Rodents in Agriculture and Forestry

Total Page:16

File Type:pdf, Size:1020Kb

Rodents in Agriculture and Forestry See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/282742117 Rodents in agriculture and forestry Article · January 2015 CITATIONS READS 17 3,559 2 authors, including: Grant R Singleton International Rice Research Institute 261 PUBLICATIONS 5,779 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Closing Rice Yield Gap Project (CORIGAP) View project Closing Rice Yield Gaps in Asia with reduced environmental footprint (CORIGAP) View project All content following this page was uploaded by Grant R Singleton on 09 January 2016. The user has requested enhancement of the downloaded file. 3 Rodents in Agriculture and Forestry B.J. Wood1 and G.R. Singleton2 1Merrivale Research, Exton Lane, Exeter, UK; 2International Rice Research Institute (IRRI), Metro Manila, Philippines Introduction agriculture (broad sense), an overview of which is the theme of this chapter. Rodents occur in virtually every terrestrial Since the previous edition of the book, environment that supports life, be it wild, work in other regions, in particular China and agricultural or urban. Many species com- Africa, has intensified and become access- prise relatively small individuals with the ible to an international audience. There has capacity to multiply rapidly. Generally, ro- been wider awareness of the environmental dents are omnivorous, feeding mainly on factors that regulate population sizes, and plant materials, which may include seeds, how to amend the situation to minimize the leaves, roots, whole young plants, fruit, grain threat, an approach that has crystallized as ‘eco- and tree bark; and animal tissue, for ex- logically based rodent management’ (EBRM). ample, insects, snails, other invertebrates Much of this is covered in three multiple- and the bodies of vertebrates. They may also authored works, all edited by Singleton et al. feed on living plants and animals, and by (Singleton et al., 1999a, 2003a, 2010a). This scavenging. Some species are fairly restricted chapter aims to be a guide to the recent litera- in diet, but most are quite versatile, and ture. Inevitably, it is selective, with a high pro- some can adapt readily to manufactured portion of the citations from reviews. food products and wastes. Many species are The accounts given are divided by geo- fossorial, nesting and living much of the time graphic region and then further subdivided, in burrows; others live at ground level, pro- in some cases, by specific crop. Ricereceives gressing through tree climbing to completely wide coverage, as justified by its importance arboreal species. Rodents are represented in as a world food source, and because it is un- all climatic zones from arctic tundra to the doubtedly subject to very heavy and not al- equatorial tropics, and they include species ways fully recognized losses to rats. that are well adapted to arid conditions. In common with most taxonomic groups, ro- dents show a tendency to having a greater Species Involved number of species in warmer, wetter envir- onments. All of these characteristics pre- Pest species are to be found among the three dispose rodents to live freely in competition major suborders of rodents, the Myomorpha with humans (i.e. to be pests), including (rats, mice, voles, hamsters, gerbils, jirds, mole their role in important depredations in rats), the Sciuromorpha (the squirrel-like © CAB International 2014. Rodent Pests and their Control, 2nd Ed (A.P. Buckle and R.H. Smith) 33 34 B.J. Wood and G.R. Singleton rodents), and the Hystricomorpha (porcu- by far the predominant pests (namely, Arvi- pines, cane rats and other, usually larger, canthis niloticus in the north and Mas- rodents). The species complex infesting a tomys (Praomys) natalensis in the south), particular agroecosystem varies according with just a few others in specific circum- to geographical location and type of habitat. stances. In Malaysia, Medway (1978) listed Broadly, these are temperate, subtropical or 19 species of Rattus, but only four or five tropical, and whether they are wet or arid. have become significant pests of agricul- Whereas there are variations in species be- ture. Some of the non-pest species are now tween the large land masses, there is a ten- assigned to other genera (Payne