Innovative Technologies for Nuclear Fuel Cycles and Nuclear Power the Originating Section of This Publication in the IAEA Was

Total Page:16

File Type:pdf, Size:1020Kb

Innovative Technologies for Nuclear Fuel Cycles and Nuclear Power the Originating Section of This Publication in the IAEA Was UNEDITED PROCEEDINGS 24/P International Conference held in Vienna, 23–26 June 2003 organized by the International Atomic Energy Agency in co-operation with the Electric Utility Cost Group Inc., International Science and Technology Centre, World Energy Council and World Nuclear Association Innovative Technologies for Nuclear Fuel Cycles and Conference & Symposium Papers Nuclear Power UNEDITED PROCEEDINGS International Conference held in Vienna, 23–26 June 2003 organized by the International Atomic Energy Agency in co-operation with the Electric Utility Cost Group Inc., International Science and Technology Centre, World Energy Council and World Nuclear Association Innovative Technologies for Nuclear Fuel Cycles and Nuclear Power The originating Section of this publication in the IAEA was: International Project on Innovative Nuclear Reactors and Fuel Cycle (INPRO) Nuclear Power Technology Development Section International Atomic Energy Agency Wagramer Strasse 5 P.O. Box 100 A-1400 Vienna, Austria INNOVATIVE TECHNOLOGIES FOR NUCLEAR FUEL CYCLES AND NUCLEAR POWER IAEA-CSP-24 IAEA, VIENNA, 2004 ISBN 92–0–110704–8 ISSN 1563–0153 © IAEA, 2004 Printed by the IAEA in Austria September 2004 FOREWORD Nuclear power is a significant contributor to the global supply of electricity, and continues to be the major source that can provide electricity on a large scale with a comparatively minimal impact on the environment. But it is evident that, despite decades of experience with this technology, nuclear power today remains mainly in a holding position, with its future somewhat uncertain primarily due to concerns related to waste, safety and security. One of the most important factors that would influence future nuclear growth is the innovation in reactor and fuel cycle technologies to successfully maximize the benefits of nuclear power while minimizing the associated concerns. The International Conference on Innovative Technologies for Nuclear Fuel Cycles and Nuclear Power, organized in June 2003 by the IAEA in co-operation with the World Nuclear Association, the World Energy Council, the International Science and Technology Center and the Electric Utilities Cost Group, comes at a pivotal point in the history of nuclear energy. Progress has been made recently on many fronts related to nuclear power, including waste disposal, license extension, and safety and security upgrades. Many countries are engaged in innovation projects and while most of the current expansion in nuclear energy is taking place in East and South Asia, recent years have witnessed statements and actions in North America, Europe and elsewhere that support a renewed consideration of the merits of nuclear power. The conference included talks on specific topics by 21 invited speakers drawn from 11 Member States as well as 21 oral presentations and 26 poster presentations of accepted papers. Part of the opening session and two half-day sessions were devoted to panel discussions in which 23 panelists from 9 Member States and 5 international organizations took part. All relevant aspects of innovative technologies for nuclear fuel cycles and nuclear power were discussed in an open, frank and objective manner. These proceedings contain a summary of the results of the conference, invited and contributed papers, and summaries of panel discussions. The IAEA wishes to thank the invited speakers, panelists, authors, programme committee members and all the participants for their contributions in making this conference a success. The IAEA officers responsible for this publication were V.M.R. Koorapaty and J. Kupitz of the Division of Nuclear Power and F. Fukuda of the Division of Nuclear Fuel Cycle and Waste Technology. EDITORIAL NOTE The papers in these proceedings are reproduced as submitted to the Publishing Section and have not undergone rigorous editorial review by the IAEA. The views expressed do not necessarily reflect those of the IAEA, the governments of the nominating Member States or the nominating organizations. The use of particular designations of countries or territories does not imply any judgement by the publisher, the IAEA, as to the legal status of such countries or territories, of their authorities and institutions or of the delimitation of their boundaries. The mention of names of specific companies or products (whether or not indicated as registered) does not imply any intention to infringe proprietary rights, nor should it be construed as an endorsement or recommendation on the part of the IAEA. The authors are responsible for having obtained the necessary permission for the IAEA to reproduce, translate or use material from sources already protected by copyrights. CONTENTS SUMMARY ............................................................................................................................... 