Organometallic Routes to Cross–Conjugated Hydrocarbons

Total Page:16

File Type:pdf, Size:1020Kb

Organometallic Routes to Cross–Conjugated Hydrocarbons Organometallic Routes to Cross–Conjugated Hydrocarbons a thesis submitted for the degree of Doctor of Philosophy of the australian national university Henry Toombs-Ruane research school of chemistry the australian national university january 2013 I Declaration Except where speci!c acknowledgements of others are made, the author carried out the work described in this thesis during the period of March 2009 to January 2013 in the Research School of Chemistry of the Australian National University, under the supervision of Professor Mick Sherburn. The material presented has not been submitted for any other degree and is less than 100,000 words in length. Henry Toombs-Ruane january 2013 III Acknowledgements My !rst t"anks must go to my super#isor, Mick S"erburn. T"anks for t"e ad#ice, t"e support, t"e guidance, and t"e banter. I "a#en’t e#en !nis"ed and I’m already looking for$ard to our future collaborations. And my t"anks again to Mick for collecting toget"er suc" a great group of guys and gals in t"e form of t"e S"erburn Group. It "as been a pleasure to study %and not& $it" you all, and I "ope t"at it can continue for a long time, eit"er "ere, or from afar. I am extremely grateful to Tony Herlt, T"omas Fallon, and Maxime Riou for t"eir assistance in t"e laboratory. During my researc" I "a#e also been fortunate enoug" to collaborate $it" Tony Willis and Mic"ael Paddon-Ro$. If I "ad not "ad access to t"eir #ast kno$ledge, resources, and tec"nical experience t"en I $ould ne#er "a#e been able to competently carry out researc", let alone complete t"is t"esis. Studying at t"e Australian National Uni#ersity "as gi#en me t"e opportunity to intersect $it" many resident and #isiting academics, in particular I am indebted to Ian Fairlamb, Bill Lording, T"omas Rauc"fuss, Henning Hopf, Claude Spino, Martin Bennett, Scott Ste$art, Da#id Lupton, and Tony Hill for lending me t"eir time and insig"ts. W"ile my !eld "as strayed signi!cantly from my !rst forays into c"emistry, it $as Vladimir Golo#ko and Andy Pratt $"o—in my Honours year—s"o$ed me t"at c"emistry is a !eld t"at can be bot" c"allenging and re$arding. And so I suppose I’ll "a#e to t"ank Vlad & Andy in e#ery ackno$ledgement section I $rite. I t"ink t"ere’s an old adage about any gi#en man not being an island. Per"aps it’s somet"ing about independence and reliance coexisting; about t"e s"ared nature of t"e Human Experience. Or maybe it’s about t"e buoyancy of 'es", and dying at sea. All t"is is a $ay of saying, t"ank you Julia. You’#e "elped me more t"an I can possibly gi#e t"anks for; but more important t"an any "elp, you made any sacri!ce $ort" it. Finally, t"anks mum, you really are t"e best! And Lea", "urry up $it" your no#el. T"ank you all. V Publications Some of the work in this thesis has been previously published: Toombs-Ruane, H.; Osinski, N.; Fallon, T.; Wills, C.; Willis, A. C.; Paddon-Row, M. N.; Sherburn, M. S. Synthesis and Applications of Tricarbonyliron Complexes of Dendralenes. Chem. Asian J. !"##, (, "#$"–"#%&. This research is reported in Chapters # & ". Toombs-Ruane, H.; Pearson, E. L.; Paddon-Row, M. N.; Sherburn, M. S. On the Diels-Alder dimerisation of cross-conjugated trienes. Chem. Commun. !"#!, )*, ''"(–''$). This research is reported in Chapter ". VII Abbreviations * percentage yield equiv. +molar, equivalent+s, heat Et ethyl °C degree/s Celsius EWG electron withdrawing group Ac acetyl eV electron Volts aq. aqueous ESI electrospray ionisation Ar aryl or argon FMO frontier molecular orbital ASE aromatic stabilisation energy Ft tricarbonyliron BDA benzylideneacetone GC gas chromatography BHT #,'-di-tert-butyl-$-methylphenol h hour/s or Planck constant bp boiling point HMBC heteronuclear multiple bond br broad coherence brsm based on recovered starting LDA lithium diisopropylamide material LRMS low resolution mass Bu butyl spectrometry ca. circa +approximately, h light/photochemistry calc calculated HMPA hexamethylphosphoramide CAN ceric ammonium nitrate HSQC heteronuclear single quantum cm-) wave number coherence COSY correlated spectroscopy HOMO highest occupied molecular CSI chlorosulfonylisocyanate orbital chemical shift HPLC high pressure liquid d day/s or doublet/s chromatography DA Diels–Alder HRMS high resolution mass dba dibenzylideneacetone spectrometry DBU ),--diazabicyclo-.