Electrical Sciences Division have the prefix E0, and are found in the corresponding sub-section, although the instructors come from all four departments of the division. The course codes are given in the Table of Contents. The listing of each course consists of the course number, the title, the number of credits and the semester. The course number indicates both the department and the level of the course. For instance, MA 205 indicates that the course is offered by the Mathematics department and is at the 200 level. Such 200 level courses are either basic or second level graduate courses. The 300 level courses are advanced courses primarily meant for research scholars, but can also be taken by course students who have the appropriate background; these courses can be taken only with the consent of the instructors. Most courses are offered only once a year, either in the August or in the January semester. A few courses are offered in the summer term. The number of credits is given in the form M:N, where M indicates the number of lecture credits and N the number of laboratory credits. Each lecture credit corresponds to one lecture hour per week, while each laboratory credit corresponds to a 3-hour laboratory class. Thus, a course with 2:1 credits indicates that it has 2 lecture hours and one3-hour laboratory session each week, while a course with 3:0 credits indicates a course with 3 lecture hours and no laboratory session. The Institute offers research-based doctoral programmesand Master’sprogrammes that are both course-based and research-based. Eachcourse-based Master’sprogramme consists of core courses, electives and a dissertation project. Details of the requirements can be found under the course listing of the departments or divisions that offer them. Students are assigned faculty advisors who will advise them in selecting and dropping courses, and monitor progress through the Scheme of Instruction 2020 - 2021 4 academic program. In order to register for a course, each student needs the approval of both the faculty advisor and the course instructor. The number and type of courses taken in the first and subsequent semesters depend on the programme and department the student is registered in – the faculty advisor and the Department Curriculum Committee (DCC) will guide the students on the core and elective courses they should register for. Students are permitted to claim an exemption from core courses on the basis of having taken them earlier. Details of how to claim such an exemption are given in the Student InformationHandbook. The Institute follows a grading system, with continuous assessment. The course instructor first aggregates the individual marks of each student from the class tests, assignments and final examination scores. These marks are then mapped to letter grades, and only the grade is announced. The point values of grades are as follows: A+:10, A: 9, B+: 8, B: 7, C:6, D:5, F: 0. The grades A+ through D are passing grades, and F is a failing grade. All the course-based programmes have a specified set of core courses. The doctoral and research-based Master’s programmes may have specific core courses, which depend on the division and department. Students in research programmeshave to take a minimum number of credits as part of their Research Training Program (RTP). For PhD students in Science, the RTP consists of a minimum of 12 credits. For PhD students in Engineering who join with a Master’s degree in Engineering, the RTP requirement is a minimum of 12 credits. For PhD students in Engineering who join with a Bachelor’s degree in Engineering or a Master’s degree in Science, the RTP consists of a minimum of 24 credits. Similar RTP requirements apply for students who upgrade or continue their registration from the Mastersprogrammes of the Institute. For the research-based Master’s degree, the RTP consists of minimum 12 credits. The Integrated PhD programme has 64 credits. Research students have the option of crediting courses beyond the RTP requirement as detailed in the Student Information Handbook. Detailed information with regard to the regulations of the various programmes and the operation of different aspects of Institute activities are given in the Student Information Handbook. Students are urged to read this material carefully, so that they are adequately informed. 