et al., dency towards analogous types, more or 1985; Francis, 2008). Records from China less closely related biologically, in corres- give 168 species of rodents in 14 families ponding environments. (Wang and Deng, 1984) but only a few have Altogether, relatively few of the large become pests. number of known rodent species have be- In this account, biological names (Eller- come pests. Southern (1979) (citing Morris, man, 1941, 1949) are given, favouring the 1965), mentions 1729 rodent species, but names used in the articles cited. Internet only 125 are reported as pests in this chap- sources, including Wikipedia, have also ter. This rather small proportion applies sometimes been used. Common names are just as much to the tropics as elsewhere. mentioned where they are widely used. The Thus, Delany and Happold (1979) list 240 taxonomic affinities of the rodent genera species in 12 families in Africa, but two mentioned in the chapter are summarized myomorph species (or species groups) are in Table 3.1. Table 3.1. A listing by suborder and family of the rodent genera mentioned in this chapter. Suborder Family Subfamily (where relevant): Genus Hystricomorpha Abrocomidae Abrocoma Hystricidae Hystrix Myocastridae Myocastor Octodontidae Octodon, Spalacopus Thryonomidae Thryonomys Myomorpha Cricetidae Arvicolinae: Arvicola, Myodes (= Clethrionomys), Lagurus, Lemmus, Microtus, Neofibre, Ondatra, Pitymys (subgenus of Microtus) Cricitinae: Cricetulus, Cricetus Neotominae: Peromyscus Sigmodontinae: Eligmodontia, Holochilus, Oryzomys, Sigmodon Gliridae Glis, Graphiurus Muridae Deomyinae: Acomys, Uranomys Gerbillinae: Meriones, Tatera Murinae: Apodemus, Arvicanthis, Bandicota, Berylmys, Chiropodomys, Dasymys, Hylomyscus, Lemniscomys, Lophuromys, Mastomys, Melomys, Millardia, Mus, Nesokia, Niviventer, Oenomys, Praomys, Rattus, Rhabdomys, Stochomys Nesomyidae Cricteomyinae: Cricetomys Spalacidae Cannomys, Myospalax, Rhizomys, Spalax Sciuridae Callosciurus, Citellus, Cynomys, Eutamias, Funisciurus, Funambulus, Marmota, Paraxerus, Sciurotamias, Sciurus, Spermophilus, Tamias, Xerus Sciuromorpha Geomyidae Thomomys Heteromyidae Perognathus Sciuridae Callosciurus, Citellus, Cynomys, Eutamias, Funisciurus, Funambulus, Marmota, Paraxerus, Sciurotamias, Sciurus, Spermophilus, Tamias, Xerus Rodents in Agriculture and Forestry 35 Incidence of Rodent Problems reserves, limiting growth and, at crucial times, reducing winter survival and nutrient value, In temperate zones, rodent pests of pasture and posing competition with livestock. Field and field crops originate mainly from grass- crops may suffer direct loss of the utilized land species, and those of forestry and or- part (fruit, leaf, corm, etc.), but often the effect chards mainly from woodland species. is indirect (e.g. reduced stature, quality or Numbers tend to be cyclic, increasing in the competitive ability against weeds). growing season and declining in winter. There can be big variations between years. Northern Europe Much the same broad ecotype subdivi- sions occur in warm temperate and subtrop- ical climates, but population fluctuations Rodent outbreaks have been known in Euro- are generally less. Arid conditions may in- pean agriculture from prehistory, and severe volve regular but short and sparse rainy crop damage is still common (see Pelz, 2003 periods. Rodents adapted to arid environ- for reviews; and Jacob and Tkadlec, 2010). ments can be damaging to any crops grown Incidence is strongly cyclic, depending on in them. In the equatorial tropics, the stead- fluctuating environmental factors, with a ier climates tend to be continuously condu- gradation away from locations with more cive to rodent increase. Population numbers marked winters. Rodents sometimes reach may fluctuate in response to rain and crop plague proportions, for example, in Hungary seasons, but in perennial crops tend to- in 1964–1965, the common vole, Microtus wards relative stability. Highland tropics arvalis, caused extensive damage in most share some of the features and species of cultivated fields despite control efforts both subtropical and tropical environments. covering 3.6 million ha, which proved to be Often, certain species become closely too late (Myllymaki, 1979). The most serious associated with particular crops, especially depredators in grassland include M. arvalis