%.$.&/undec-0- HWE Horner-Wadsworth-Emmons ene Hz Hertz DFT density functional theory IMDA intramolecular Diels–Alder DMAP $-dimethylaminopyridine i-Pr isopropyl DME dimethoxyethane IR infrared DMF dimethylformamide J coupling constant DIBAL diisobutylaluminium hydride KHMDS potassium hexamethyldisilazide DMSO dimethylsulfoxide lit. literature dppf ),)'-bis+diphenylphosphino,- LUMO lowest unoccupied molecular ferrocene orbital EDG electron donating group M molar +molL–), EI electron impact M1 molecular ion VIII ABBREVIATIONS Me methyl v.i. vide infra +see below, min minute v.s. vide supra +see above, MHz megahertz vol. volume mm Hg millimetres of mercury wt * weight percent mol mole ZCE Z-cyclooctene mol. molar mp melting point MS mass spectroscopy MVK methyl vinyl ketone m/z mass to charge ratio absorption maxima +IR, n-BuLi n-butyl lithium NLO nonlinear optical NMR nuclear magnetic resonance nOe nuclear Overhauser e2ect NOESY nuclear Overhauser and exchange spectroscopy Ph phenyl pin pinacol PMP para-methoxyphenyl PNP para-nitrophenyl ppm parts per million Pr propyl q quartet RCM ring-closing metathesis rt room temperature sat. saturated SM starting material SOI secondary orbital interaction t time t-Bu tert-butyl TBS tert-butyldimethylsilyl temp temperature Tf tri3uoromethanesulfonyl THF tetrahydrofuran TLC thin layer chromatography TM target material TMM trimethylenemethane TS transition state Ts para-toluenesulfonyl p-TsOH para-toluenesulfonic acid v/v volume concentration IX Abstract Molecules with a high degree of unsaturation often have associated with them a concomitant level of instability. In fact, their instability is what hinders the preparation and synthetic utility of large swaths of polyunsaturated frameworks. One form of modulating and controlling that reactivity is the tricarbonyliron group; a functionality that coordinates to a portion of an unsaturated skeleton, often allowing the easy isolation and observation of the unstable compound. This thesis explores the chemistry of cross-conjugated polyenes, and especially their relationship to the tricarbonyliron group, in one review, and three experimental chapters. Chapter ) reviews the known chemistry of highly reactive polyenes, and their stabilisation through coordination to the tricarbonyliron group. Chapter # describes the preparation of tricarbonyliron complexes of the dendralenes. Chapter " investigates the curious reactivity of cross-conjugated trienes. Chapter $ describes a new synthetic strategy towards preparing polyenes that are protected as organometallic complexes. While the ability for the tricarbonyliron group to stabilise reactive polyenes has long been known, their applications in this respect have not been rigorously documented by review. In Chapter ) we comprehensively review the literature on the tricarbonyliron complexes of unstable molecules, and uncover promising areas for future research. In particular, there remain several hydrocarbons of fundamental interest that have never been synthesised, whose preparation could be realised by using tricarbonyliron protection. The dendralenes are a fundamental family of cross-conjugated oligoalkenes that only recently been accessed on a useful scale. The family of molecules has the power to rapidly form compounds with natural-product like complexity through a cascade of bond-forming reactions, but their synthetic utility is hampered by their instability and lack of selectivity. In Chapter # we describe the !rst targeted preparation of the tricarbonyliron complexes of the ."