25th September 2020 Raghuraman N. Govardhan Chair, Senate Curriculum Committee Scheme of Instruction 2020 - 2021 5 Division of Biological Sciences Preface: This Division includes the Department of Biochemistry, Centre for Ecological Sciences, Department of Microbiology and Cell Biology, Molecular Biophysics Unit, Department of Molecular Reproduction, Development and Genetics, Centre for Neurosciences, Centre for Infectious Disease Research and the Central Animal Facility. Students from a variety of disciplines in fundamental and applied sciences, such as biology, chemistry, physics, medicine, agriculture and technology, are admitted into the Division for research work leading to a PhD degree. Each Department/Centre/Unit offers courses on specialized topics designed to provide students with the necessary theoretical background and introduction to laboratory methods. There are specific requirements for completing the Research Training Program for students registering for research conferment’s at the Institute. For individual requirements, the students are advised to approach the Departmental Curriculum Committee. The Department of Biochemistry offers a program of study concentrating on a molecular approach towards understanding biological phenomena. The program of instruction consists of lectures, laboratory work, and seminar assignments. In addition to formal course work, students are required to participate in group seminars, departmental seminars and colloquia. The Center for Ecological Sciences has excellent facilities for theoretical, experimental and field based research in plant and animal ecology, evolution and behavior. The program of instruction consists of lectures, laboratory work, seminars and special assignments. The Department of Microbiology and Cell Biology offers courses in microbiology, infectious diseases, cell biology, molecular biology, genetic engineering, RNA biology, developmental genetics, cancer biology and ageing and regeneration. The students are expected to participate in seminars on recent advances in these fields. The Molecular Biophysics Unit offers courses which cover recent developments in molecular biophysics, biopolymer conformation, structure and interactions of biomolecules, biophysical techniques, cellular neurophysiology and computational neuroscience. The courses offered in the Department of Molecular Reproduction, Development and Genetics include those on signal transduction, gene expression and development, genetics and genomic medicine, molecular oncology, aging and regeneration.
Recommended publications
  • Scheme of Instruction 2018-19
    Scheme of Instruction 2018-19 Contents A. Scheme of Instruction Course Page No. Prefix Preface 3 I Division of Biological Sciences Preface 6 Integrated Ph D Programme in Biological Sciences DB 7 Biochemistry BC 10 Ecological Sciences EC 13 Molecular Biophysics MB 15 Microbiology and Cell Biology MC 20 Molecular Reproduction, Development and Genetics RD 24 Neuroscience NS 26 II Division of Chemical Sciences Preface 28 Integrated Ph D Programme in Chemical Sciences CD 29 Inorganic and Physical Chemistry IP 34 Materials Research MR 38 Organic Chemistry OC 41 Solid State and Structural Chemistry SS 44 III Division of Physical and Mathematical Sciences Preface 47 Instrumentation and Applied Physics IN 48 Mathematics MA 55 Astronomy and Astrophysics AA 69 Physics and Integrated Ph D in Physical Sciences PH 70 High Energy Physics HE 84 IV Division of Electrical Sciences Preface 89 Core requirements for M Tech Degree Programmes M Tech Degree - Computer Science and Engineering M Tech Degree - Telecommunications M Tech Degree – Signal Processing M Tech Degree – Microelectronics Systems M Tech Degree – Electrical Engineering M Tech Degree – Systems Science and Automation M Tech Degree – Electronics Systems Engineering Computer Science and Automation Intelligent Systems and Automation Communication Systems 1 Electronic Devices, Circuits and Technology Power Energy Systems High Voltage and Insulation Systems Electronics and Power Drives Photonic Device Electromagnetics, Microwaves and Antennas Signal Processing, Acoustics and Bioengineering Dissertation
    [Show full text]
  • 1 No. DSIR/MS/2019/02 Government of India Ministry of Science
    No. DSIR/MS/2019/02 Government of India Ministry of Science & Technology Department of Scientific & Industrial Research MONTHLY SUMMARY FOR THE CABINET (For the month of February, 2019) (Part-I Unclassified) Ministry / Department : Department of Scientific and Industrial Research (DSIR) MAJOR ACHIEVEMENTS DURING THE MONTH OF FEBRUARY, 2019: DEPARTMENTAL ACTIVITIES 1. Industrial R&D Promotion Programme Recognition/ Registration and renewal of In-house R&D in Industry 21 in-house R&D units of industries were granted recognition as well as registration certificates. Scientific and Industrial Research Organization (SIROs) Recognition/ Registration and Renewal of SIROs 10 SIROs were granted recognition certificates. 