Estudo Metagenômico De Arbovírus E Outros Vírus De Rna De Vertebrados Em Roedores E Marsupiais Procedentes Do Município De Viseu, No Estado Do Pará-Brasil

Total Page:16

File Type:pdf, Size:1020Kb

Estudo Metagenômico De Arbovírus E Outros Vírus De Rna De Vertebrados Em Roedores E Marsupiais Procedentes Do Município De Viseu, No Estado Do Pará-Brasil INSTITUTO EVANDRO CHAGAS NÚCLEO DE ENSINO E PÓS-GRADUAÇÃO PROGRAMA DE PÓS-GRADUAÇÃO EM VIROLOGIA NELIELMA GARCIA DE OLIVEIRA PRESTES ESTUDO METAGENÔMICO DE ARBOVÍRUS E OUTROS VÍRUS DE RNA DE VERTEBRADOS EM ROEDORES E MARSUPIAIS PROCEDENTES DO MUNICÍPIO DE VISEU, NO ESTADO DO PARÁ-BRASIL Ananindeua 2019 NELIELMA GARCIA DE OLIVEIRA PRESTES ESTUDO METAGENÔMICO DE ARBOVÍRUS E OUTROS VÍRUS DE RNA DE VERTEBRADOS EM ROEDORES E MARSUPIAIS PROCEDENTES DO MUNICÍPIO DE VISEU, NO ESTADO DO PARÁ-BRASIL Dissertação apresentada para obtenção de grau de Mestre em Virologia pelo Programa de Pós-Graduação em Virologia do Instituto Evandro Chagas Área de concentração: Biologia de Agravos por Agentes Virais na Amazônia Orientadora: Profª. Drª. Ana Cecilia Ribeiro Cruz Coorientador: Prof. Dr. Sandro Patroca da Silva Ananindeua 2019 Dados Internacionais de Catalogação na Publicação (CIP) Biblioteca do Instituto Evandro Chagas Prestes, Nelielma Garcia de Oliveira. Estudo metagenômico de arbovírus e outros vírus de RNA de vertebrados em roedores e marsupiais procedentes do município de Viseu no Estado do Pará- Brasil. / Nelielma Garcia de Oliveira Prestes. – Ananindeua, 2019. 88 f.: il.; 30 cm Orientadora: Dra. Ana Cecília Ribeiro Cruz Coorientador: Dr. Sandro Patroca da Silva Dissertação (Mestrado em Virologia) – Instituto Evandro Chagas, Programa de Pós-Graduação em Virologia, 2019. 1. Metagenômica viral. 2. Vírus de RNA. 3. Arbovírus. 4. Hepacivírus. I. Cruz, Ana Cecília Ribeiro, orient . II. Silva, Sandro Patroca da, coorient. III. Instituto Evandro Chagas. IV. Título. CDD: 579.2562 NELIELMA GARCIA DE OLIVEIRA PRESTES ESTUDO METAGENÔMICO DE ARBOVÍRUS E OUTROS VÍRUS DE RNA DE VERTEBRADOS EM ROEDORES E MARSUPIAIS PROCEDENTES DO MUNICÍPIO DE VISEU, NO ESTADO DO PARÁ-BRASIL Dissertação apresentada para obtenção de grau de Mestre em Virologia pelo Programa de Pós-Graduação em Virologia do Instituto Evandro Chagas Área de concentração: Biologia de Agravos por Agentes Virais na Amazônia Aprovado em: BANCA EXAMINADORA Dr. Rommel Thiago Juca Ramos Universidade Federal do Pará Drª. Lívia Carício Martins Instituto Evandro Chagas Drª. Flávia Barreto dos Santos Instituto Oswaldo Cruz Dr. Samir Mansour Mores Casseb (Suplente) Instituto Evandro Chagas Dedico este trabalho aos dois homens da minha vida. Meu esposo Edbruno Prestes por sua compreensão, amor e companheirismo e ao meu filho Benjamim Prestes que chegou a este mundo para completar a Graça de Deus em nossas vidas. AGRADECIMENTOS Em primeiro lugar ao Senhor Deus todo poderoso por permitir minha vivência neste mundo abençoado, por estar realizando grandes projetos em minha vida e por sempre estar conduzindo meus passos para crescer na fé. A minha orientadora Profa. Dra. Ana Cecília por todos os ensinamentos, paciência, orientação, apoio e por acreditar na minha capacidade profissional em conduzir esse projeto até o fim. Além de ser uma pessoa ótima, de grande coração e de vasto conhecimento. Ao meu co-orientador Dr. Sandro Patroca por sua incrível paciência, apoio e por seu vasto conhecimento transmitido com muita satisfação e de várias formas possíveis para melhor compreensão de minha parte e pela sua imensa dedicação em passar seus ensinamentos em biologia molecular e bioinformática. Ao meu esposo Edbruno Prestes pela sua paciência em mais essa etapa que passamos juntos, pelo seu companheirismo, cumplicidade, amorosidade e por sempre está ali para ouvir minhas queixas e me aconchegar em todos os momentos. Além de me apoiar e dar forças em tudo o que faço e ter sempre um sorriso e uma palavra