those that provide all the requirements for a in east and interior Europe, and the field species to complete its life cycle when the vole, M. agrestis, in north-west Europe (Jacob crop is grown on a large scale. This leads to and Tkadlec, 2010). The former can reach another broad distinction, that between resi- very high populations, recording over −1 dent rodent pests, those of regular seasonal 2000 ha or much more on occasion. M. incidence and those of periodic invasions. agrestis generally occurs at a density of 100– −1 This ecological perspective is evaluated 400 ha . Where their ranges overlap, M. further in the Synthesis section towards the agrestis is mainly a woodland species. The end of the chapter (see also Chapter 1). It is bank vole, Myodes glareolus, across the re- −1 key to evaluating loss potential from a rodent gion, generally peaks at about 100 ha
Recommended publications
  • A Review of Bristly Ground Squirrels Xerini and a Generic Revision in the African Genus Xerus
    Mammalia 2016; 80(5): 521–540 Boris Kryštufek*, Ahmad Mahmoudi, Alexey S. Tesakov, Jan Matějů and Rainer Hutterer A review of bristly ground squirrels Xerini and a generic revision in the African genus Xerus DOI 10.1515/mammalia-2015-0073 Received April 28, 2015; accepted October 13, 2015; previously Introduction published online December 12, 2015 Bristly ground squirrels from the arid regions of Central Abstract: Bristly ground squirrels Xerini are a small rodent Asia and Africa constitute a coherent monophyletic tribe tribe of six extant species. Despite a dense fossil record the Xerini sensu Moore (1959). The tribe contains six species group was never diverse. Our phylogenetic reconstruction, in three genera of which Atlantoxerus and Spermophilop­ based on the analysis of cytochrome b gene and including sis are monotypic. The genus Xerus in its present scope all known species of Xerini, confirms a deep divergence (Thorington and Hoffmann 2005), consists of four species between the African taxa and the Asiatic Spermophilopsis. in three subgenera: X. inauris and X. princeps (subgenus Genetic divergences among the African Xerini were of a Geosciurus), X. rutilus (subgenus Xerus), and X. eryth­ comparable magnitude to those among genera of Holarc- ropus (subgenus Euxerus). Recent phylogenetic recon- tic ground squirrels in the subtribe Spermophilina. Evi- struction based on molecular markers retrieved Xerus to dent disparity in criteria applied in delimitation of genera be paraphyletic with respect to Atlantoxerus (Fabre et al. in Sciuridae induced us to recognize two genera formerly 2012), therefore challenging the suitability of the generic incorporated into Xerus. The resurrected genera (Euxerus arrangement of the group.
    [Show full text]
  • Tissue Specific Regulatory Network Annotation for Non-Coding Elements
    Quantitative Biology 2020, 8(1): 43–50 https://doi.org/10.1007/s40484-020-0195-4 RESEARCH ARTICLE ZokorDB: tissue specificregulatorynetwork annotation for non-coding elements of plateau zokor Jingxue Xin1,6,7,†, Junjun Hao2,†, Lang Chen1, Tao Zhang3, Lei Li1,5,7, Luonan Chen3,5, Wenmin Zhao4, Xuemei Lu2,5, Peng Shi2,5,*, Yong Wang1,5,7,* 1 CEMS, NCMIS, MDIS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China 2 State Key Laboratory of Genetic Resources and Evolution, Laboratory of Evolutionary and Functional Genomics, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China 3 Key Laboratory of Systems Biology, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China 4 Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China 5 Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China 6 Department of Statistics, Department of Biomedical Data Science, Bio-X Program, Stanford University, Stanford, CA 94305, USA 7 University of Chinese Academy of Sciences, Beijing 100049, China * Correspondence: [email protected], [email protected] Received September 4, 2019; Revised December 16, 2019; Accepted December 23, 2019 Background: Plateau zokor inhabits in sealed burrows from 2,000 to 4,200 meters at Qinghai-Tibet Plateau. This extreme living environment makes it a great model to study animal adaptation to hypoxia, low temperature, and high carbon dioxide concentration. Methods: We provide an integrated resource, ZokorDB, for tissue specific regulatory network annotation for zokor.