84 SIROs were granted renewal of recognition certificates. Public Funded Research Institution (PFRIs) Registration and Renewal of PFRIs 04 PFRIs were granted renewal of registration. AUTONOMOUS BODY 1. Council of Scientific & Industrial Research (CSIR) 1.1 Hon’ble Prime Minister Confers Shanti Swarup Bhatnagar Prizes For Science and Technology Shri Narendra Modi, Hon‘ble Prime Minister and President CSIR Society conferred Shanti Swarup Bhatnagar (SSB) Prizes to 34 scientists in 7 disciplines, viz Biological Sciences; Chemical Sciences; Earth, Atmosphere Ocean and Planetary Sciences; Engineering Sciences; Mathematical Sciences; Medical Sciences and Physical Sciences for the year 2016, 2017 and 2018 at a special function organized by CSIR at Vigyan Bhawan on the occasion of National Science Day, celebrated on 28th of February. He said the theme for this year's National Science Day, which is, ‗Science for Society and Society for Science‘ is very relevant. Congratulating the award winners, the Prime Minister said that science, technology and innovation should relate to the aspirations and requirements of the society and try to find solutions for local problems.
    [Show full text]
  • Logging Songs of the Pacific Northwest: a Study of Three Contemporary Artists Leslie A
    Florida State University Libraries Electronic Theses, Treatises and Dissertations The Graduate School 2007 Logging Songs of the Pacific Northwest: A Study of Three Contemporary Artists Leslie A. Johnson Follow this and additional works at the FSU Digital Library. For more information, please contact [email protected] THE FLORIDA STATE UNIVERSITY COLLEGE OF MUSIC LOGGING SONGS OF THE PACIFIC NORTHWEST: A STUDY OF THREE CONTEMPORARY ARTISTS By LESLIE A. JOHNSON A Thesis submitted to the College of Music in partial fulfillment of the requirements for the degree of Master of Music Degree Awarded: Spring Semester, 2007 The members of the Committee approve the Thesis of Leslie A. Johnson defended on March 28, 2007. _____________________________ Charles E. Brewer Professor Directing Thesis _____________________________ Denise Von Glahn Committee Member ` _____________________________ Karyl Louwenaar-Lueck Committee Member The Office of Graduate Studies has verified and approved the above named committee members. ii ACKNOWLEDGEMENTS I would like to thank those who have helped me with this manuscript and my academic career: my parents, grandparents, other family members and friends for their support; a handful of really good teachers from every educational and professional venture thus far, including my committee members at The Florida State University; a variety of resources for the project, including Dr. Jens Lund from Olympia, Washington; and the subjects themselves and their associates. iii TABLE OF CONTENTS ABSTRACT .................................................................................................................
    [Show full text]
  • Silicon Photonics
    Silicon Photonics – Trends, Highlights and Challenges Overview Gnyan Ramakrishna, Chair, Technical Committee Photonics, EPS and Technical Leader, Cisco Systems Vipul Patel, Co-Chair, Technical Committee Photonics, EPS and Principal Engineer, Cisco Systems The Cisco Global Cloud Index estimates that total data center traffic (all traffic within or exiting a data center) will reach almost 20 zettabytes per year by 2021, up from 7 zettabytes in 2016. Data center traffic on a global scale will grow at a 25 percent CAGR, with cloud data center traffic growth rate at 27 percent CAGR or 3.3-fold growth from 2016 to 2021. The growth in internet traffic not only accelerates the need for next-generation technology to support higher port density and faster speed transitions but is also accompanied by large physical data center sizes as well as faster connectivity between the data centers. As the data rates and distances to carry high speed data are increasing, the limitations of traditional copper cable and multimode fiber-based solutions are becoming apparent and the industry focus is shifting towards adoption of single-mode fiber-optic solutions. Silicon Photonics is an emerging technology that is bringing a paradigm shift in the field of single mode fiber-optic communications. Silicon Photonics leverages mature CMOS wafer fabrication and packaging infrastructures to deliver high bandwidth, low power transceivers. Even though the current focus of the industry is to develop products for the pluggable market, it is generally accepted that Silicon Photonics will play a key role in the next generation of optics that is needed for co-packaging with ASICs.