confortadora nos momentos difíceis que passamos. Mesmo ainda muito bebê, ao meu filho Benjamim Prestes pelo momento único e abençoado que ele está me fazendo passar e sentir. Aos meus pais Leomário e Nelia por estarem ao meu lado nesse momento importante e incrível que estou vivendo e pelo apoio em minhas escolhas profissionais e a todos os meus irmãos que também nos bastidores torcem pela minha felicidade. As minhas colegas Andressa Aragão e Camila Braga por me deixarem acompanhar suas análises para aprender as técnicas necessárias. Além, é claro de muitos risos e papos descontraídos. Em especial a Andressa por ter separado um espaço em seu tempo para me ajudar em uma parte das análises. Ao Laboratório do Centro de Genômica e Biologia de Sistemas da Universidade Federal do Pará pela parceria e colaboração para esta pesquisa (Dr. Rommel Ramos). À CAPES e ao Instituto Evandro Chagas pelo fornecimento de subsídios financeiros necessários para realizar essa pesquisa; Ao Programa de Pós-Graduação em Virologia do Instituto Evandro Chagas “Paciência vale mais que valentia, e dominar a si mesmo vale mais que conquistar uma cidade” Provérbios 16, 32. RESUMO A metodologia metagenômica está em crescente desenvolvimento para a identificação de genomas virais, caracterizando as informações biológicas desses agentes sem necessidade de isolamento e cultivo em laboratório com o auxílio de tecnologias avançadas para a geração e processamento de milhões de leituras. Neste contexto propõe-se investigar a presença de arbovírus e outros vírus de RNA de vertebrados em roedores e marsupiais procedentes do município de Viseu, no Estado do Pará-Brasil. Um total de 10 amostras (fígado, vísceras e cérebro) de roedores e marsupiais foram submetidos a extração e purificação de RNA, síntese do DNA complementar (cDNA), sequenciamento através da tecnologia Illumina NextSeq e análise bioinformática. No geral os gêneros virais detectados neste trabalho foram: Ortobunyavirus, Hepacivirus, Gammaretrovirus, Betaretrovirus, Epsilonretrovirus, Alpharetrovirus, Pestivirus, Parapoxivirus, Amdoparvovirus , além de vírus de RNA não classificados em nenhum dos gêneros conhecidos. Este estudo apresentou diversidades de agentes virais, com predominância de gêneros da família Retroviridae e dessas detecções apenas o vírus Caraparu (CARV) membro do gênero Ortobunyavirus representa risco a saúde humana. A análise filogenética para os hepacivírus (Hepacivirus de roedor e Hepacivirus F ) detectados neste estudo, apresentaram similaridade com o Rodent Hepacivirus isolado do roedor da espécie Proechimys simispinosus , agrupando-se no mesmo clado. Os domínios da poliproteína apresentaram semelhança com os Hepacivirus nas regiões que codificam proteínas estruturais (Core e Env.), não estruturais (NS2, NS4b, NS5a_1a e NS5a_1b), com uma estrutura da peptidase (S29) responsável pela clivagem das proteínas estruturais e com um domínio que corresponde a família Flaviviriade (Flavi_DEAD). Diante disso, os achados deste estudo podem contribuir para o conhecimento científico sobre as comunidades virais que circulam em pequenos animais (roedores e marsupiais) nas proximidades da cidade de Viseu, mesmo que muitos deles não sejam nocivos para a saúde humana. Com isso, estudos contínuos nesses e em outros mamíferos devem ser realizados para obter informações das espécies virais circulantes e de possíveis novas descobertas de vírus e fontes de infecções zoonóticas, nessa e em outras regiões da Amazônia brasileira. Palavras-chave : Metagenômica viral; vírus de RNA; Arbovírus; Hepacivirus. ABSTRACT The metagenomics methodology is under development for the identification of viral genomes, characterizing the biological information of these agents without the need for isolation and cultivation in laboratory with the aid of advanced technologies for the generation and processing of millions of readings. In this context it is proposed to