1 OPENING ADDRESSES AND PANEL ON CONFERENCE THEME (Session 1) Opening address: Nuclear energy: The role of innovation ...................................................... 17 M. ElBaradei Perspective of a developing country with expanding nuclear power programme ................... 21 A. Kakodkar Innovative nuclear fuel cycles for the future: Why do we pursue nuclear fuel recycling? Expectations towards fast reactors.............................................................. 29 Y. Fujjie NEEDS, PROSPECTS AND CHALLENGES FOR INNOVATIONS (Session 2) Energy demands and the nuclear role (IAEA-CN-108/KN61) ................................................ 35 J. Murray Nuclear energy and sustainable development (IAEA-CN-108/KN63).................................... 45 W.C. Turkenburg Economic requirements for innovative technologies — Trends in U.S. nuclear power production costs (IAEA-CN-108/KN64)..................................................... 57 C.L. Cantrell Innovation in nuclear technology and the role of the IAEA (IAEA-CN-108/KN65 )............. 65 V.M. Mourogov EVOLUTION OF TECHNICAL, SOCIAL, ECONOMIC AND POLITICAL CONDITIONS (Session 3) What do societies expect from innovative nuclear technologies? (IAEA-CN-108/KN66) ..... 79 B. Barré Technical aspects of innovative nuclear systems including reliability and safety (IAEA-CN-108/KN68) ...................................................................................... 85 Yu. G. Vishnevskiy, A.M. Dmitriev Environmental effects including all the stages of the fuel cycle (IAEA-CN-108/KN69) ....... 93 In Soon Chang Economic viability of innovative nuclear reactor and fuel cycle technologies (IAEA-CN-108/KN70)................................................................ 107 K. Samejimaa, T. Suzukia, H. Yokoyamaa, A. Kurosawab, Y. Tabaru Proliferation resistance: Political factors (IAEA-CN-108/KN71) T. Rauf PANEL ON CHALLENGES FOR THE DEPLOYMENT OF INNOVATIVE TECHNOLOGIES (Session 4) Results are included in Section 7 of the summary at the beginning of the publication INTERNATIONAL PROGRAMMES ON INNOVATIVE NUCLEAR SYSTEMS (Session 5) History and status of the Generation IV International Forum (IAEA-CN-108/72) ............... 127 S. Guindon Background and structure of the international project on innovative nuclear reactors and fuel cycles (INPRO) (IAEA-CN-108/75)....................... 135 V.M. Mourogov, J. Kupitz Results achieved within the international project on innovative nuclear reactors and fuel cycles (INPRO) (IAEA-CN-108/76)......................................... 143 V.M. Mourogov, J. Kupitz, F. Depisch U.S.–RUSSIAN collaborative program (IAEA-CN-108/78)................................................. 157 A. Gagarinski U.S. Department of Energy international nuclear energy research initiative (IAEA-CN-108/79) .............................................................................. 165 L. Herrera, S. Schuppner INNOVATIVE NUCLEAR SYSTEMS AND RELATED R&D PROGRAMMES (Session 6) Innovative Nuclear Systems And Related R&D Programmes (Session 6.1) Innovative reactor technologies — Enabling success (IAEA-CN-108/6) ............................. 171 J.M. Hopwood, M. Pakan, N. Fairclough, P. Allsop Overview of the CEA programme on high temperature gas cooled nuclear energy systems: The “gas technology path” (IAEA-CN-108/9) ....................................... 181 F. Carré, P. Anzieu, P. Billot, P. Brossard, G.-L. Fiorini Nuclear options for industrialized and developing countries results of INOVACT project (IAEA-CN-108/10) ............................................................................ 191 P. Loriette, B. Maliverney Innovative concept of reduced-moderation water reactor (RMWR) for effective fuel utilization through recycling (IAEA-CN-108/17)....................................... 205 T. Okubo, T. Iwamura, R. Takeda, T. Yamauchi, H. Okada State of the art of second phase feasibility study on commercialized fast reactor cycle system (IAEA-CN-108/18) ................................................................... 219 K. Sato Nuclear power development on the basis of new nuclear reactor and fuel cycle concepts (IAEA-CN-108/32)............................................................................ 243 E.O. Adamov, A.I. Filin, V.V. Orlov CAREM concept: A cost effective innovative LWR for small and medium utilities (IAEA-CN-108/49)................................................................................. 259 D. Delmastro, M. Giménez, M. Schlamp, P. Florido, J. Bergallo The IRIS reactor design — An international co-operative project and the Brazilian participation (IAEA-CN-108/53)....................................................................... 273 A.C.O. Barroso, B.D.