    [Show full text]
  • UNIVERSITY of SOUTH CAROLINA EMCH 792C Micro/Nanofluidics And
    UNIVERSITY OF SOUTH CAROLINA EMCH 792C Micro/nanofluidics and Lab-on-a-Chip Fall 2009 OUTLINE Instructor Prof. Guiren Wang Room A221, 300 Main Street Office hours: Tu 6:00 – 7:00 p.m., Fr 6:00 – 7:00 p.m. Walk-ins are welcome at other times. Tel. 777-8013 (office), e-mail: [email protected] Textbook • Micro- and Nanoscale Fluid Mechanics for Engineers: Transport in Microfluidic Devices By Brian J. Kirby. 2009. References • Tabeling, P. Introduction to Microfluidics, Oxford, 2005. • Probstein, R.F. Physicochemical Hydrodynamics, 2nd Ed., Wiley, 1994 • Bruss, H. Theoretical Microfluidics, Oxford, 2008. • Nguyen, N-T and Wereley, S “Fundamentals and Applications of Microfluidics”, 2nd Edition, Artech House, ISBN: 1580539726 • Berthier J. and Silberzan, P. Microfluidics for Biotechnology. Artech House Publishers. ISBN: 1-58053-961-0. Catalog Course Description EMCH 792C Micro/nanofluidics and Lab-on-a-Chip. (3) Introduction of microlfuidics and applications in life science. Content: Fundamentals and engineering concept: Introduction of basic principle of fluid mechanics, Navier-Stokes equation, non-slip condition, capillary, drop and micro/nanoparticle, electrokinetics; Introduction to microfabrication: soft-lithography, self-assembled monolayers; Microfluidic components and sample preparation: micro- pump, filter, valve, dispenser, mixer, reactor, preconcentrator, separation based on electrokinetics, microactuator and particle manipulator; Experimental measurements: microscopy, fluorescence and laser-induced fluorescence, measurement of flow velocity, temperature and concentration; Applications in chemistry and life science: sensors for pressure, velocity, concentration, temperature, biosensor in environmental monitoring and biodefence, clinical diagnostics, drug discovery and delivery, etc. Course Objectives: At the conclusion of this course, students will be able to: 1. Understanding some advanced fluid mechanics relevant to micro scale device.
    [Show full text]
  • Read About the Future of Packaging with Silicon Photonics
    The future of packaging with silicon photonics By Deborah Patterson [Patterson Group]; Isabel De Sousa, Louis-Marie Achard [IBM Canada, Ltd.] t has been almost a decade Optics have traditionally been center design. Besides upgrading optical since the introduction of employed to transmit data over long cabling, links and other interconnections, I the iPhone, a device that so distances because light can carry the legacy data center, comprised of many successfully blended sleek hardware considerably more information off-the-shelf components, is in the process with an intuitive user interface that it content (bits) at faster speeds. Optical of a complete overhaul that is leading to effectively jump-started a global shift in transmission becomes more energy significant growth and change in how the way we now communicate, socialize, efficient as compared to electronic transmit, receive, and switching functions manage our lives and fundamentally alternatives when the transmission are handled, especially in terms of next- interact. Today, smartphones and countless length and bandwidth increase. As the generation Ethernet speeds. In addition, other devices allow us to capture, create need for higher data transfer speeds at as 5G ramps, high-speed interconnect and communicate enormous amounts of greater baud rate and lower power levels between data centers and small cells will content. The explosion in data, storage intensifies, the trend is for optics to also come into play. These roadmaps and information distribution is driving move closer to the die. Optoelectronic will fuel multi-fiber waveguide-to-chip extraordinary growth in internet traffic interconnect is now being designed interconnect solutions, laser development, and cloud services.