    [Show full text]
  • Facts and Misconceptions on the Palaearctic Existence of the Striped
    Mammalia 2017; aop Boris Kryštufek, Cătălin Stanciu, Danijel Ivajnšič*, Sidi Imad Cherkaoui and Franc Janžekovič Facts and misconceptions on the Palaearctic existence of the striped ground squirrel https://doi.org/10.1515/mammalia-2017-0060 echo the exclusive ecological requirements of species Received May 26, 2017; accepted July 27, 2017 and their evolutionary history in response to past eco- logical and geological processes (Lomolino et al. 2006). Abstract: The striped ground squirrel has a wide distri- Species’ ranges can be studied at various temporal and bution in the Ethiopian region but is restricted to a small spatial scales provided they are already documented. isolated area in Palaearctic Africa. This fragment was first Before a distributional map can be produced, data on recorded in the late 1940s in the Souss Valley (Morocco), spatial occurrence must be collected in the field. Despite however, not a single new observation has been published its obvious simplicity, field work constitutes a crucial step in the following decades. In September 2016 we surveyed and affects the consistency of analyses which may depend the Souss Valley and found squirrels at 43 sites within upon sophisticated tools and concepts. Incomplete or the triangle between Agadir–Taroudant–Tiznit. Occupied misleading distributional data will unavoidably compro- sites were not distributed at random but occurred between mise subsequent analyses and assessments. an altitude of 45–254 m and on a substrate with coarse tex- In this study we have addressed the only Palaearctic ture containing >65% sand. The vast majority of the sites occurrence of the striped ground squirrel Euxerus with squirrels (69%) were classified as suburban, culti- erythropus (Geoffroy Saint-Hilaire 1803) (formerly Xerus vated or both.
    [Show full text]
  • Argan Forest Destruction in Morocco
    S.O.S. Souss: argan forest destruction in Morocco Jesus Mellado The Souss Valley in Morocco still has remnants of forest dominated by the argan tree, which is en- demic to the Atlantic coast of north-west Africa. The tree is valued for its edible oil and its timber and the argan forest ecosystem is rich in species. The forest has been exploited sustainably by man tor thousands of years, but modern developments have destroyed or damaged much of it, espe- ciallyin the lowlands. The author, who worked in the region for three years, is alarmed at the rapidly increasing destruction. He makes a plea for effective protection of the remaining argan torest and for a plan for its sustainable exploitation. The Souss River, which seldom flows, passes and Anti-Atlas mountain ranges in south-west over the alluvial plain between the High Atlas Morocco. The valley is closed at the east, where • An old argan tree; the tallest specimens still remaining on the Souss plain are usually close to human habitation («/. Mellado). Argan forest destruction in Morocco cy Downloaded from https://www.cambridge.org/core. IP address: 170.106.40.219, on 01 Oct 2021 at 04:22:15, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0030605300022754 the mountain ranges meet, but is open to the At- (Sauvage and Vindt, 1952) and isolated popula- lantic Ocean to the west (Figure 1). Con- tions extend as far as Sagiat el Hamra, well inside sequently, the Souss plain and the smaller adja- the Western Sahara (Valverde, 1957).