investigate the presence of arboviruses and other RNA viruses from vertebrates in rodents and marsupials coming from the city of Viseu, Para - Brazil. A total of 10 rodent and marsupial samples (liver, viscera and brain) were submitted to RNA extraction and purification, complementary DNA (cDNA) synthesis, sequencing by Illumina NextSeq and bioinformatic analysis. Primarily, the viral genera detected in this work were: Ortobunyavirus, Hepacivirus, Gammaretrovirus, Betaretrovirus, Epsilonretrovirus, Alpharetrovirus, Pestivirus, Parapoxivirus, Amdoparvovirus , and RNA viruses not classified in any of the known genera. This study presented viral agents diversity, with predominance of genera of the Retroviridae family and from these detections only the Caraparu virus (CARV ) member of the genus Ortobunyavirus poses a risk to human health. Phylogenetic analysis for hepacivirus (Rodent Hepacivirus and Hepacivirus F ) detected in this study, showed similarity with Rodent Hepacivirus isolated from rodent species Proechimys simispinosus , grouping in the same clade. The polyprotein domains were similar to Hepaciviruses in regions encoding structural (Core and Env), Nonstructural (NS2, NS4b, NS5a_1a and NS5a_1b) proteins, with a peptidase structure (S29) responsible for the cleavage of structural proteins and with a domain that corresponds to the Flaviviridae family (Flavi_DEAD). Thus, the findings of this study may contribute to the scientific knowledge about the viral communities that circulate in small animals (rodents and marsupials) near the city of Viseu, even though many of them are not harmful to human health. Therefore, ongoing studies on these and other mammals should be performed to obtain information on circulating viral species and possible new discoveries of viruses and sources of zoonotic infections in this and other regions of the Brazilian Amazon. Keywords : Viral metagenomics; RNA virus; Arbovirus; Hepacivirus. LISTA DE ABREVIATURAS E SIGLAS ASFV – vírus Africano Suíno SLEV – vírus da Encefalite Saint Loius BSQV – vírus Bussuquara SNG –
Recommended publications
  • Presence of Apis Rhabdovirus-1 in Populations of Pollinators and Their Parasites from Two Continents
    fmicb-08-02482 December 9, 2017 Time: 15:38 # 1 ORIGINAL RESEARCH published: 12 December 2017 doi: 10.3389/fmicb.2017.02482 Presence of Apis Rhabdovirus-1 in Populations of Pollinators and Their Parasites from Two Continents Sofia Levin1,2, David Galbraith3, Noa Sela4, Tal Erez1, Christina M. Grozinger3 and Nor Chejanovsky1,5* 1 Department of Entomology, Institute of Plant Protection, Agricultural Research Organization, Rishon LeZion, Israel, 2 Faculty of Agricultural, Food and the Environmental Quality Sciences, The Hebrew University of Jerusalem, Rehovot, Israel, 3 Department of Entomology – Center for Pollinator Research – Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States, 4 Department of Plant Pathology and Weed Research, Institute of Plant Protection, Agricultural Research Organization, Rishon LeZion, Israel, 5 Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland The viral ecology of bee communities is complex, where viruses are readily shared among co-foraging bee species. Additionally, in honey bees (Apis mellifera), many viruses are transmitted – and their impacts exacerbated – by the parasitic Varroa Edited by: destructor mite. Thus far, the viruses found to be shared across bee species and Ralf Georg Dietzgen, transmitted by V. destructor mites are positive-sense single-stranded RNA viruses. The University of Queensland, Australia Recently, a negative-sense RNA enveloped virus, Apis rhabdovirus-1 (ARV-1), was Reviewed by: found in A. mellifera honey bees in Africa, Europe, and islands in the Pacific. Here, Emily J. Bailes, we describe the identification – using a metagenomics approach – of ARV-1 in two bee Royal Holloway, University of London, United Kingdom species (A.