Recommended publications
  • A Low Cost Supercritical Nuclear + Coal 3.0 Gwe Power Plant
    n. 461 August 2012 A low cost supercritical Nuclear + Coal 3.0 Gwe power plant Pedro Cosme Costa Vieira 1 1 FEP-UP, School of Economics and Management, University of Porto A low cost supercritical Nuclear + Coal 3.0 Gwe power plant. Pedro Cosme Costa Vieira, [email protected] Faculdade de Economia do Porto, R. Dr. Roberto Frias, 80, 4200-464 Porto, Portugal Abstract: The rapid growth in the consumption of electricity in China and India has been covered at 80% by coal, which has the side effect of emitting CO2 to the atmosphere. The alternative is the use of nuclear energy that, to become unquestionably competitive, must use supercritical water as coolant. The problem is that the inflow temperature of a supercritical turbine must be at least 500 ºC that is impossible to attain using the mainstream PWR and it is uneconomical to accomplish in a pressure tubes similar to the CANDU and the RBMK reactors. In this paper, I propose a simple but important innovation that is the coupling of the nuclear reactor to a coal fired heater. With this apparently small improvement, it becomes feasible to build a multi-tube slightly supercritical pressure light water reactor where the outflow low temperature of the nuclear reactor, ≤ 400 ºC, results in a simple nuclear reactor. The design I propose will originate a 50% decrease in the cost of the electricity produced using nuclear energy. Keywords: Electricity production, Supercritical water reactor, Nuclear energy, Coal fired plant, Multi-tube reactor, SCWR. 1. Introduction. Every candidate to the Miss Universe Contest whishes to contribute for the end of war and starvation all over the World, above all, when child are the victims.
    [Show full text]
  • 2012/054167 Al
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date _ . 26 April 2012 (26.04.2012) 2012/054167 Al (51) International Patent Classification: (74) Agent: SEYMOUR, Michael, J.; Babcock & Wilcox G21C 3/334 (2006.01) G21C 3/32 (2006.01) Nuclear Energy, Inc., Law Dept - Intellectual Property, 20 South Van Buren Avenue, Barberton, OH 44203 (US). (21) International Application Number: PCT/US201 1/052495 (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, (22) International Filing Date: AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, 2 1 September 201 1 (21 .09.201 1) CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, (25) Filing Language: English DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, (26) Publication Language: English KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, (30) Priority Data: ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, 12/909,252 2 1 October 2010 (21 .10.2010) US NO, NZ, OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, (71) Applicant (for all designated States except US): BAB- TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, COCK & WILCOX NUCLEAR ENERGY, INC. [US/ ZM, ZW. US]; 800 Main Street, Lynchburg, VA 24504 (US).
    [Show full text]
  • Separating Indian Military and Civilian Nuclear Facilities
    Separating Indian Military and Civilian Nuclear Facilities Institute for Science and International Security (ISIS) By David Albright and Susan Basu December 19, 2005 The agreement announced on July 18, 2005 by President George Bush and Prime Minister Manmohan Singh regarding the establishment of a U.S.-India “global partnership” will require changes to U.S. non-proliferation laws and policies and could dramatically increase nuclear and nuclear-related commerce with India. Part of this agreement is an Indian commitment to separate its civil and military nuclear programs and put declared civil facilities under international safeguards. Safeguards should apply in perpetuity, with minor, standard exceptions that do not include use in nuclear explosives or weapons. In addition, safeguarded nuclear material should not co-mingle with unsafeguarded nuclear material in any facility, unless this unsafeguarded nuclear material also comes under safeguards. This latter condition is an example of “contamination,” a key principle of safeguards. Although these conditions do not appear to have been accepted by India, they are necessary to prevent civil nuclear cooperation from benefiting India’s nuclear weapons program. To accomplish these goals, India needs to place all its nuclear facilities not directly associated with nuclear weapons production or deployment under safeguards. India has many civil nuclear facilities in this category. In addition, India should place its nuclear facilities associated with its naval nuclear fuel cycle under international safeguards. Exempting such naval-related facilities from safeguards would undermine efforts to safeguard such facilities in non-nuclear weapon states party to the Nuclear Non-Proliferation Treaty. Brazil accepted safeguards on its prototype naval reactor and its enrichment plants at Aramar dedicated to the production of naval reactor fuel.