    [Show full text]
  • Ion Current Rectification in Extra-Long Nanofunnels
    applied sciences Article Ion Current Rectification in Extra-Long Nanofunnels Diego Repetto, Elena Angeli * , Denise Pezzuoli, Patrizia Guida, Giuseppe Firpo and Luca Repetto Department of Physics, University of Genoa, via Dodecaneso 33, 16146 Genoa, Italy; [email protected] (D.R.); [email protected] (D.P.); [email protected] (P.G.); giuseppe.fi[email protected] (G.F.); [email protected] (L.R.) * Correspondence: [email protected] Received: 29 April 2020; Accepted: 25 May 2020; Published: 28 May 2020 Abstract: Nanofluidic systems offer new functionalities for the development of high sensitivity biosensors, but many of the interesting electrokinetic phenomena taking place inside or in the proximity of nanostructures are still not fully characterized. Here, to better understand the accumulation phenomena observed in fluidic systems with asymmetric nanostructures, we study the distribution of the ion concentration inside a long (more than 90 µm) micrometric funnel terminating with a nanochannel. We show numerical simulations, based on the finite element method, and analyze how the ion distribution changes depending on the average concentration of the working solutions. We also report on the effect of surface charge on the ion distribution inside a long funnel and analyze how the phenomena of ion current rectification depend on the applied voltage and on the working solution concentration. Our results can be used in the design and implementation of high-performance concentrators, which, if combined with high sensitivity detectors, could drive the development of a new class of miniaturized biosensors characterized by an improved sensitivity. Keywords: nanofunnel; FEM simulation; ionic current rectification; micro-nano structure interface 1.
    [Show full text]
  • Annual Report 2013-2014
    ANNUAL REPORT 2013 – 14 One Hundred and Fifth Year Indian Institute of Science Bangalore - 560 012 i ii Contents Page No Page No Preface 5.3 Departmental Seminars and IISc at a glance Colloquia 120 5.4 Visitors 120 1. The Institute 1-3 5.5 Faculty: Other Professional 1.1 Court 1 Services 121 1.2 Council 2 5.6 Outreach 121 1.3 Finance Committee 3 5.7 International Relations Cell 121 1.4 Senate 3 1.5 Faculties 3 6. Continuing Education 123-124 2. Staff 4-18 7. Sponsored Research, Scientific & 2.1 Listing 4 Industrial Consultancy 125-164 2.2 Changes 12 7.1 Centre for Sponsored Schemes 2.3 Awards/Distinctions 12 & Projects 125 7.2 Centre for Scientific & Industrial 3. Students 19-25 Consultancy 155 3.1 Admissions & On Roll 19 7.3 Intellectual Property Cell 162 3.2 SC/ST Students 19 7.4 Society for Innovation & 3.3 Scholarships/Fellowships 19 Development 163 3.4 Assistance Programme 19 7.5 Advanced Bio-residue Energy 3.5 Students Council 19 Technologies Society 164 3.6 Hostels 19 3.7 Award of Medals 19 8. Central Facilities 165-168 3.8 Placement 21 8.1 Infrastructure - Buildings 165 8.2 Activities 166 4. Research and Teaching 26-116 8.2.1 Official Language Unit 166 4.1 Research Highlights 26 8.2.2 SC/ST Cell 166 4.1.1 Biological Sciences 26 8.2.3 Counselling and Support Centre 167 4.1.2 Chemical Sciences 35 8.3 Women’s Cell 167 4.1.3 Electrical Sciences 46 8.4 Public Information Office 167 4.1.4 Mechanical Sciences 57 8.5 Alumni Association 167 4.1.5 Physical & Mathematical Sciences 75 8.6 Professional Societies 168 4.1.6 Centres under Director 91 4.2.