    [Show full text]
  • 2020 Taxonomic Update for Phylum Negarnaviricota (Riboviria: Orthornavirae), Including the Large Orders Bunyavirales and Mononegavirales
    Archives of Virology https://doi.org/10.1007/s00705-020-04731-2 VIROLOGY DIVISION NEWS 2020 taxonomic update for phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales Jens H. Kuhn1 · Scott Adkins2 · Daniela Alioto3 · Sergey V. Alkhovsky4 · Gaya K. Amarasinghe5 · Simon J. Anthony6,7 · Tatjana Avšič‑Županc8 · María A. Ayllón9,10 · Justin Bahl11 · Anne Balkema‑Buschmann12 · Matthew J. Ballinger13 · Tomáš Bartonička14 · Christopher Basler15 · Sina Bavari16 · Martin Beer17 · Dennis A. Bente18 · Éric Bergeron19 · Brian H. Bird20 · Carol Blair21 · Kim R. Blasdell22 · Steven B. Bradfute23 · Rachel Breyta24 · Thomas Briese25 · Paul A. Brown26 · Ursula J. Buchholz27 · Michael J. Buchmeier28 · Alexander Bukreyev18,29 · Felicity Burt30 · Nihal Buzkan31 · Charles H. Calisher32 · Mengji Cao33,34 · Inmaculada Casas35 · John Chamberlain36 · Kartik Chandran37 · Rémi N. Charrel38 · Biao Chen39 · Michela Chiumenti40 · Il‑Ryong Choi41 · J. Christopher S. Clegg42 · Ian Crozier43 · John V. da Graça44 · Elena Dal Bó45 · Alberto M. R. Dávila46 · Juan Carlos de la Torre47 · Xavier de Lamballerie38 · Rik L. de Swart48 · Patrick L. Di Bello49 · Nicholas Di Paola50 · Francesco Di Serio40 · Ralf G. Dietzgen51 · Michele Digiaro52 · Valerian V. Dolja53 · Olga Dolnik54 · Michael A. Drebot55 · Jan Felix Drexler56 · Ralf Dürrwald57 · Lucie Dufkova58 · William G. Dundon59 · W. Paul Duprex60 · John M. Dye50 · Andrew J. Easton61 · Hideki Ebihara62 · Toufc Elbeaino63 · Koray Ergünay64 · Jorlan Fernandes195 · Anthony R. Fooks65 · Pierre B. H. Formenty66 · Leonie F. Forth17 · Ron A. M. Fouchier48 · Juliana Freitas‑Astúa67 · Selma Gago‑Zachert68,69 · George Fú Gāo70 · María Laura García71 · Adolfo García‑Sastre72 · Aura R. Garrison50 · Aiah Gbakima73 · Tracey Goldstein74 · Jean‑Paul J. Gonzalez75,76 · Anthony Grifths77 · Martin H. Groschup12 · Stephan Günther78 · Alexandro Guterres195 · Roy A.
    [Show full text]
  • Characterization of Vertically and Cross-Species Transmitted Viruses in the Cestode Parasite 2 Schistocephalus Solidus
    bioRxiv preprint doi: https://doi.org/10.1101/803247; this version posted October 13, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 Characterization of vertically and cross-species transmitted viruses in the cestode parasite 2 Schistocephalus solidus 3 Megan A Hahna, Karyna Rosariob, Pierrick Lucasc, Nolwenn M Dheilly a# 4 5 a School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook NY, USA 6 b College of Marine Science, University of South Florida, Saint Petersburg, FL, USA 7 c ANSES, Agence Nationale de Sécurité Sanitaire de l’Alimentation, de l’Environnement et du 8 Travail - Laboratoire de Ploufragan-Plouzané, Unité Génétique Virale de Biosécurité, 9 Ploufragan, France 10 11 # Address correspondence to Nolwenn M Dheilly: [email protected] 12 1 bioRxiv preprint doi: https://doi.org/10.1101/803247; this version posted October 13, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 13 Abstract 14 Parasitic flatworms (Neodermata) represent a public health and economic burden due to associated 15 debilitating diseases and limited therapeutic treatments available. Despite their importance, there 16 is scarce information regarding flatworm-associated microbes. We report the discovery of six RNA 17 viruses in the cestode Schistocephalus solidus.