    [Show full text]
  • Design and Analysis of a Nuclear Reactor Core for Innovative Small Light Water Reactors
    0 Department of Nuclear Engineering And Radiation Health Physics DESIGN AND ANALYSIS OF A NUCLEAR REACTOR CORE FOR INNOVATIVE SMALL LIGHT WATER REACTORS. By Alexey I. Soldatov A DISSERTATION Submitted to Oregon State University March 9, 2009 1 AN ABSTRACT OF THE DISSERTATION OF Alexey I. Soldatov for the degree of Doctor of Philosophy in Nuclear Engineering presented on March 9, 2009. Title: Design and Analysis of a Nuclear Reactor Core for Innovative Small Light Water Reactors. Abstract approved: Todd S. Palmer In order to address the energy needs of developing countries and remote communities, Oregon State University has proposed the Multi-Application Small Light Water Reactor (MASLWR) design. In order to achieve five years of operation without refueling, use of 8% enriched fuel is necessary. This dissertation is focused on core design issues related with increased fuel enrichment (8.0%) and specific MASLWR operational conditions (such as lower operational pressure and temperature, and increased leakage due to small core). Neutron physics calculations are performed with the commercial nuclear industry tools CASMO-4 and SIMULATE-3, developed by Studsvik Scandpower Inc. The first set of results are generated from infinite lattice level calculations with CASMO-4, and focus on evaluation of the principal differences between standard PWR fuel and MASLWR fuel. Chapter 4-1 covers aspects of fuel isotopic composition changes with burnup, evaluation of kinetic parameters and reactivity coefficients. Chapter 4-2 discusses gadolinium self-shielding and shadowing effects, and subsequent impacts on power generation peaking and Reactor Control System shadowing. 2 The second aspect of the research is dedicated to core design issues, such as reflector design (chapter 4-3), burnable absorber distribution and programmed fuel burnup and fuel use strategy (chapter 4-4).
    [Show full text]
  • India's Stocks of Civil and Military Plutonium and Highly Enriched Uranium, End 2014
    PlutoniumPlutonium andand HighlyHighly EnrichedEnriched UraniumUranium 20152015 INSTITUTEINSTITUTE FOR FOR SCIENCE SCIENCE AND AND INTERNATIONAL INTERNATIONAL SECURITY SECURITY India’s Stocks of Civil and Military Plutonium and Highly Enriched Uranium, End 20141 By David Albright and Serena Kelleher-Vergantini November 2, 2015 1 This report is part of a series on national and global stocks of nuclear explosive materials in both civil and military nuclear programs. This work was generously funded by a grant from the Nuclear Threat Initiative (NTI). This work builds on earlier work done at ISIS by one of the authors. 440 First Street NW, Suite 800, Washington, DC 20001 TEL 202.547.3633 Twitter @TheGoodISIS E-MAIL [email protected] • www.isis-online.org Contents Summary .............................................................................................................................................. 2 1. India’s Civil Plutonium Stockpile .................................................................................................... 3 1.1 Civil Plutonium Production ........................................................................................................ 3 1.2 Plutonium Separation ................................................................................................................. 5 1.2.1 India’s Fast Breeder Reactors .............................................................................................. 6 1.3 Unirradiated Plutonium Inventory .............................................................................................