/-.'/dendralenes. We !nd that tricarbonyliron complexation not only protects the dendralenes from decomposition, but also selectively activates them to a broad range of reactions. X ABSTRACT In Chapter " we report the !rst general synthesis of ."/dendralene molecules substituted at the )-position. These compounds were prepared via cross- metathesis on the tricarbonyliron complex of ."/dendralene. With the elusive series of substituted dendralenes in hand, we report the surprising observation that the )E-sub-class undergoes Diels-Alder dimerisation up to #&& times faster than the parent ."/dendralene. This stands in stark contrast to the behaviour of the )Z-, #- , & "'-substituted ."/dendralenes, which are invariably more stable than the unsubstituted case. We explore the mechanistic rationale for this behaviour. Finally, in Chapter $ we use the knowledge gained in the synthetic e2orts described in Chapters # & " to rationally develop a new, general method for the synthesis of polyene complexes via cross-coupling reactions. To verify our approach we use #- & #,"- substituted halobutadiene complexes to directly prepare the tricarbonyliron complexes of the dendralenes, as well as some new cross- conjugated frameworks. XI Table of Contents Declaration i Acknowledgements iii Publications v Abbreviations vii Abstract ix Table of Contents xi Stabilisation of Hyper-Reactive Molecules By Tricarbonyliron 1 1.1 By Way Of An Introduction 1 1.1.1 Preamble 1 1.1.2 Target: Fundamental Molecules 2 1.2 Polyene Protection 3 1.2.1 Alternative to Diene Protection 3 1.2.2 Tricarbonyliron Complexes of Dienes 4 1.2.3 The Preparation of Tricarbonyliron Complexes of Unstable Polyenes 5 1.2.4 Reagents
Recommended publications
  • A General Synthesis of Dendralenes†
    Chemical Science View Article Online EDGE ARTICLE View Journal | View Issue A general synthesis of dendralenes† Cite this: Chem. Sci.,2019,10, 9969 Josemon George, Jas S. Ward and Michael S. Sherburn * All publication charges for this article The first general synthetic approach to substituted [3]- and higher dendralenes is reported. Fifty-one mono- have been paid for by the Royal Society of Chemistry through to penta-substituted dendralenes carrying alkyl-, cycloalkyl-, alkenyl-, alkynyl-, aryl- and heteroaryl-substitutents are accessed, and the first (E)/(Z)-stereoselective syntheses of dendralenes are reported (twenty-eight examples). The approach involves twofold Pd(0)-catalyzed Negishi couplings of Received 9th August 2019 1,1-dibromoalkenes with alkenylzinc reagents, and exploits both substrate- and catalyst-controlled Accepted 11th September 2019 aspects of chemo-, regio- and stereoselectivity in the two C(sp2)–C(sp2) bond forming steps. The value DOI: 10.1039/c9sc03976g of the new hydrocarbons in rapid structural complexity generation is demonstrated through their rsc.li/chemical-science deployment in unprecedented diene- and triene-transmissive pericyclic reaction sequences. Introduction undergo sequential additions in an interconnected (i.e. diene- transmissive) manner.3,8,9 Creative Commons Attribution 3.0 Unported Licence. In hydrocarbons comprising carbon atoms that are sp2 As the potential of dendralenes has been more widely hybridized, the absence or presence of chain bifurcations and recognized, numerous publications focusing on dendralene 10 rings permit four fundamental structural families to be synthesis have recently appeared. The rapid expansion of designed (Fig. 1).1 Dendralenes are the acyclic, branched class interest in dendralenes, combined with the paucity of synthetic of structures that, until the turn of this century, were widely methods to access them, renders the recent contributions perceived to be unmanageable.2,3 [3]Dendralene through [12] signicant.