    [Show full text]
  • Wildlife Species Diversity Indices and Seasonal Distribution Assessment in Road-Side Markets of South-West Nigeria
    Ghana60 J. Sci. 62 (1), 2021, 60 - 70 GHANA JOURNAL OF SCIENCEhttps://dx.doi.org/10.4314/gjs.v62i1.6VOL. 62 WILDLIFE SPECIES DIVERSITY INDICES AND SEASONAL DISTRIBUTION ASSESSMENT IN ROAD-SIDE MARKETS OF SOUTH-WEST NIGERIA M. O. Mustafa*, O. A. Lawal, O. O. Fafioye, A. A. Aladesida, F. B. Olowoyo, J. Q. Nwa- chukwu, A. N. Ejizu, C. C. Nwachukwu, C. O. Ezekwe, O. O. Ovuike And R. A. Ugwu. (M. O. M., F. B. O. & O. O. O: Forestry Research Institute of Nigeria, Federal College of Forest Resources Management, Ishiagu, Ebonyi State, Nigeria; O. A. L. & O.O.F: Olabisi Onabanjo University, Ago-Iwoye, Ogun State, Nigeria; A. A. A.: Federal University of Agricul- ture, Abeokuta, Ogun State, Nigeria; J. Q. N., A. N. E., C. O. E. & R. A. U.: Forestry Research Institute of Nigeria, Humid Forest Research Station, Umuahia, Abia State, Nigeria; C. C. N.: Michael Okpara University of Agriculture Umudike, Abia State, Nigeria). *Corresponding author’s email: [email protected] ABSTRACT Wildlife species are under serious exploitation by the rural populace in Nigeria because hu- man beings have understood their ecology. The need to update the existing knowledge of wildlife population is therefore essential. Twenty-three games markets along five Roads in South-west Nigeria were visited to document the wildlife displayed for sale. Two hundred and fifty copies of structured questionnaire were administered using systematic random sampling (odd) method for wildlife species information from market stakeholders. Direct method was counting for species and their numbers. Data generated were analysed through Species Diver- sity Indices Assessment.
    [Show full text]
  • Ecologically-Based Management of Rodent Pests ECOLOGICALL V-BASED MANAGEMENT of RODENT PESTS
    Ecologically-based Management of Rodent Pests ECOLOGICALL V-BASED MANAGEMENT OF RODENT PESTS Edited by: Grant R. Singleton, Lyn A. Hinds, Herwig Leirs and Zhibin Zhang Australian Centre for International Agricultural Research Canberra 1999 The Australian Centre for International Agricultural Research (ACIAR) was established in June 1982 by an Act of the Australian Parliament. Its primary mandate is to help identify agricultural problems in developing countries and to commission collaborative research between Australian and developing country researchers in fields where Australia has special competence. Where trade names are used this constitutes neither endorsement of nor discrimination against any product by the Centre. ACIAR MONOGRAPH SERIES This peer-reviewed series contains the results of original research supported by ACIAR, or deemed relevant to ACIAR's research objectives. The series is distributed internationally, with an emphasis on the Third World ©Australian Centre for International Agricultural Research GPO Box Canberra, ACT 2601. Singleton, C.R., Hinds, L.A., Leirs, H. and Zhang, Z.ed. 1999. Ecologically-based management of rodent ACIAR Monograph No. 59, 494p. ISBN 1 86320 262 5 Editing and design by Arawang Communication Croup, Canberra Printed by Brown Prior Anderson, Melbourne, Australia page Author Contact Details 8 Abbreviations 12 List of Species 13 Preface 15 1. Ecologically-based Management of Rodent Pests-Re-evaluating 17 Our Approach to an Old Problem Grant R. Singleton, Herwig Leirs, Lyn A. Hinds and Zhibin Zhang Section 1 Basic Research - the Foundation for Sound Management 31 2. Current Paradigms of Rodent Population Dynamics- 33 What Are We Missing? Charles J. Krebs 3. The Behaviour and Ecology of Rattus norvegicus: from Opportunism to 49 Kamikaze Tendencies David W.
