<<

and of in non-Euclidean

Jan K¨arrman Department of Mathematics Uppsala University Sweden

Abstract

In this paper we derive formulas for circumference and area of an in hyperbolic . Corresponding formulas for are given without proof. We also find a relation connecting the formulas for circumference and area.

1 Preliminaries

This is a term paper for the course Geometry D given at Uppsala University. Due to this nature of the document, derivation of the main formulas will be carried out in quite some detail. We are deriving the formulas under the simplified assumption that the curvature constant k =1. All real in√ this paper will be non-negative; there will be several simpli- fications of the type x2 = x without further comments about the correctness of such equations. A well-known property of ellipses in is used to define a non- Euclidean ellipse:

Definition 1. Given two points P and Q, and a positive real l>d= PQ. The set of all points R such that PR + QR = l is called an ellipse with focal points P and Q, and eccentricity d/l.

2 Ellipses in

Given points P and Q, and a real number l, satisfying the conditions for an ellipse. α  Let O be the midpoint of PQ.− Let−→ X be any distinct from O, and let = QOX. Dedekind’s gives that OX cuts the ellipse in exactly one point R=R(α). Let r r α s l−s = ( )=←−→OR and = QR, then PR = , see Figure 1. Choose one of the sides of the PQ , and consider rays emanating from O on that side, with 0  α  π/2.

1 R

l-s X s r α P d/2O d/2 Q

Figure 1

We have d d cosh s = cosh r cosh − sinh r sinh cos α 2 2 d d cosh (l − s)=coshr cosh − sinh r sinh cos (π − α) 2 2 d d = cosh r cosh +sinhr sinh cos α, 2 2 which gives d cosh (l − s)+coshs =2coshr cosh 2 d cosh (l − s) − cosh s =2sinhr sinh cos α. 2 Combining this with the trigonometrical identities l l − 2s cosh (l − s)+coshs =2cosh cosh 2 2 l l − 2s cosh (l − s) − cosh s =2sinh sinh , 2 2 we get

d l − 2s cosh r cosh 2 cosh = l 2 cosh 2 l − s sinh r sinh d cos α 2 2 , sinh = l 2 sinh 2 from which follows l − 2s l − 2s 1=cosh2 − sinh2 2 2 2 l 2 2 d 2 l 2 2 d 2 sinh 2 cosh r cosh 2 − cosh 2 sinh r sinh 2 cos α = 2 l 2 l sinh 2 cosh 2 l l l d l d ⇒ sinh2 cosh2 =sinh2 (sinh2 r + 1) cosh2 − cosh2 sinh2 r sinh2 cos2α 2 2 2 2 2 2

2 sinh2 l (cosh2 l − cosh2 d ) ⇒ 2 r 2 2 2 . sinh = 2 l 2 d 2 l 2 d 2 (1) sinh 2 cosh 2 − cosh 2 sinh 2 cos α We define the major and minor axes of the ellipse in analogy with the Euclidean case: set a = r(0), b = r(π/2), then sinh2 l (cosh2 l − cosh2 d ) l 2 a 2 2 2 2 sinh = 2 l 2 d 2 l 2 d =sinh (cosh 2 − 1) cosh 2 − cosh 2 (cosh 2 − 1) 2 sinh2 l (cosh2 l − cosh2 d ) cosh2 l 2 b 2 b 2 2 2 2 . cosh =sinh +1= 2 l 2 d +1= 2 d sinh 2 cosh 2 cosh 2 So we have d cosh a l =2a, cosh = . 2 cosh b It is easy to see that a and b can be use as parameters instead of l and d. Then equation (1) becomes   2 a 2 a − cosh2 a sinh cosh cosh2 b sinh2 r =   , 2 a cosh2 a − 2 a cosh2 a − 2α sinh cosh2 b cosh cosh2 b 1 cos

cosh2 b which, after multiplying numerator and denominator with the factor sinh2 a cosh2 a , becomes 2 b − 2 b 2 b 2 r cosh 1 sinh sinh sinh = cosh2 a−cosh2 b = sinh2 a−sinh2 b = 2 2 (2) − 2α − 2α 1 − k1 cos α 1 sinh2 a cos 1 sinh2 a cos where  sinh2 a − sinh2 b k1 = . sinh a π Note that b  r(α)  a, and that r(α) is strictly decreasing for 0  α  2 when b