    [Show full text]
  • Bond Distances and Bond Orders in Binuclear Metal Complexes of the First Row Transition Metals Titanium Through Zinc
    Metal-Metal (MM) Bond Distances and Bond Orders in Binuclear Metal Complexes of the First Row Transition Metals Titanium Through Zinc Richard H. Duncan Lyngdoh*,a, Henry F. Schaefer III*,b and R. Bruce King*,b a Department of Chemistry, North-Eastern Hill University, Shillong 793022, India B Centre for Computational Quantum Chemistry, University of Georgia, Athens GA 30602 ABSTRACT: This survey of metal-metal (MM) bond distances in binuclear complexes of the first row 3d-block elements reviews experimental and computational research on a wide range of such systems. The metals surveyed are titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, and zinc, representing the only comprehensive presentation of such results to date. Factors impacting MM bond lengths that are discussed here include (a) n+ the formal MM bond order, (b) size of the metal ion present in the bimetallic core (M2) , (c) the metal oxidation state, (d) effects of ligand basicity, coordination mode and number, and (e) steric effects of bulky ligands. Correlations between experimental and computational findings are examined wherever possible, often yielding good agreement for MM bond lengths. The formal bond order provides a key basis for assessing experimental and computationally derived MM bond lengths. The effects of change in the metal upon MM bond length ranges in binuclear complexes suggest trends for single, double, triple, and quadruple MM bonds which are related to the available information on metal atomic radii. It emerges that while specific factors for a limited range of complexes are found to have their expected impact in many cases, the assessment of the net effect of these factors is challenging.
    [Show full text]
  • Synthesis of Fused and Bridged Ring Systems James Nicolas Ong Sy Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1988 Synthesis of fused and bridged ring systems James Nicolas Ong Sy Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Organic Chemistry Commons Recommended Citation Sy, James Nicolas Ong, "Synthesis of fused and bridged ring systems " (1988). Retrospective Theses and Dissertations. 9735. https://lib.dr.iastate.edu/rtd/9735 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS The most advanced technology has been used to photo­ graph and reproduce this manuscript from the microfilm master. UMI films the original text directly from the copy submitted. Thus, some dissertation copies are in typewriter face, while others may be from a computer printer. In the unlikely event that the author did not send UMl a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyrighted material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are re­ produced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. Each oversize page is available as one exposure on a standard 35 mm slide or as a 17" x 23" black and white photographic print for an additional charge.
    [Show full text]
  • A Study of [3] Dendralene, Its Synthesis and Applications
    A STUDY OF [3] DENDRALENE, ITS SYNTHESIS AND APPLICATIONS by Susannah M. Gillam Thesis presented for the degree of Doctor of Philosophy University of Edinburgh January 1990 fk 9 To my parents and my sister for their continuous support DECLARATION I declare that this thesis is my own composition, that it is a record of the work which has been carried out by myself, and that it has not been submitted in any previous application for a higher degree. The thesis describes the results of research carried out in the Department of Chemistry, University of Edinburgh, under the supervision of Dr. I. Gosney since 1st October 1986, the date of my admission as a research student. POST-GRADUATE LECTURE COURSES The following is a statement of the courses attended during the period of research: - Organic Research seminars (3 years attendance) - Current Topics in Organic Chemistry, various lecturers, (15 lectures) - Strategy of Synthesis, Dr. I. Gosney (5 lectures). - Structural Elucidation, Dr. D. Leaver (5 lectures) - Mass Spectrornetry, Prof. K.R. Jennings (5 lectures). - Medicinal Chemistry, Prof. P.G. Sammes, 1988 (5 lectures). - Medicinal Chemistry, Dr. P. Leeson and Dr. R. Baker, 1989, (5 lectures). - Recent Advances in Organic Chemistry, various speakers (5 lectures). - Multipulse n.m.r. Spectroscopy, Dr. I. Sadler (5 lectures). - Two Dimensional n.m.r. Spectroscopy, Dr. I. Sadler, Dr. R. Baxter and Dr. B. Birdsall (5 lectures). Attended and passed the Scientific German Course 1987. ACKNOWLEDGEMENTS I would like to thank my Ph.D. supervisor Dr. Ian Gosney for his help and support throughout this work. I would also like to extend my thanks to the technical staff here at the University of Edinburgh and particularly to J.