    [Show full text]
  • Senegal, 2019
    SENEGAL: 20-31 JANUARY 2019 Richard Webb This is the mammal checklist from a recent birding trip to Senegal. The full report is available on www.cloudbirders.com . Western Rock Hyrax Procavia ruficeps Singles Dindefelo and Thiewoune. Northern Lesser Galago Galago senegalensis One Wassadou. Green Monkey Chlorocebus sabeaus Small numbered Toubacouta. Common Wassadou and further south-east. Patas Monkey Erythrocebus patas 10+ Marigots and near Toubacouta. 15+ on route from Wassadou to Kedougou and in the reverse direction. Guinea Baboon Papio papio Common Wassadou. Also seen south-east of Wassadou and at Triewoune. Western Red Colobus Procolobus badius Eight Wassadou. African Savanna/Cape Lepus microtis/capensis Three near Podor. 6+ Marigots. I Hare did not study the hares closely but those at Podor appeared to be Cape while those at Marigots seemed larger and may well have been African Savanna. The habitat at Podor was much more open than that at Marigots. African Grass Rat Arvicanthis niloticus Two 27km north of Mbacke. Striped Ground Squirrel Xerus erythropus One near Podor, three Marigots and several on route from St Louis to Mbacke. Gambian Sun Squirrel Heliozciurus gambianus Six Dindefelo. One Thiewoune. African Wildcat Felis lybica One near Podor. Serval Leptailurus serval A probable seen by BR & NG at Wassadou. Slender Mongoose Herpestes sanguineus One south-east of Wassadou. Banded Mongoose Mungos mungo 16+ Wassadou. African Golden Wolf Canis anthus Four Djoudj and three near Kaolack. Pale Fox Vulpes pallida Three near Podor. Common Warthog Phacochoerus africanus Six Djoudj. Western Bushbuck Tragelaphuss scriptus Three Wassadou. One on route from Wassadou to Kedougou.
    [Show full text]
  • Nigeria, 2005
    Mammals, amphibians and reptiles S. Lithner Nigeria 12 - 27/10 2005 M A M M A L S in N I G E R I A 2005 Observations of mammals, amphibians and reptiles during a trip with Avifauna, travelling company associated with the Swedish Ornithological Society Oct 12 –Oct 24 2005 Stefan Lithner Order of presentation; mammals: given according to Duff n Lawson; Mammals of the World a Checklist. SQUIRRELS Striped Ground-squirrel Xerus erythropus The most frequently seen squirrel during our trip. Gambian Sun-Squirrel Heliosciurus gambianus ITTA Ibadan 14/10 3 ex African Giant Squirrel Protoxerus strangeri Cross River NP 22/10 about 5, Bashu 23/10 one, and 24/10 one Tomas´s Rope-squirrel Funisciurus anerythrus Weppa 18/10 at least one Fire-footed Ropesquirrel Funisciurus pyrropus Okumu N P 15/10 6 ex and -16/10 at least two. Kintampo Rope-squirrel Funisciurus substriatus Lekki Conservation Center 13/10: 2 ex. MICE & RATS Banana Climbing Mouse Dendromus messorius Weppa 18/10 one on the track to the river Western Vlei Rat Otomys occidentalis Weppa 18/10 one on the track to the river MONGOOSES & Allies Long-nosed Cusimanse Crossarchus obscurus Okumu NP 15/10 at least two groups, each consisting of of at least 5 individuals. 16/10 a few in groups. Black-legged Mongoose/White-tailed Mongoose Bdeogale nigripes/Ichneumia albicauda Okumu NP 15/10 crossing the dirt road about an hour before dawn, about half an hour´s ride by bus into primary rain forest. According to all authors the B. nigripes is the only pale mongoose living in the rain forest, and according to Stuart&Stuart ( The Larger Mammals of Africa 2001) the distribution of this species reaches this area.