Ri+1 δ i Ri

ri+1 ri

π/2n O

Figure 2

We will first derive a formula for the circumference of an ellipse. Let n be a positive πi πi integer, ri = r( 2n ), Ri =R(2n ), and δi = RiRi+1, see Figure 2. Then     πi π π  1 ri+1 = r + = ri + ri + O , 2n 2n 2n n2

3 which gives   r r O 1 , sinh i+1 =sinh i + n and π cosh δi = cosh ri cosh ri+1 − sinh ri sinh ri+1 cos  2n  2 π = cosh ri cosh ri+1 − sinh ri sinh ri+1 1 − 2sin 4n 2 π =2sinhri sinh ri+1 sin +cosh(ri+1 − ri) 4n   π 2 r 2 r − r O 1 =2sinh i sin n +cosh( i+1 i)+ n3 4       π 2 π 2 r r O 1 O 1 =2 n sinh i + cosh n i + n2 + n3 4 2    2  2 π 2 1 π  1 =2 sinh ri +1+ ri + O . 4n 2 2n n3

2 δi From cosh δi =2sinh +1,weget 2    2   2 δi π 2  2 1 sinh = sinh ri +(ri) + O 2 4n n3    δ π i 2  2 1 ⇒ sinh = sinh ri +(r ) + O 2 4n i n2    π 2  2 1 ⇒ δi = sinh ri +(r ) + O . 2n i n2 Now sum all δi,i=0, ...,n− 1, and pass to the limit as n →∞. This gives, by , one fourth of the circumference C of the ellipse. Hence π/2 C =4 sinh2 r(α)+r(α)2 dα. 0 From (2) we get d  − 3 r α r α r α −k2 b α α − k2 2α 2 , cosh ( ) ( )=dα sinh ( )= 1 sinh sin cos 1 1 cos whence sinh2 r(α)+r(α)2 sinh2 b k4 sinh2 b sin2α cos2α = +  1  2 2 2 3 2 1 − k1 cos α 1 − k cos2α cosh r(α) 1   2 b k4 2 b − 2α 2α sinh 1 sinh 1 cos cos  = 2 2 +  3 2 1 − k1 cos α − k2 2α sinh b 1 1 cos 1−k2 cos2α +1   1    2 2 2 2 2 2 4 2 2 2 sinh b 1 − k1 cos α cosh b − k1 cos α + k1 sinh b 1 − cos α cos α =  2   1 − k2 cos2α cosh2 b − k2 cos2α  1  1 2 2 2 2 2 cosh b − k1 cosh b +1− k1 cos α =sinh2 b     , 2 2 2 2 2 2 1 − k1 cos α cosh b − k1 cos α

4 and hence  π/2   2 2 2 2 2 cosh b − k1 cosh b +1− k1 cos α C =4sinhb    dα. 2 2 2 2 2 0 1 − k1 cos α cosh b − k1 cos α

This integral can be transformed into a more standardized form, by applying a change of variable

α = arctan (u tan β), where the real number u will be chosen later in some suitable way. Then

1 1 cos2β 1 − sin2β cos2α = = = = . 1+tan2α 1+u2 tan2β cos2β + u2 sin2β 1 − (1 − u2)sin2β For convenience, we define

1 tanh2 a − tanh2 b cβ = ,m1 = . 1 − (1 − u2)sin2β tanh2 a We will also make use of the following equation   1 1 1 cosh2 a − cosh2 b m1 = − = tanh2 a cosh2 b cosh2 a sinh2 a cosh2 b sinh2 a − sinh2 b k2 = = 1 . sinh2 a cosh2 b cosh2 b To avoid getting huge expressions; we apply the change of variable to the different parts of the integral in .   2 2 2 2 2 i) cosh b − k1 cosh b +1− k1 cos α   2 2 2 2 2 1 − sin β = cosh b − k1 cosh b +1− k1 1 − (1 − u2)sin2β     2 2 2 2 2 2 2 = cβ cosh b 1 − (1 − u )sin β − k1(cosh b +1− k1)(1 − sin β)   2 2 2 2 2 2 2 2 2 = cβ (1 − k1)(cosh b − k1)+(k1(1 − k1) − (1 − k1 − u ) cosh b)sin β)