    [Show full text]
  • Organometallic and Catalysis
    ORGANOMETALLIC AND CATALYSIS Dr. Malay Dolai, Assistant Professor, Department of Chemistry, Prabhat Kumar College, Contai, Purba Medinipur-721404, WB, India. 1.Introduction Organometallic chemistry is the study of organometallic compounds, chemical compounds containing at least one chemical bond between a carbon atom of an organic molecule and a metal, including alkaline, alkaline earth, and transition metals, and sometimes broadened to include metalloids like boron, silicon, and tin, as well. Aside from bonds to organyl fragments or molecules, bonds to 'inorganic' carbon, like carbon monoxide (metal carbonyls), cyanide, or carbide, are generally considered to be organometallic as well. Some related compounds such as transition metal hydrides and metal phosphine complexes are often included in discussions of organometallic compounds, though strictly speaking, they are not necessarily organometallic. The related but distinct term "metalorganic compound" refers to metal-containing compounds lacking direct metal-carbon bonds but which contain organic ligands. In 1827, Zeise's salt is the first platinum- olefin complex: K[PtCl3(C2H4)].H2O, the first invented organometallic compound. Organometallic compounds find wide use in commercial reactions, both as homogeneous catalysis and as stoichiometric reagents For instance, organolithium, organomagnesium, and organoaluminium compounds, examples of which are highly basic and highly reducing, are useful stoichiometrically, but also catalyze many polymerization reactions. Almost all processes involving carbon monoxide rely on catalysts, notable examples being described as carbonylations. The production of acetic acid from methanol and carbon monoxide is catalyzed via metal carbonyl complexes in the Monsanto process and Cativa process. Most synthetic aldehydes are produced via hydroformylation. The bulk of the synthetic alcohols, at least those larger than ethanol, are produced by hydrogenation of hydroformylation- derived aldehydes.
    [Show full text]
  • 1 Equilibria and Thermochemistry
    k 1 1 Equilibria and Thermochemistry Answers to Problems Problem 1.1 A hydrocarbon, RH, can be isomerized in reversible reactions into two isomeric compounds P1 and P2 with the same heat of reaction. Both have C1 symmetry. P1 is a rigid molecule, and P2 is a flexible one adopting several conformations of similar stability. Which product will be preferred at equilibrium? Answer Products P1 and P2 equilibrate with RH in reversible reactions at temperature T.Thepreferredproductwillbe T ⇆ T T that for which the free energy of reaction ΔrG (reactants product P1 or P2) =ΔrH − TΔrS is the smallest. T ⇆ T ⇆ T T If ΔrH (RH P1) =ΔrH (RH P2), the product with the largest entropy (S (P1), S (P2)), will be favored at equilibrium at temperature T. Entropy expresses the degree of freedom available to an ensemble of molecules of a given compound. It depends upon the number of different microscopic states available to these molecules, and this depends on the size of the molecules themselves (P1 and P2 have the same molecular weight as they are isomers of the starting material RH), and the energy separation between the microscopic states available to them. k k The microscopic states that contribute most to the entropy are translational and rotational states for which the energy separation between quantum levels are the smallest. A rigid molecule is a molecule that does not equi- librate with several conformers of similar stabilities. It has only one energy minimum along all the coordinates that describe its geometrical deformations, including torsion about its -and-bonds and bond elongation.