    [Show full text]
  • Cover Page – Being Designed by MCI – Inside Front Cover Or
    Ecology and control of vertebrate and invertebrate pests of grass and forage Impacts and management of invasive burrowing herbivores in grasslands Peter JS Fleming A, Hua Limin B and Desley Whisson C A Vertebrate Pest Research Unit, Biosecurity NSW, Orange Agricultural Institute, 1447 Forest Road, Orange, NSW 2800, Australia, and School of Environmental and Rural Sciences, Northern Ring Road, University of New England, Armidale, NSW 2351, Australia B Gansu Agricultural University, No. 1, Yingmen Village, Anning District, Gansu Province, People’s Republic of China C School of Life and Environmental Sciences, Deakin University, 221 Burwood Hwy, Burwood, Vic 3125, Australia Contact email: [email protected] Abstract. Maintenance of the productivity of the world’s grasslands is critical for livestock production, bio- diversity conservation and ecosystem services. Using case studies from Australasia, North America and China, we identify general principles of managing invasive native and introduced herbivores. Management aims to achieve optimised livestock production while conserving biodiversity and ecosystem services, which are often intangible. We identify similarities and differences in the ecologies and impacts of European wild rabbits, Californian ground squirrel and plateau zokors, discuss management tools and strategies, and the eco- logical, social and cultural factors affecting management. The ecosystem engineering characteristics of these species that make them important for ecosystem function in grasslands are perversely the selfsame ones that bring them into conflict with livestock producers. All three species create habitat patches through their bur- rowing and foraging behaviours, but changes in vegetation floristics and structure, increased soil exposure and decreased litter negatively affect grassland and livestock production when the animals are superabundant.
    [Show full text]
  • CONTROL of the AFRICAN STRIPED GROUND SQUIRREL, Xerus Erythropus, in KENYA
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Proceedings of the Fourteenth Vertebrate Pest Vertebrate Pest Conference Proceedings Conference 1990 collection March 1990 CONTROL OF THE AFRICAN STRIPED GROUND SQUIRREL, Xerus erythropus, IN KENYA Gillian E. Key Centro de Investigacion y de Estudios Avanzados del IPN Follow this and additional works at: https://digitalcommons.unl.edu/vpc14 Part of the Environmental Health and Protection Commons Key, Gillian E., "CONTROL OF THE AFRICAN STRIPED GROUND SQUIRREL, Xerus erythropus, IN KENYA" (1990). Proceedings of the Fourteenth Vertebrate Pest Conference 1990. 48. https://digitalcommons.unl.edu/vpc14/48 This Article is brought to you for free and open access by the Vertebrate Pest Conference Proceedings collection at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Proceedings of the Fourteenth Vertebrate Pest Conference 1990 by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. CONTROL OF THE AFRICAN STRIPED GROUND SQUIRREL, Xerus erythropus, IN KENYA. GILLIAN E. KEY, Centro de Investigacion y de Estudios Avanzados del IPN, Apartado Postal 629, Irapuato, GTO, Mexico. ABSTRACT: The African striped ground squirrel, Xerus erythropus (E. Geoffroy), has been found to constitute a serious pest to maize seed at the planting stage, causing mean losses of 9.7% and accounting for 57.3% of total damage found. A feature of ground squirrel damage is its unpredictable nature. Methods of reducing losses of planted maize seed to X. erythropus at the subsistence farmer level in southern Kenya were investigated. Constraints affecting a control programme by farmers were identified as follows: low standards of living and education, limited financial resources, strong individualistic attitude of farmers and small field size in relation to the home range size of squirrels.