Now choose u so that the term containing sin2β vanishes 2 2 2 2 4 sinh b 2 sinh b cosh b tanh b sinh b = cβ cosh b(1 − m1)=cβ = cβ . sinh2 a sinh2 a tanh2 a sinh2 a tanh2 a That is, u has been chosen such that 2 2 2 2 2 (1 − k1 − u ) cosh b = k1(1 − k1)

2 2 2 2  (1 − k1) cosh b − k1(1 − k1) 2 ⇒ u = = (1 − k )(1 − m1) 2 b 1 cosh sinh2 b tanh2 b sinh b tanh b = = . sinh2 a tanh2 a sinh a tanh a

5 2   2 2 2 1 − sin β 2 2 2 2 ii) 1 − k1 cos α =1− k1 = cβ 1 − k1 − (1 − k1 − u )sin β 1 − (1 − u2)sin2β   2 2 2 2 k1(1 − k1) 2 sinh b 2 = cβ 1 − k1 − sin β = cβ (1 − m1 sin β). cosh2 b sinh2 a 2 2 2 2 2 2 1 − sin β iii) cosh b − k1 cos α = cosh b − k1 1 − (1 − u2)sin2β   2 2 2 2 2 2 = cβ cosh b − k1 − ((1 − u ) cosh b − k1)sin β   2 2 2 2 2 2 2 2 = cβ cosh b − k1 − (k1(1 − k1)+k1 cosh b − k1)sin β    2 2 2 2 2 2 2 = cβ cosh b − k1 1 − k1 sin β = cβ cosh b(1 − m1)(1 − k1 sin β) 2 2 2 tanh b 2 2 sinh b 2 2 = cβ cosh b (1 − k1 sin β)=cβ (1 − k1 sin β). tanh2 a tanh2 a u(1 + tan2β) u(cos2β + sin2β) u iv) dα = dβ = dβ = dβ 1+(u tan β)2 cos2β + u2 sin2β 1 − (1 − u2)sin2β sinh b tanh b = cβ dβ. sinh a tanh a

Putting the pieces together, we get  π/2 c sinh4 b c b b β sinh2 a tanh2 a β sinh tanh C =4sinhb  dβ c sinh2 b − m 2β c sinh2 b − k2 2β a a 0 β sinh2 a (1 1 sin ) β tanh2 a (1 1 sin )sinh tanh which, after cancelling factors, finally gives

Proposition 1. The circumference C of an ellipse, having major and minor axis with 2a and 2b respectively, is given by π/2 tanh b dα C =4sinhb  , tanh a 2 2 2 0 (1 − m1 sin α) 1 − k1 sin α where  tanh2 a − tanh2 b sinh2 a − sinh2 b m1 = ,k1 = . tanh2 a sinh a

Of course, the integral is a complete elliptic integral of the third kind; using a common notation, we can write: tanh b C =4sinhb (k1,m1). tanh a Next we derive a formula for the area of an ellipse. Choose an even n, large enough so that π is smaller than the of parallelism at O, with respect to the 2n−−→ −−→ to OR0 through R0.Letmi be the perpendicular to ORi through Ri.