    [Show full text]
  • Taxonomy of the Order Bunyavirales: Update 2019
    Archives of Virology (2019) 164:1949–1965 https://doi.org/10.1007/s00705-019-04253-6 VIROLOGY DIVISION NEWS Taxonomy of the order Bunyavirales: update 2019 Abulikemu Abudurexiti1 · Scott Adkins2 · Daniela Alioto3 · Sergey V. Alkhovsky4 · Tatjana Avšič‑Županc5 · Matthew J. Ballinger6 · Dennis A. Bente7 · Martin Beer8 · Éric Bergeron9 · Carol D. Blair10 · Thomas Briese11 · Michael J. Buchmeier12 · Felicity J. Burt13 · Charles H. Calisher10 · Chénchén Cháng14 · Rémi N. Charrel15 · Il Ryong Choi16 · J. Christopher S. Clegg17 · Juan Carlos de la Torre18 · Xavier de Lamballerie15 · Fēi Dèng19 · Francesco Di Serio20 · Michele Digiaro21 · Michael A. Drebot22 · Xiaˇoméi Duàn14 · Hideki Ebihara23 · Toufc Elbeaino21 · Koray Ergünay24 · Charles F. Fulhorst7 · Aura R. Garrison25 · George Fú Gāo26 · Jean‑Paul J. Gonzalez27 · Martin H. Groschup28 · Stephan Günther29 · Anne‑Lise Haenni30 · Roy A. Hall31 · Jussi Hepojoki32,33 · Roger Hewson34 · Zhìhóng Hú19 · Holly R. Hughes35 · Miranda Gilda Jonson36 · Sandra Junglen37,38 · Boris Klempa39 · Jonas Klingström40 · Chūn Kòu14 · Lies Laenen41,42 · Amy J. Lambert35 · Stanley A. Langevin43 · Dan Liu44 · Igor S. Lukashevich45 · Tāo Luò1 · Chuánwèi Lüˇ 19 · Piet Maes41 · William Marciel de Souza46 · Marco Marklewitz37,38 · Giovanni P. Martelli47 · Keita Matsuno48,49 · Nicole Mielke‑Ehret50 · Maria Minutolo3 · Ali Mirazimi51 · Abulimiti Moming14 · Hans‑Peter Mühlbach50 · Rayapati Naidu52 · Beatriz Navarro20 · Márcio Roberto Teixeira Nunes53 · Gustavo Palacios25 · Anna Papa54 · Alex Pauvolid‑Corrêa55 · Janusz T. Pawęska56,57 · Jié Qiáo19 · Sheli R. Radoshitzky25 · Renato O. Resende58 · Víctor Romanowski59 · Amadou Alpha Sall60 · Maria S. Salvato61 · Takahide Sasaya62 · Shū Shěn19 · Xiǎohóng Shí63 · Yukio Shirako64 · Peter Simmonds65 · Manuela Sironi66 · Jin‑Won Song67 · Jessica R. Spengler9 · Mark D. Stenglein68 · Zhèngyuán Sū19 · Sùróng Sūn14 · Shuāng Táng19 · Massimo Turina69 · Bó Wáng19 · Chéng Wáng1 · Huálín Wáng19 · Jūn Wáng19 · Tàiyún Wèi70 · Anna E.
    [Show full text]
  • A Single Unidirectional Pirna Cluster Similar to the Flamenco Locus Is the Major Source of EVE-Derived Transcription and Small Rnas in Aedes Aegypti Mosquitoes
    Downloaded from rnajournal.cshlp.org on September 27, 2021 - Published by Cold Spring Harbor Laboratory Press Aguiar et al A single unidirectional piRNA cluster similar to the flamenco locus is the major source of EVE-derived transcription and small RNAs in Aedes aegypti mosquitoes Eric Roberto Guimarães Rocha Aguiar1,2, João Paulo Pereira de Almeida1, Lucio Rezende Queiroz1, Liliane Santana Oliveira3, Roenick Proveti Olmo1,4, Isaque João da Silva de Faria1, Jean-Luc Imler4, Arthur Gruber2, Benjamin J Matthews5, João Trindade Marques1,4* 1Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, CEP 30270-901, Brazil 2Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, BA, CEP 40101-909, Brazil 3Department of Parasitology, Instituto de Ciências Biomédicas, USP, São Paulo, SP, 05508-000, Brazil 4Université de Strasbourg, CNRS UPR9022, Inserm U1257, 67084 Strasbourg, France. 5Department of Zoology, University of British Columbia, V6T 1Z4, Vancouver, Canada. * Correspondence: [email protected] Running title: A flamenco-like locus in A. aegypti mosquitoes Keywords: Endogenous Viral Elements; EVE; A. aegypti; flamenco locus; RNA interference; piRNAs 1 Downloaded from rnajournal.cshlp.org on September 27, 2021 - Published by Cold Spring Harbor Laboratory Press Aguiar et al ABSTRACT Endogenous viral elements (EVEs) are found in many eukaryotic genomes. Despite considerable knowledge about genomic elements such as transposons (TEs) and retroviruses, we still lack information about non-retroviral EVEs. Aedes aegypti mosquitoes have a highly repetitive genome that is covered with EVEs. Here, we identified 129 non- retroviral EVEs in the AaegL5 version of the A. aegypti genome.