    [Show full text]
  • Organo-Transition Metal Chemistry Some Studies
    ORGANO-TRANSITION METAL CHEMISTRY SOME STUDIES IN ORGANO-TRANSITION METAL CHEMISTRY By COLIN CRINDROD, B.Sc. A Thesis Submitted to the Faculty of Graduate Studies in Partial Fulfilment of the Requirements for the Degree Master of Science McMaster University October 1966 MASTER OF SCIENCE (1966) MCMASTER UNIVERSITY (Chemistry) Hamilton, Ontario TITLE: Some Studies in Organo-Transition Metal Chemistry AUTHOR: Colin Grindrod, B.Sc. (Manchester University) SUPERVISOR: Dr. P. M. Maitlis NUMBER OF PAGES: iv, 71 SCOPE AND CONTENTS: The work described is an extension of the ligand-transfer reactions of substituted cyclobutadienes and cyclopentadienyls previously carried out by Maitlis et al. Efforts were directed particularly to ligand­ transfer reactions of n-allyl-transition metal complexes. The reactions of organic halides with metal carbonyls were also studied in attempts to isolate new organometallic derivatives. (ii) ACKNOWLEDGEMENTS The author wishes to express his sincere gratitude for the stimulating advice and constant encouragement provided by Dr. P. M. Maitlis, under whose guidance this work was carried out. Thanks are also extended to Imperial Oil Co. Ltd. for providing the financial support which made this study possible. (iii) CONTENTS Page INTRODUCTION Historical................................... 1 Cyclobutadiene-transition metal oompeeees... 7 Ligand-transfer reactions................... 10 Allyl-transition metal complexes............ 13 Reactions of metal carbonyls with organic halides.... ..................... 25 DISCUSSION
    [Show full text]
  • Metal Carbonyls
    MODULE 1: METAL CARBONYLS Key words: Carbon monoxide; transition metal complexes; ligand substitution reactions; mononuclear carbonyls; dinuclear carbonyls; polynuclear carbonyls; catalytic activity; Monsanto process; Collman’s reagent; effective atomic number; 18-electron rule V. D. Bhatt / Selected topics in coordination chemistry / 2 MODULE 1: METAL CARBONYLS LECTURE #1 1. INTRODUCTION: Justus von Liebig attempted initial experiments on reaction of carbon monoxide with metals in 1834. However, it was demonstrated later that the compound he claimed to be potassium carbonyl was not a metal carbonyl at all. After the synthesis of [PtCl2(CO)2] and [PtCl2(CO)]2 reported by Schutzenberger (1868) followed by [Ni(CO)4] reported by Mond et al (1890), Hieber prepared numerous compounds containing metal and carbon monoxide. Compounds having at least one bond between carbon and metal are known as organometallic compounds. Metal carbonyls are the transition metal complexes of carbon monoxide containing metal-carbon bond. Lone pair of electrons are available on both carbon and oxygen atoms of carbon monoxide ligand. However, as the carbon atoms donate electrons to the metal, these complexes are named as carbonyls. A variety of such complexes such as mono nuclear, poly nuclear, homoleptic and mixed ligand are known. These compounds are widely studied due to industrial importance, catalytic properties and structural interest. V. D. Bhatt / Selected topics in coordination chemistry / 3 Carbon monoxide is one of the most important π- acceptor ligand. Because of its π- acidity, carbon monoxide can stabilize zero formal oxidation state of metals in carbonyl complexes. 2. SYNTHESIS OF METAL CARBONYLS Following are some of the general methods of preparation of metal carbonyls.