6 π −−→ Then, since ri  r0 = a, the two rays forming 2n with ORi cut mi, making up an isosceles , see Figure 3. Let si and 2bi be the lengths of its sides and base respectively. By symmetry, one fourth of the area of the ellipse is given by summing the of all such , i =1, 3, 5 ...,n− 1, and then letting n →∞.

bi Ri bi r si i

mi si

π/2n O

Figure 3

Let Ai be the area of each of the two right triangles that make up the isosceles triangle, then

Ai ri bi tanh = tanh tanh 2 2 2 cosh si = cosh bi cosh ri π sinh bi =sin sinh si 2n   2 2 π 2 2 π 2 ⇒ sinh bi =sin sinh si =sin cosh si − 1 2n 2n   2 π 2 2 =sin cosh bi cosh ri − 1 2n   2 π 2 2 2 =sin sinh bi cosh ri +sinh ri 2n 2 π 2     sin sinh ri π 2 ⇒ 2 b 2n 2 r O 1 sinh i = 2 π 2 = n sinh i + n4 1 − sin 2n cosh ri 2   π 1 ⇒ sinh bi = sinh ri + O 2n n3   ⇒ b O 1 cosh i =1+ n2   b b π ⇒ i sinh i r O 1 tanh = = sinh i + 3 2 cosh bi +1 4n n     Ai π ri 1 π 1 ⇒ tanh = tanh sinh ri + O = (cosh ri − 1) + O 2 4n 2 n3 4n n3   π 1 ⇒ Ai = (cosh ri − 1) + O . 2n n3

7 Summing and passing to the limit as n →∞gives the area A: π/2 A =4 cosh r(α) dα − 2π, 0 which,by(2),is π/2 π/2 2 b 2 b − k2 2α A sinh dα − π cosh 1 cos dα − π. =4 2 2 +1 2 =4 2 2 2 1 − k1 cos α 1 − k1 cos α 0 0 Now we make a change of variable α = arctan (v cot β). Then 1 1 sin2β sin2β cos2α = = = = 1+tan2α 1+v2 cot2β sin2β + v2 cos2β v2 +(1− v2)sin2β and −v(1 + cot2β) v(sin2β +cos2β) v dα = dβ = − dβ = − dβ 1+(v cot β)2 sin2β + v2 cos2β v2 +(1− v2)sin2β which gives  0 2 b − k2 sin2β cosh 1 v2+(1−v2)sin2β A = −4v  dβ − 2π − k2 sin2β v2 − v2 2β π/2 1 1 v2+(1−v2)sin2β ( +(1 )sin )  π/2 2 2 2 2 2 2 cosh b(v +(1− v )sin β) − k1 sin β =4v  dβ − 2π 2 2 2 2 2 2 2 2 0 (v +(1− v )sin β) v +(1− v )sin β − k1 sin β  π/2 2 2 2 2 2 2 v cosh b + ((1 − v ) cosh b − k1)sin β =4v  dβ − 2π 2 2 2 2 2 2 2 0 (v +(1− v )sin β) v − (k1 + v − 1) sin β  π/2 2 b − v2 2 b − k2 /v2 2β 4 cosh + ((1 ) cosh 1) sin =  dβ − 2π. v 2 2 2 2 2 0 (1 + (1/v − 1) sin β) 1 − (1 − (1 − k1)/v )sin β As before, the constant v is chosen so that sin2β vanishes from the numerator, that is

2 √ k1 tanh b coth a v = 1 − = 1 − m1 = = . cosh2 b tanh a coth b Then 1 − k2 sinh2 b tanh2 a cosh2 b 1 = = , v2 sinh2 a tanh2 b cosh2 a and we can formulate

8 Proposition 2. The area A of an ellipse, having major and minor axis with lengths 2a and 2b respectively, is given by π/2 coth b dα A =4coshb    − 2π, coth a 2 2 2 0 1 − m2 sin α 1 − k2 sin α where  coth2 a − coth2 b cosh2 a − cosh2 b m2 = ,k2 = . coth2 a cosh a

The formula has been written in this particular way to emphasize the with the formula for circumference. From this similarity one can easily derive the following relation:     πi πi C(a, b)=i A 2 − a, 2 − b +2π . (3) See next section for some comments about this equation, and the corresponding formula for elliptic geometry. As always, it is good practice to check formulas for special cases and limits, espe- cially since these formulas differ significantly from their counterparts in Euclidean geometry. In particular, we would expect the following relations to hold: i) C(a, a)=2π sinh a 2 a ii) A(a, a)=4π sinh 2 iii) C(a, b) → 4a,asb → 0 iv) A(a, b) → 0, as b → 0   π/2 2 2 v) C(a, ta) ≈ 4a 0 1 − (1 − t )sin αdα, 0

Proof. We will not prove all these conditions in detail, for some only an indication of a proof is given.