    [Show full text]
  • Sensitivity and Uncertainty Analysis of Multiphysics Nuclear Reactor Core Depletion
    SENSITIVITY AND UNCERTAINTY ANALYSIS OF MULTIPHYSICS NUCLEAR REACTOR CORE DEPLETION by Andrew Scott Bielen A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Nuclear Engineering and Radiological Sciences) in the University of Michigan 2015 Doctoral Committee: Professor Thomas J. Downar , Co-Chair Associate Professor Annalisa Manera, Co-Chair Associate Professor Krzysztof J. Fidkowski Professor John C. Lee Joseph L. Staudenmeier, US Nuclear Regulatory Commission For my wife, Lisa ii AKNOWLEDGEMENTS I would like to acknowledge the contributions of the many that helped and guided me through this Ph.D. process. First and foremost are my co-advisors Prof. Tom Downar and Prof. Annalisa Manera, whose guidance and support were instrumental in the completion of this dissertation. I would also like to thank my committee members, Prof. John Lee and Prof. Krzysztof Fidkowski, and Dr. Joe Staudenmeier of the US Nuclear Regulatory Commission, whose feedback on this dissertation was invaluable. Additionally, I thank my branch chief at the NRC, Dr. Chris Hoxie, for his patience, understanding, and support during the completion of this work. In addition to these members, I must also thank the following: Dr. Patrick Raynaud of the US NRC and Ken Geelhood of Pacific Northwest National Laboratory, for conversations and guidance on working with and developing the FRAPCON fuel performance code for coupled neutronics and uncertainty analysis was crucial; Dr. Andrew Ward of the University of Michigan, for assisting me with the necessary PARCS/PATHS development and cross section generation using HELIOS; Dr. Tim Drzewiecki of the US NRC for assistance in providing the computer resources required to complete the sensitivity and uncertainty portion of this thesis; and Michael Rose and Thomas Saller at the University of Michigan for supporting me on my visits back to Ann Arbor.
    [Show full text]
  • Nuclear Energy and the Three Mile Island Unit Two Accident Lesson Plans and Resource Guide
    Nuclear Energy and the Three Mile Island Unit Two Accident Lesson Plans and Resource Guide © 2009 EFMR Monitoring Group, Inc. 4100 Hillsdale Road, Harrisburg, PA 17112 www.efmr.org 1 Nuclear Energy and the Three Mile Island Unit Two Accident Lesson Plans and Resource Guide © 2009 EFMR Monitoring Group, Inc. 4100 Hillsdale Road Harrisburg, PA 17112 www.efmr.org (717)541-1101 Fax (717) 541-5487 Coordinator: Eric Epstein Authors: Diane Little Janna Match Illustrator: Ezra Match 2 Contents Background Information Introduction .........................................................................4 Energy Resources .. ………………………………………...…4 Nuclear Energy ...............……………………………………..5 The TMI Nuclear Reactors …………………………………....5 Nuclear Waste and Environmental Impacts .........................6 The TMI Unit Two Accident …………………………………..7 Elementary Lesson Plans Activity 1: Introduction to Energy …………………………. ...10 Activity 2: A Chain Reaction …....…………………………....11 Activity 3: Steam Turns Turbines ……………………….…....12 Activity 4: Reviewing Fission and Introducing the TMI Unit Two Accident ………………………….....12 Activity 5: Loss of Coolant in the TMI Unit Two Accident ….14 Activity 6: The Effects of the TMI Accident: Facts and Opinions …………….……...…………...15 Middle School Lesson Plans Activity 1: Comparing Energy Resources …………..……….16 Activity 2: Nuclear Reactor Model Demonstration ….............17 Activity 3: Simulating the TMI-2 Accident …………………….19 Activity 4: The Effects of the Accident ……………….….……20 Activity 5: Comparing the TMI-2 Accident to the
    [Show full text]
  • Full Core Conversion and Operational Experience with LEU Fuel of the DALAT Nuclear Research Reactor
    RERTR 2014 – 35TH INTERNATIONAL MEETING ON REDUCED ENRICHMENT FOR RESEARCH AND TEST REACTORS OCTOBER 12-16, 2014 IAEA VIENNA INTERNATIONAL CENTER VIENNA, AUSTRIA Full Core Conversion and Operational Experience with LEU Fuel of the DALAT Nuclear Research Reactor NGUYEN, Nhi Dien – LUONG, Ba Vien – LE, Vinh Vinh – HUYNH, Ton Nghiem – NGUYEN, Kien Cuong Reactor Center - Dalat Nuclear Research Institute – Vietnam Atomic Energy Institute 01 Nguyen Tu Luc St, P.O.Box 61100, Dalat, Lamdong – Vietnam ABSTRACT After successful in full core conversion from HEU to LEU fuel at the end of 2011, safe operation and utilization of the Dalat Nuclear Research Reactor (DNRR) was emphasized and improved. During carrying out commissioning program for reactor start up, reactor characteristics parameters were measured and compared with design calculated data. Good agreement between experimental data and calculated data was archived and the working core has met all safety and exploiting requirements. Fuel and in-core management of LEU core were implemented by using MCNP-REBUS linkage computers code system with visual interface to make friendly using. The neutron trap was modified to serve for producing I-131 by increasing 6 containers. Other irradiation channels inside the reactor core and horizontal beam tubes are being effectively used for neutron activation analysis, fundamental research, nuclear data measurement, neutron radiography and nuclear structure study. 1. Introduction Physics and energy start-up of the Dalat Nuclear Research Reactor (DNRR) for full core conversion to low enriched uranium (LEU) fuel were performed from November 24th, 2011 until January 13th, 2012. The program provides specific instructions for manipulating fuel assemblies (FAs) loading in the reactor core and denotes about procedures for carrying out measurements and experiments during physics and energy start-up stages to guarantee that loaded LEU FAs in the reactor core are in accordance with calculated loading diagram and implementation necessary measurements to ensure for safety operation of DNRR.