    [Show full text]
  • Kavli IPMU Annual 2014 Report
    ANNUAL REPORT 2014 REPORT ANNUAL April 2014–March 2015 2014–March April Kavli IPMU Kavli Kavli IPMU Annual Report 2014 April 2014–March 2015 CONTENTS FOREWORD 2 1 INTRODUCTION 4 2 NEWS&EVENTS 8 3 ORGANIZATION 10 4 STAFF 14 5 RESEARCHHIGHLIGHTS 20 5.1 Unbiased Bases and Critical Points of a Potential ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙20 5.2 Secondary Polytopes and the Algebra of the Infrared ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙21 5.3 Moduli of Bridgeland Semistable Objects on 3- Folds and Donaldson- Thomas Invariants ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙22 5.4 Leptogenesis Via Axion Oscillations after Inflation ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙23 5.5 Searching for Matter/Antimatter Asymmetry with T2K Experiment ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ 24 5.6 Development of the Belle II Silicon Vertex Detector ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙26 5.7 Search for Physics beyond Standard Model with KamLAND-Zen ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙28 5.8 Chemical Abundance Patterns of the Most Iron-Poor Stars as Probes of the First Stars in the Universe ∙ ∙ ∙ 29 5.9 Measuring Gravitational lensing Using CMB B-mode Polarization by POLARBEAR ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ 30 5.10 The First Galaxy Maps from the SDSS-IV MaNGA Survey ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙32 5.11 Detection of the Possible Companion Star of Supernova 2011dh ∙ ∙ ∙ ∙ ∙ ∙
    [Show full text]
  • Spectacle Spaces: Production of Caste in Recent Tamil Films
    South Asian Popular Culture ISSN: 1474-6689 (Print) 1474-6697 (Online) Journal homepage: http://www.tandfonline.com/loi/rsap20 Spectacle spaces: Production of caste in recent Tamil films Dickens Leonard To cite this article: Dickens Leonard (2015) Spectacle spaces: Production of caste in recent Tamil films, South Asian Popular Culture, 13:2, 155-173, DOI: 10.1080/14746689.2015.1088499 To link to this article: http://dx.doi.org/10.1080/14746689.2015.1088499 Published online: 23 Oct 2015. Submit your article to this journal View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=rsap20 Download by: [University of Hyderabad] Date: 25 October 2015, At: 01:16 South Asian Popular Culture, 2015 Vol. 13, No. 2, 155–173, http://dx.doi.org/10.1080/14746689.2015.1088499 Spectacle spaces: Production of caste in recent Tamil films Dickens Leonard* Centre for Comparative Literature, University of Hyderabad, Hyderabad, India This paper analyses contemporary, popular Tamil films set in Madurai with respect to space and caste. These films actualize region as a cinematic imaginary through its authenticity markers – caste/ist practices explicitly, which earlier films constructed as a ‘trope’. The paper uses the concept of Heterotopias to analyse the recurrence of spectacle spaces in the construction of Madurai, and the production of caste in contemporary films. In this pursuit, it interrogates the implications of such spatial discourses. Spectacle spaces: Production of caste in recent Tamil films To foreground the study of caste in Tamil films and to link it with the rise of ‘caste- gestapo’ networks that execute honour killings and murders as a reaction to ‘inter-caste love dramas’ in Tamil Nadu,1 let me narrate a political incident that occurred in Tamil Nadu – that of the formation of a socio-political movement against Dalit assertion in December 2012.