    [Show full text]
  • List of Taxa for Which MIL Has Images
    LIST OF 27 ORDERS, 163 FAMILIES, 887 GENERA, AND 2064 SPECIES IN MAMMAL IMAGES LIBRARY 31 JULY 2021 AFROSORICIDA (9 genera, 12 species) CHRYSOCHLORIDAE - golden moles 1. Amblysomus hottentotus - Hottentot Golden Mole 2. Chrysospalax villosus - Rough-haired Golden Mole 3. Eremitalpa granti - Grant’s Golden Mole TENRECIDAE - tenrecs 1. Echinops telfairi - Lesser Hedgehog Tenrec 2. Hemicentetes semispinosus - Lowland Streaked Tenrec 3. Microgale cf. longicaudata - Lesser Long-tailed Shrew Tenrec 4. Microgale cowani - Cowan’s Shrew Tenrec 5. Microgale mergulus - Web-footed Tenrec 6. Nesogale cf. talazaci - Talazac’s Shrew Tenrec 7. Nesogale dobsoni - Dobson’s Shrew Tenrec 8. Setifer setosus - Greater Hedgehog Tenrec 9. Tenrec ecaudatus - Tailless Tenrec ARTIODACTYLA (127 genera, 308 species) ANTILOCAPRIDAE - pronghorns Antilocapra americana - Pronghorn BALAENIDAE - bowheads and right whales 1. Balaena mysticetus – Bowhead Whale 2. Eubalaena australis - Southern Right Whale 3. Eubalaena glacialis – North Atlantic Right Whale 4. Eubalaena japonica - North Pacific Right Whale BALAENOPTERIDAE -rorqual whales 1. Balaenoptera acutorostrata – Common Minke Whale 2. Balaenoptera borealis - Sei Whale 3. Balaenoptera brydei – Bryde’s Whale 4. Balaenoptera musculus - Blue Whale 5. Balaenoptera physalus - Fin Whale 6. Balaenoptera ricei - Rice’s Whale 7. Eschrichtius robustus - Gray Whale 8. Megaptera novaeangliae - Humpback Whale BOVIDAE (54 genera) - cattle, sheep, goats, and antelopes 1. Addax nasomaculatus - Addax 2. Aepyceros melampus - Common Impala 3. Aepyceros petersi - Black-faced Impala 4. Alcelaphus caama - Red Hartebeest 5. Alcelaphus cokii - Kongoni (Coke’s Hartebeest) 6. Alcelaphus lelwel - Lelwel Hartebeest 7. Alcelaphus swaynei - Swayne’s Hartebeest 8. Ammelaphus australis - Southern Lesser Kudu 9. Ammelaphus imberbis - Northern Lesser Kudu 10. Ammodorcas clarkei - Dibatag 11. Ammotragus lervia - Aoudad (Barbary Sheep) 12.
    [Show full text]
  • Rodent Biology and Management
    Rodent Biology and Management Abstracts of papers presented at the International Conference on Rodent Biology and Management, held at Beijing, China, 5-9 October 1998 Editors: Zhi-Bin Zhang, Lyn Hinds, Grant Singleton and Zu-Wang Wang Australian Centre for International Agricultural Research Canberra 1999 The Australian Centre for International Agricultural Research (ACIAR) was established in June 1982 by an Act of the Australian Parliament. Its mandate is to help identify agricultural problems in developing countries and to commission collaborative research between Austral­ ian and developing country researchers in fields where Australia has a special research compe­ tence. Where trade names are used this constitutes neither endorsement of nor discrimination against any product by the Centre. ACIAR TECHNICAL REPORTS SERIES This series of publications contains technical information resulting from ACIAR-supported programs, projects, and workshops (for which proceedings are not being published), reports on Centre-supported fact-finding studies, or reports on other useful topics resulting from ACIAR activities. Publications in the series are distributed internationally to a selected audience. © Australian Centre for International Agricultural Research, GPO Box 1571. Canberra, ACT 2601. Email: [email protected] Home page: http://www.aciar.gov.au Zhi-Bin Zhang, Hinds, L., Singleton, G. and Zu-Wang Wang. ed. 1999. Rodent biology and management. Abstracts of papers presented at the International Conference on Rodent Biology and Management held
    [Show full text]