    [Show full text]
  • Advances in Small Modular Reactor Technology Developments
    Advances in Small Modular Reactor Technology Developments Advances in Small Modular Reactor Technology Developments Technology in Small Modular Reactor Advances A Supplement to: IAEA Advanced Reactors Information System (ARIS) 2018 Edition For further information: Nuclear Power Technology Development Section (NPTDS) Division of Nuclear Power IAEA Department of Nuclear Energy International Atomic Energy Agency Vienna International Centre PO Box 100 1400 Vienna, Austria Telephone: +43 1 2600-0 Fax: +43 1 2600-7 Email: [email protected] Internet: http://www.iaea.org Printed by IAEA in Austria September 2018 18-02989E ADVANCES IN SMALL MODULAR REACTOR TECHNOLOGY DEVELOPMENTS 2018 Edition A Supplement to: IAEA Advanced Reactors Information System (ARIS) http://aris.iaea.org DISCLAIMER This is not an official IAEA publication. The material has not undergone an official review by the IAEA. The views expressed do not necessarily reflect those of the International Atomic Energy Agency or its Member States and remain the responsibility of the contributors. Although great care has been taken to maintain the accuracy of information contained in this publication, neither the IAEA nor its Member States assume any responsibility for consequences which may arise from its use. The use of particular designations of countries or territories does not imply any judgement by the publisher, the IAEA, as to the legal status of such countries or territories, of their authorities and institutions or of the delimitation of their boundaries. The mention of names of specific companies or products (whether or not indicated as registered) does not imply any intention to infringe proprietary rights, nor should it be construed as an endorsement or recommendation on the part of the IAEA.
    [Show full text]
  • Fact Sheet on U.S. Nuclear Powered Warship (NPW) Safety
    Fact Sheet on U.S. Nuclear Powered Warship (NPW) Safety 1. Commitments of the U.S. Government about the Safety of U.S. NPWs U.S. Nuclear Powered Warships (NPWs) have safely operated for more than 50 years without experiencing any reactor accident or any release of radioactivity that hurt human health or had an adverse effect on marine life. Naval reactors have an outstanding record of over 134 million miles safely steamed on nuclear power, and they have amassed over 5700 reactor-years of safe operation. Currently, the U.S. has 83 nuclear-powered ships: 72 submarines, 10 aircraft carriers and one research vessel. These NPWs make up about forty percent of major U.S. naval combatants, and they visit over 150 ports in over 50 countries, including approximately 70 ports in the U.S. and three in Japan. Regarding the safety of NPWs visiting Japanese ports, the U.S. Government has made firm commitments including those in the Aide-Memoire of 1964; the Statement by the U.S. Government on Operation of Nuclear Powered Warships in Foreign Ports of 1964; the Aide-Memoire of 1967; and the Memorandum of Conversation of 1968. Since 1964 U.S. NPWs have visited Japanese ports (i.e., Yokosuka, Sasebo and White Beach) more than 1200 times. The results of monitoring in these ports conducted by the Government of Japan and the U.S. Government, respectively, demonstrate that the operation of U.S. NPWs does not result in any increase in the general background radioactivity of the environment. The U.S. Government states that every single aspect of these commitments continues to be firmly in place.