    [Show full text]
  • A Look Into Bunyavirales Genomes: Functions of Non-Structural (NS) Proteins
    viruses Review A Look into Bunyavirales Genomes: Functions of Non-Structural (NS) Proteins Shanna S. Leventhal, Drew Wilson, Heinz Feldmann and David W. Hawman * Laboratory of Virology, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA; [email protected] (S.S.L.); [email protected] (D.W.); [email protected] (H.F.) * Correspondence: [email protected]; Tel.: +1-406-802-6120 Abstract: In 2016, the Bunyavirales order was established by the International Committee on Taxon- omy of Viruses (ICTV) to incorporate the increasing number of related viruses across 13 viral families. While diverse, four of the families (Peribunyaviridae, Nairoviridae, Hantaviridae, and Phenuiviridae) contain known human pathogens and share a similar tri-segmented, negative-sense RNA genomic organization. In addition to the nucleoprotein and envelope glycoproteins encoded by the small and medium segments, respectively, many of the viruses in these families also encode for non-structural (NS) NSs and NSm proteins. The NSs of Phenuiviridae is the most extensively studied as a host interferon antagonist, functioning through a variety of mechanisms seen throughout the other three families. In addition, functions impacting cellular apoptosis, chromatin organization, and transcrip- tional activities, to name a few, are possessed by NSs across the families. Peribunyaviridae, Nairoviridae, and Phenuiviridae also encode an NSm, although less extensively studied than NSs, that has roles in antagonizing immune responses, promoting viral assembly and infectivity, and even maintenance of infection in host mosquito vectors. Overall, the similar and divergent roles of NS proteins of these Citation: Leventhal, S.S.; Wilson, D.; human pathogenic Bunyavirales are of particular interest in understanding disease progression, viral Feldmann, H.; Hawman, D.W.
    [Show full text]
  • Soybean Thrips (Thysanoptera: Thripidae) Harbor Highly Diverse Populations of Arthropod, Fungal and Plant Viruses
    viruses Article Soybean Thrips (Thysanoptera: Thripidae) Harbor Highly Diverse Populations of Arthropod, Fungal and Plant Viruses Thanuja Thekke-Veetil 1, Doris Lagos-Kutz 2 , Nancy K. McCoppin 2, Glen L. Hartman 2 , Hye-Kyoung Ju 3, Hyoun-Sub Lim 3 and Leslie. L. Domier 2,* 1 Department of Crop Sciences, University of Illinois, Urbana, IL 61801, USA; [email protected] 2 Soybean/Maize Germplasm, Pathology, and Genetics Research Unit, United States Department of Agriculture-Agricultural Research Service, Urbana, IL 61801, USA; [email protected] (D.L.-K.); [email protected] (N.K.M.); [email protected] (G.L.H.) 3 Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 300-010, Korea; [email protected] (H.-K.J.); [email protected] (H.-S.L.) * Correspondence: [email protected]; Tel.: +1-217-333-0510 Academic Editor: Eugene V. Ryabov and Robert L. Harrison Received: 5 November 2020; Accepted: 29 November 2020; Published: 1 December 2020 Abstract: Soybean thrips (Neohydatothrips variabilis) are one of the most efficient vectors of soybean vein necrosis virus, which can cause severe necrotic symptoms in sensitive soybean plants. To determine which other viruses are associated with soybean thrips, the metatranscriptome of soybean thrips, collected by the Midwest Suction Trap Network during 2018, was analyzed. Contigs assembled from the data revealed a remarkable diversity of virus-like sequences. Of the 181 virus-like sequences identified, 155 were novel and associated primarily with taxa of arthropod-infecting viruses, but sequences similar to plant and fungus-infecting viruses were also identified.