    [Show full text]
  • The Use of Iron Carbonyl Complexes in Organic
    THE USE OF IRON CARBONYL COMPLEXES IN ORGANIC SYNTHESIS a thesis presented by GARY DAVID ANNIS in partial fulfilment of the requirements for the award of the degree of DOCTOR OF PHILOSOPHY OF THE UNIVERSITY OF LONDON WHIFFEN LABORATORY CHEMISTRY DEPARTMENT IMPERIAL COLLEGE LONDON SW7 2AY. AUGUST/ 1979. 1. CONTENTS page ABSTRACT 3 ACKNOWLEDGEMENTS 5 INTRODUCTION 6 1. CARBONYL INSERTION REACTIONS 8 (a)Sodium Tetracarbonylferrates 8 (b)Sodium Hydridotetracarbonylferrates 13 (c)Lithium Acyl Iron Complexes 14 (d)Magnesium Acyl Iron Complexes 15 (e)Potassium Tetracarbonylferrates 16 (f)Miscellaneous Ferrates 17 CARBONYL INSERTION REACTIONS USING DICARBONYL- PENTAHAPTOCYCLOPENTADIENYL IRON COMPLEXES 20• CARBONYL INSERTION REACTIONS USING IRON CARBONYLS 25 (a)Reactions of Simple Vinyl Cyclopropanes with Iron Carbonyls 25 (b)The Reactions of More Complex Hydrocarbons with Iron Carbonyls 33 (c)Diene Complexes of Iron Carbonyls 38 (d)The Reaction of Hetero Systems with Iron Carbonyls 46 (e)Coupling of Olefins using Iron Carbonyls 52 2. RING FORMING REACTIONS USING IRON CARBONYLS 55 3. FUNCTIONAL GROUP REMOVAL AND REDUCTION USING IRON CARBONYLS 58 4. ISOMERISATION AND REARRANGEMENTS USING IRON CARBONYLS 61 2. page 5. OTHER METHODS OF C—C BOND FORMATION USING IRON CARBONYLS 62 6. FUNCTIONAL GROUP PROTECTION USING IRON CARBONYLS 64 7. ACTIVATION OF ALKENES USING IRON CARBONYLS 66 REFERENCES 67 RESULTS AND DISCUSSION 77 Preparation of Lactones from Ferrolactones 78 Mass Spectral and N.m.r. Data of the Ferrolactones 99 Mechanism of Formation of Ferrolactones 104 Mechanism of the Oxidation of Ferrolactones 106 Structure of Iron Carbonyl Complexes 110 Preparation of Lactams from Ferrolactams 115 Mechanism for Formation and Oxidation of Ferrolactams 122 Preparation of NH Lactams 123 Miscellaneous Chemistry 126 EXPERIMENTAL 130 REFERENCES 162 3.
    [Show full text]
  • Download This Article PDF Format
    Dalton Transactions View Article Online PERSPECTIVE View Journal | View Issue Synthesis of organometallic pentalenide complexes Cite this: Dalton Trans., 2019, 48, 5107 Stuart M. Boyt, a Niko A. Jenek a and Ulrich Hintermair *a,b While a number of reports have established the unique structures and electronic properties of mono- and dinuclear pentalenide complexes of s, p, d and f block elements, access to these intriguing compounds is Received 15th February 2019, restricted by synthetic challenges. Here we review various strategies for the synthesis, functionalisation Accepted 12th March 2019 and (trans)metalation of pentalenide complexes from a practical point of view, pointing out promising DOI: 10.1039/c9dt00689c avenues for future research that may allow wider access to novel pentalenide complexes for application in rsc.li/dalton many different areas. units isolated from each other by a cyclobutane linkage 1. Introduction 2 Creative Commons Attribution 3.0 Unported Licence. (Fig. 1). Pentalene (Pn,C8H6) has long fascinated theoretical and syn- Due to its inherent instability, Pn itself is of limited use for thetic organic chemists for its anti-aromatic 8π system.1 Unlike applications in synthetic chemistry.† However, similar to other π π the flexible 8 cyclooctatetraene (COT,C8H8) Pn is planar due 8 anti-aromatics like COT, double reduction of Pn to pentale- 2− 2− to its bicyclic ring structure, enforcing its anti-aromaticity. As a nide (Pn ,C8H6 ) generates a stable 10π aromatic system result, it readily dimerises above −196 °C to form two fulvene that presents itself as a useful π ligand for organometallic chemistry.4 Its dianionic nature makes it a stronger donor for Lewis-acidic metals than neutral 10π hydrocarbons such as This article is licensed under a aDepartment of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK.