π/2 i) C(a, a)=4sinha 1 dα =2π sinh a 0

π/2 a ii) A(a, a) = 4 cosh a 1 dα − 2π =2π(cosh a − 1) = 4π sinh2 2 0

9   sinh a iii) lim C(a, b)= substitute α = arctan sinh b cot β b→0  π/2 2 2 1 − k1 sin β = lim 4 tanh a cosh b dβ b→0 2 2 2 1 − k1 tanh a sin β 0 π/2 cos β = 4 tanh a dβ = {tanh a sin β = x} 1 − tanh2 a sin2β 0 tanh a dx =4 =4a. 1 − x2 0

  iv) lim A(a, b)= α = arctan tanh b cot β b→0 tanh a π/2   tanh2 b + tanh2 a − tanh2 b sin2β = lim 4 cosh b   dβ − 2π b→0 2 2 2 2 1 − k2 tanh b + k2 sin β 0 π/2 =4 1 dβ − 2π =0. 0

π/2 dα v) C(a, ta) ≈ 4t2a dα (1 − (1 − t2)sin2α)3/2 0    π/2 cot β 2 2 = α = arctan t =4a 1 − (1 − t )sin βdβ. 0 vi) Using series expansion one gets

π/2   1−t2 2 4 5t2 − 2 1+ a2 sin α A(a, ta)= 1+ a2 2  dα − 2π + O(a4) t 6 1−t2 − 2a2 2α 0 1+ t2 1 3 sin     4 5t2 − 2 π 5t2 − 3t − 2 = 1+ a2 t 1 − a2 − 2π + O(a4) t 6 2 6 = πta2 + O(a4).

10 3 Ellipses in elliptic geometry

The corresponding formulas for elliptic geometry are derived with very similar cal- culations. Only the resulting equations are given here:

π/2 tan b dα C(a, b)=4sinb    tan a − tan2 a−tan2 b 2α − sin2 a−sin2 b 2α 0 1 tan2 a sin 1 sin2 a sin

π/2 cot b dα A(a, b)=2π − 4cosb    cot a − cot2 a−cot2 b 2α − cos2 a−cos2 b 2α 0 1 cot2 a sin 1 cos2 a sin

  π π C(a, b)+A 2 − a, 2 − b =2π (4)

The formulas were derived under the assumption b  a. But with a change of π variable α = 2 − β one can show that C(a, b)=C(b, a)andA(a, b)=A(b, a). So equation (4), the counterpart of (3) in hyperbolic geometry, gives a relation between circumference and area of two related ellipses; the two terms add up to the area of the elliptic room. On a with R the equation becomes   πR πR 2 C(a, b) R + A 2 − a, 2 − b =2πR , which equals (3) for R = i, illustrating the fact that a sphere with imaginary radius can be used as a model for hyperbolic geometry (see [1], p. 186). Note that the formula for area should be written as A(b, a) to make its integral an elliptic of the third kind. The form chosen was for the sake of symmetry with the hyperbolic case. It is not difficult to show that, in the standard unit sphere model of elliptic ge- ometry, the orthogonal projection of an ellipse onto the tangent to the middle point O, is a Euclidean ellipse – and conversely for Euclidean ellipses with major axis  1. Or equivalently: ellipses are projections of circles in three-, having radius  1 and centre coinciding with the centre of the sphere, onto the sphere. This in turn shows that, for the extremal case when a = π/2, the ellipse consists of two lines. Formulas similar to (4) can be found for other objects in elliptic geometry. Let C(h)andA(h) be the circumference and area respectively of an equilateral triangle with h. Then one can show that C(h)+A(π−h)=2π. It would be interesting to investigate such equations further, but that is beyond the scope of this document.

References

[1] Marvin J. Greenberg. Euclidean and non-Euclidean geometries. W. H. Freeman and Company, New York, 1999.

11