    [Show full text]
  • Research Reactor Core Conversion Guidebook
    IAEA-TECDOC-643 Research reactor core conversion guidebook Volume 5: Operations (Appendices L-N) INTERNATIONAL ATOMIC ENERGY AGENCY /A> RESEARCH REACTOR CORE CONVERSION GUIDEBOOK VOLUME 5: OPERATIONS (APPENDICES L-N) IAEA, VIENNA, 1992 IAEA-TECDOC-643 ISSN 1011-4289 Printed by the IAEA in Austria April 1992 FOREWORD In view of the proliferation concerns caused by the use of highly enriched uranium (HEU) and in anticipation that the supply of HEU to research and test reactors will be more restricted in the future, this guidebook has been prepared to assist research reactor operators in addressing the safety d licensinan g issue conversior fo s f theino r reactoU HE r f coreo e sus froe th m fuel to the use of low enriched uranium (LEU) fuel. Two previous guidebooks on research reactor core conversion have been publishe e IAEAe th firsTh .y tb d guidebook (IAEA-TECDOC-233) addressed feasibility studies and fuel development potential for light-water-moderated research reactors and the second guidebook (IAEA-TECDOC-324) addressed these topic r heavy-water-moderatefo s d research reactors. This guidebook n fivi , e volumes, addresses the effects of changes in the safety-related parameters of mixed cores and the converted core. It provides an information base which should enable the appropriate approvals processes for implementation of a specific conversion proposal, whether for a light or for a heavy water moderated research reactor greatle b o ,t y facilitated. This guidebook has been prepared at a number of Technical Committee Meetings and Consultants Meetings and coordinated by the Physics Section of the International Atomic Energy Agency, with contributions volunteerey b d different organizations.
    [Show full text]
  • TRANSITION from OPERATION to DECOMMISSIONING of CIRUS RESEARCH REACTOR by Rakesh Ranjan, S
    BARC/2018/E/005 BARC/2018/E/005 TRANSITION FROM OPERATION TO DECOMMISSIONING OF CIRUS RESEARCH REACTOR by Rakesh Ranjan, S. Bhattacharya, C.G . Karhadkar, Prasit Mandal, M.K. Ojha Reactor Operations Division 2018 BARC/2018/E/005 GOVERNMENT OF INDIA DEPARTMENT OF ATOMIC ENERGY BARC/2018/E/005 TRANSITION FROM OPERATION TO DECOMMISSIONING OF CIRUS RESEARCH REACTOR by Rakesh Ranjan*, S. Bhattacharya, C.G . Karhadkar, Prasit Mandal, M.K. Ojha [email protected]* Reactor Operations Division Reactor Group BHABHA ATOMIC RESEARCH CENTRE MUMBAI, INDIA 2018 BARC/2018/E/005 BIBLIOGRAPHIC DESCRIPTION SHEET FOR TECHNICAL REPORT (as per IS : 9400 - 1980) 01 Security classification : Unclassified 02 Distribution : External 03 Report status : New 04 Series : BARC External 05 Report type : Technical Report 06 Report No. : BARC/2018/E/005 07 Part No. or Volume No. : 08 Contract No. : 10 Title and subtitle : Transition from operation to decommissioning of Cirus research reactor 11 Collation : 82 p., 39 figs., 9 tabs. 13 Project No. : 20 Personal author(s) : Rakesh Ranjan; S. Bhattacharya, C.G. Karhadkar; Prasit Mandal; M.K. Ojha 21 Affiliation of author(s) : Reactor Operations Division, Bhabha Atomic Research Centre, Mumbai 22 Corporate author(s): Bhabha Atomic Research Centre, Mumbai - 400 085 23 Originating unit : Reactor Operations Division, Bhabha Atomic Research Centre, Mumbai 24 Sponsor(s) Name : Department of Atomic Energy Type : Government Contd... BARC/2018/E/005 30 Date of submission : April 2018 31 Publication/Issue date : April 2018 40 Publisher/Distributor : Head, Scientific Information Resource Division, Bhabha Atomic Research Centre, Mumbai 42 Form of distribution : Hard copy 50 Language of text : English 51 Language of summary : English 52 No.
    [Show full text]