    [Show full text]
  • Roadmap on Silicon Photonics
    Home Search Collections Journals About Contact us My IOPscience Roadmap on silicon photonics This content has been downloaded from IOPscience. Please scroll down to see the full text. View the table of contents for this issue, or go to the journal homepage for more Download details: IP Address: 152.78.236.131 This content was downloaded on 24/06/2016 at 13:44 Please note that terms and conditions apply. Journal of Optics J. Opt. 18 (2016) 073003 (20pp) doi:10.1088/2040-8978/18/7/073003 Roadmap Roadmap on silicon photonics David Thomson1,10,11, Aaron Zilkie2, John E Bowers3, Tin Komljenovic3, Graham T Reed1, Laurent Vivien4, Delphine Marris-Morini4, Eric Cassan4, Léopold Virot5,6, Jean-Marc Fédéli5,6, Jean-Michel Hartmann5,6, Jens H Schmid7, Dan-Xia Xu7, Frédéric Boeuf8, Peter O’Brien9, Goran Z Mashanovich1 and M Nedeljkovic1 1 Optoelectronics Research Centre, University of Southampton, Southampton, SO17 1BJ, UK 2 Rockley Photonics Inc., 234 E. Colorado Blvd, Suite 600, Pasadena, CA, 91101, USA 3 University of California, Santa Barbara, Electrical and Computer Engineering Department, Santa Barbara, CA 93106, USA 4 Centre for Nanoscience and Nanotechnology (C2N), CNRS, Université Paris Sud, Université Paris- Saclay, France 5 University of Grenoble Alpes, F-38000 Grenoble, France 6 CEA, LETI, Minatec Campus, 17 rue des Martyrs, F-38054 Grenoble, France 7 Information and Communications Technologies Portfolio, National Research Council of Canada, 1200 Montreal Road, Ottawa, Ontario K1A 0R6, Canada 8 STMicroelectronics (Crolles 2) SAS, 850 Rue Jean Monnet, BP 16, Crolles Cedex, France 9 Tyndall National Institute, University College Cork, Cork, Ireland E-mail: [email protected] Received 18 September 2015 Accepted for publication 24 February 2016 Published 24 June 2016 Abstract Silicon photonics research can be dated back to the 1980s.
    [Show full text]
  • Annual Report 2017-2018
    ANNUAL REPORT IISc 2017-18 INDIAN INSTITUTE OF SCIENCE VISITOR The President of India PRESIDENT OF THE COURT N Chandrasekaran CHAIRMAN OF THE COUNCIL P Rama Rao DIRECTOR Anurag Kumar DEANS SCIENCE: Biman Bagchi ENGINEERING: K Kesava Rao UG PROGRAMME: Anjali A Karande REGISTRAR V Rajarajan Pg 3 IISc RANKED INDIA’S TOP UNIVERSITY In 2016, IISc was ranked Number 1 among universities by the National Institutional Ranking Framework (NIRF) under the auspices of the Ministry of Human Resource Development. It was the first time the NIRF came out with rankings for Indian universities and institutions of higher education. In both 2017 and 2018, the Institute was again ranked first among universities, as well as first in the overall category. CONTENTS Foreword IISc at a Glance 8 1. The Institute 18 Court 5 Council 20 Finance Committee 21 Senate 21 Faculties 21 2. Staff (administration) 22 3. Divisions 25 3.1 Biological Sciences 26 3.2 Chemical Sciences 58 3.3 Electrical, Electronics, and Computer Sciences 86 3.4 Interdisciplinary Research 110 3.5 Mechanical Sciences 140 3.6 Physical and Mathematical Science 180 3.7 Centres under the Director 206 4. Undergraduate Programme 252 5. Awards/Distinctions 254 6. Students 266 6.1 Admissions & On Roll 267 6.2 SC/ST Students 267 6.3 Scholarships/Fellowships 267 6.4 Assistance Programme 267 6.5 Students Council 267 6.6 Hostels 267 6.7 Institute Medals 268 6.8 Awards & Distinctions 269 6.9 Placement 279 6.10 External Registration Program 279 6.11 Research Conferments 280 7. Events 300 7.1 Institute Lectures 310 7.2 Conferences/Seminars/Symposia/Workshops 302 8.
    [Show full text]