    [Show full text]
  • Taxonomy of the Order Bunyavirales: Second Update 2018
    HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Arch Virol Manuscript Author . Author manuscript; Manuscript Author available in PMC 2020 March 01. Published in final edited form as: Arch Virol. 2019 March ; 164(3): 927–941. doi:10.1007/s00705-018-04127-3. TAXONOMY OF THE ORDER BUNYAVIRALES: SECOND UPDATE 2018 A full list of authors and affiliations appears at the end of the article. Abstract In October 2018, the order Bunyavirales was amended by inclusion of the family Arenaviridae, abolishment of three families, creation of three new families, 19 new genera, and 14 new species, and renaming of three genera and 22 species. This article presents the updated taxonomy of the order Bunyavirales as now accepted by the International Committee on Taxonomy of Viruses (ICTV). Keywords Arenaviridae; arenavirid; arenavirus; bunyavirad; Bunyavirales; bunyavirid; Bunyaviridae; bunyavirus; emaravirus; Feraviridae; feravirid, feravirus; fimovirid; Fimoviridae; fimovirus; goukovirus; hantavirid; Hantaviridae; hantavirus; hartmanivirus; herbevirus; ICTV; International Committee on Taxonomy of Viruses; jonvirid; Jonviridae; jonvirus; mammarenavirus; nairovirid; Nairoviridae; nairovirus; orthobunyavirus; orthoferavirus; orthohantavirus; orthojonvirus; orthonairovirus; orthophasmavirus; orthotospovirus; peribunyavirid; Peribunyaviridae; peribunyavirus; phasmavirid; phasivirus; Phasmaviridae; phasmavirus; phenuivirid; Phenuiviridae; phenuivirus; phlebovirus; reptarenavirus; tenuivirus; tospovirid; Tospoviridae; tospovirus; virus classification; virus nomenclature; virus taxonomy INTRODUCTION The virus order Bunyavirales was established in 2017 to accommodate related viruses with segmented, linear, single-stranded, negative-sense or ambisense RNA genomes classified into 9 families [2]. Here we present the changes that were proposed via an official ICTV taxonomic proposal (TaxoProp 2017.012M.A.v1.Bunyavirales_rev) at http:// www.ictvonline.org/ in 2017 and were accepted by the ICTV Executive Committee (EC) in [email protected].
    [Show full text]
  • Stokes, Samuel (2018) Determining the Role of Aedes Aegypti Host Sumoylation in Suppressing Arbovirus Replication
    Stokes, Samuel (2018) Determining the role of Aedes aegypti host SUMOylation in suppressing arbovirus replication. PhD thesis. https://theses.gla.ac.uk/39054/ Copyright and moral rights for this work are retained by the author A copy can be downloaded for personal non-commercial research or study, without prior permission or charge This work cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given Enlighten: Theses https://theses.gla.ac.uk/ [email protected] S Stokes, 2018 1 Determining the role of Aedes aegypti host SUMOylation in suppressing arbovirus replication Samuel Stokes A thesis presented for the degree of Doctor of Philosophy in the College of Medical, Veterinary, and Life Sciences Biotechnology and Biological Sciences Research Council Doctoral Training Partnership programme - University of Glasgow Centre for Virus Research (CVR) S Stokes, 2018 2 Abstract Approximately half the world’s human population is at risk of infection from mosquito-borne arboviruses. Currently, interactions between the mosquito antiviral response and infecting arboviruses remains poorly understood; deciphering these will be crucial to the development of novel methods to limit replication and transmission that could help control future outbreaks. Previous mammalian studies have shown that the Homo sapiens Small Ubiquitin-related Modifier (SUMO) pathway plays a fundamental role in multiple aspects of cell biology, including the regulation of host cell immunity.