    [Show full text]
  • Dissertation
    CO-Sources for the Liberation of Cellular Messenger Molecules Dissertation Zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) vorgelegt dem Rat der Chemisch-Geowissenschaftlichen Fakultät der Friedrich-Schiller-Universität Jena von Master-Chem. Taghreed Jazzazi geboren am 16.07.1985 in Amman/Jordan 1. Gutachter: Prof. Dr. Matthias Westerhausen, FSU Jena 2. Gutachter: Prof. Dr. Rainer Beckert, FSU Jena Tag der öffentlichen Verteidigung: 12. June 2013 2 DEDICATIONS To Candles of my life, my husband Father and Mother My Brother and Sisters All my Family With Love i Table of Contents Dedication…………………………………………………………………………… i Table of Contents………………………………………………………………….... ii List of Figures……………………………………………………………………….. v List of Schemes……………………………………………………………………... ix List of Tables…………………………………………………………........................ xi Chapter One 1. Introduction 1 1.1 Carbon monoxide (CO)…………………………………………………. 1 1.2 Carbonyl chemistry …………………………………………………....... 2 1.2.1 Metal carbonyl complexes ……………………………………………... 2 1.2.2 Preparation of metal carbonyl complexes ……………………………. 4 1.2.3 Reaction of metal carbonyl complexes ……………………………….. 5 1.2.4 Coordination modes of carbonyl ligands in metal carbonyl 8 complexes.......................................................................................... 1.3 Carbon monoxide (CO) releasing molecules (CORMs)..................... 10 1.3.1 CORMs in general ……………………………..................................... 10 1.3.2 Some selected CORMs ………………………………………………… 11 1.3.2.1 Molybdenum CORMs……………………………………………………
    [Show full text]
  • Investigations Into the Synthesis of Dendralene Percursors And
    thesis titled "lnvestigations into the Synthesis of Dendralene Precursors and EPicatechins." submitted for the Degree of Doctor of Philosophy (Ph.D') by Penelope Jane Kerr B.Sc. (Hons.) from the Department of GhemistrY The University of Adelaide ADELAIDE UNIVERSITY AUSTRALIA G;UGE April 2001 Preface Gontents Title page (i) Contents (ii) Abstract (iv) Statement of OriginalitY (vi) Acknowledgments (vii) paft 1 "lnvestigations into the Synthesis of Substituted Dendralene - Precursors" Chapter 1 1.1 lntroduction 1 1 .ll Results and Discussion 1.lll Experimental 1.lv Conclusions 1.V Future Work 1.Vl References Part 2 "lnvestigations into the Synthesis of Epicatechins" Benefits and Chapter 1 "Green Tea Catechins; their lmpoftance, 68 Detection" 1.1 Green Tea Catechins 1 .ll The importance and Benefits of Green Tea Consumption 1 .llt A Novel Radioenzymatic Assay for the Detection of Green Tea Catechins Chapter 2 "Current Extraction and Purification Procedures of Green Tea" 2.1 lntroduction 1-l 2.ll Results and Discussion 2.lll Conclusions ll Preface Chapter 3 "The Manipulation of (+)-Catechin to form Epicatechins" 3.1 lntroduction s1 3.ll Results and Discussion 3.lll Conclusions Chapter 4 "The Formation of Epicatechin and Epicatechin Gallate Precursors" q6 4.1 lntroduction 4,ll Results and Discussion 4.lll Conclusions Ghapter 5 "lnvestigations into the Synthesis of Epicatechins" Section A 5A.l lntroduction 11+ 5A.ll Results and Discussion 5A.lll Conclusions Section B 58.l lntroduction-Route A 117 58.ll Results and Discussion-Route A 58.lll lntroduction-Route B 5B.IV Results and Discussion-Route B 5B.V Conclusions Chapter 6 "Experimental" ßt References 263 Preface Abstract Two heterocyclic chemistry projects were investigated to establish whether new methods for the synthesis of substituted dendralene precursors and green tea catechins were viable.
    [Show full text]