    [Show full text]
  • Meta-Transcriptomic Detection of Diverse and Divergent RNA Viruses
    bioRxiv preprint doi: https://doi.org/10.1101/2020.06.08.141184; this version posted June 8, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Meta-transcriptomic detection of diverse and divergent 2 RNA viruses in green and chlorarachniophyte algae 3 4 5 Justine Charon1, Vanessa Rossetto Marcelino1,2, Richard Wetherbee3, Heroen Verbruggen3, 6 Edward C. Holmes1* 7 8 9 1Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and 10 Environmental Sciences and School of Medical Sciences, The University of Sydney, 11 Sydney, Australia. 12 2Centre for Infectious Diseases and Microbiology, Westmead Institute for Medical 13 Research, Westmead, NSW 2145, Australia. 14 3School of BioSciences, University of Melbourne, VIC 3010, Australia. 15 16 17 *Corresponding author: 18 Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and 19 Environmental Sciences and School of Medical Sciences, 20 The University of Sydney, 21 Sydney, NSW 2006, Australia. 22 Tel: +61 2 9351 5591 23 Email: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.06.08.141184; this version posted June 8, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.
    [Show full text]
  • Single Mosquito Metatranscriptomics Identifies Vectors, Emerging Pathogens and Reservoirs in One Assay
    TOOLS AND RESOURCES Single mosquito metatranscriptomics identifies vectors, emerging pathogens and reservoirs in one assay Joshua Batson1†, Gytis Dudas2†, Eric Haas-Stapleton3†, Amy L Kistler1†*, Lucy M Li1†, Phoenix Logan1†, Kalani Ratnasiri4†, Hanna Retallack5† 1Chan Zuckerberg Biohub, San Francisco, United States; 2Gothenburg Global Biodiversity Centre, Gothenburg, Sweden; 3Alameda County Mosquito Abatement District, Hayward, United States; 4Program in Immunology, Stanford University School of Medicine, Stanford, United States; 5Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, United States Abstract Mosquitoes are major infectious disease-carrying vectors. Assessment of current and future risks associated with the mosquito population requires knowledge of the full repertoire of pathogens they carry, including novel viruses, as well as their blood meal sources. Unbiased metatranscriptomic sequencing of individual mosquitoes offers a straightforward, rapid, and quantitative means to acquire this information. Here, we profile 148 diverse wild-caught mosquitoes collected in California and detect sequences from eukaryotes, prokaryotes, 24 known and 46 novel viral species. Importantly, sequencing individuals greatly enhanced the value of the biological information obtained. It allowed us to (a) speciate host mosquito, (b) compute the prevalence of each microbe and recognize a high frequency of viral co-infections, (c) associate animal pathogens with specific blood meal sources, and (d) apply simple co-occurrence methods to recover previously undetected components of highly prevalent segmented viruses. In the context *For correspondence: of emerging diseases, where knowledge about vectors, pathogens, and reservoirs is lacking, the [email protected] approaches described here can provide actionable information for public health surveillance and †These authors contributed intervention decisions.
    [Show full text]
  • Complete Sections As Applicable
    This form should be used for all taxonomic proposals. Please complete all those modules that are applicable (and then delete the unwanted sections). For guidance, see the notes written in blue and the separate document “Help with completing a taxonomic proposal” Please try to keep related proposals within a single document; you can copy the modules to create more than one genus within a new family, for example. MODULE 1: TITLE, AUTHORS, etc (to be completed by ICTV Code assigned: 2016.028a-dM officers) Short title: Six (6) new species in one (1) new genus (Orthophasmavirus) to be included in the proposed family Phasmaviridae in the proposed order Bunyavirales (e.g. 6 new species in the genus Zetavirus) Modules attached 2 3 4 5 (modules 1 and 11 are required) 6 7 8 9 10 Author(s): Junglen, Sandra ([email protected]) Corresponding author with e-mail address: Junglen, Sandra ([email protected]) List the ICTV study group(s) that have seen this proposal: A list of study groups and contacts is provided at http://www.ictvonline.org/subcommittees.asp . If in doubt, contact the appropriate subcommittee ICTV Bunyaviridae Study Group chair (fungal, invertebrate, plant, prokaryote or vertebrate viruses) ICTV Study Group comments (if any) and response of the proposer: The ICTV Bunyaviridae Study Group has seen and discussed this proposal, and agreed to its submission to the ICTV Executive Committee based on votes of support by individual Study Group members or the absence of dissenting votes. Date first submitted to ICTV: July 18, 2016 Date of this revision (if different to above): September 21, 2016 ICTV-EC comments and response of the proposer: Page 1 of 8 MODULE 2: NEW SPECIES creating and naming one or more new species.
    [Show full text]