Lesson 44 Maximummaximum Likelihoodlikelihood Intervalinterval Estimationestimation

Total Page:16

File Type:pdf, Size:1020Kb

Lesson 44 Maximummaximum Likelihoodlikelihood Intervalinterval Estimationestimation E.E. SantovettiSantovetti lessonlesson 44 MaximumMaximum likelihoodlikelihood IntervalInterval estimationestimation 1 ExtendedExtended MaximumMaximum LikelihoodLikelihood Sometimes the number of total events measurements of the experiment n is not fixed, but, for example, is a Poisson r.v., mean . The extended likelihood function is then: If is a function of we have: Example: the expected number of events of a certain process ● Extended ML uses more informations, so the error on the parameters will be smaller, compared to the case in which n independent ● In case n doesn't depend from we have the usual likelihood 2 ExtendedExtended MLML exampleexample Consider two types of events (e.g., signal and background) each of which predict a given pdf for the variable x: fs(x) and fb(x). We observe a mixture of the two event types, signal fraction = θ, expected total number = ν, observed total number = n Let s = and b = (1- be the number of signal and background that we want to evaluate 3 ExtendedExtended MLML exampleexample (2)(2) Consider for signal a Gaussian pdf and for background an exponential Maximize the log L, to find s and b Here errors reflect total Poisson fluctuation as well as that in proportion of signal/background 4 UnphysicalUnphysical valuesvalues forfor estimatorsestimators Here the unphysical estimator is unbiased and should nevertheless be reported, since average of a large number of unbiased estimates converges to the true value (cf. PDG). Repeat entire MC experiment many times, allow unphysical estimates. 5 ExtendedExtended MLML exampleexample IIII LH does not provide any information on the Goodness of the fit. This has to be checked separately. ● Simulate toy MC according to estimated pdf (using fit results from data as “true” parameter values) compare max Likelihood value in toy to the one in data ● Draw data in (binned) histogram, “compare” distribution with result of ML fit. 6 ExtendedExtended MLML exampleexample IIII Again you want to distinguish (and count) signal events respect to background events. The signal is the process The background is combinatorial: vertex (and then particle) reconstructed with the wrong tracks. To select signal from background we can use two main things: 1) The invariant mass of the two daughter particles has to peak to the B meson mass; 2) The time of flight of the B meson candidate has to be of the order of the B meson life time. These two variables have to behave in a complete different way for the two event categories. Let us see the distribution of this variables 7 ExtendedExtended MLML exampleexample IIII A first look at the distribution (mass and time) allow us to state: pdf for signal mass: double Gaussian pdf for signal time: exponential (negative) pdf for background mass: exponential (almost flat) pdf for background time: exponential + Lorentzian We build the pdf and make as: By maximizing the likelihood, we can estimate the number of signal and background as well as the B meson mass and life time 8 ExtendedExtended MLML exampleexample IIII signal background all data mass Life time The fit is done with the RooFit package (Root) 9 WeightedWeighted maximummaximum likelihoodlikelihood Suppose we want to measure the polarization of the J/Ψ meson (1--). The measurement can be done by looking at the angular distribution of the decay product of the meson itself: and are respectively the polar and azimuthal angles of the positive muon, in the decay in the J/Ψ rest frame, measured choosing the J/Ψ direction in the lab frame as polar axis. θ 10 WeightedWeighted likelihoodlikelihood –– polarizationpolarization measurementmeasurement We have to measure the angular distribution and fit with the function There are two main problem to face: When we select our signal, there is an unavoidable amount of background events (evident from the mass distribution) The angular distribution of the background events is unknown and also very difficult to parametrize The likelihood function is: Where ε is the total detection efficiency, P is the above angular function and Norm is a normalization function in order to have probability normalized to 1. 11 cancelsout if: Thebackground eventscontribution Weighted likelihood– polarizationWeighted measurement Weighted likelihood– polarizationWeighted measurement extendedevents all at butsome with proper weights: orderIn taketo intoaccount the background events likelihoodthe sum is thenisconstant a termthein maximization procedure. term denominator the at doesThe efficiency not dependon readjusting the weights in a proper way proper a in weights the readjusting this by account into take can always we otherwise satisfied iswell hypothesis The islinear. massdistribution background The MeVup) 300 regions thethree shifting demonstrated be (can regions bands side and signal samein the the are distributions angular background combinatorial The left side band λ parameters and right side band 12 WeightedWeighted likelihoodlikelihood –– polarizationpolarization measurementmeasurement How to evaluate the Norm function (depending on detector efficiency) ? We can again use the MC simulation, considering an unpolarized sample, P=1 and the sum is over the MC events. 13 WeightedWeighted likelihoodlikelihood –– polarizationpolarization measurementmeasurement Then from MC events we can compute the function: 14 TheThe sPlotsPlot techniquetechnique 15 RelationshipRelationship betweenbetween MLML andand BayesianBayesian estimatorsestimators In Bayesian statistics, both θ and x are random variables:. In the Bayes approach, if θ is a certain hypothesis: posterior θ pdf (conditional pdf for θ given x) prior θ probability Purist Bayesian: p(θ|x) contains all the informations about θ. Pragmatist Bayesian: p(θ|x) can be a complicated function: summarize by using new estimator Looking at p(θ|x): what do we use for π(θ)? No golden rule (subjective!), often represent ‘prior ignorance’ by π(θ) = constant, in which case 16 But... we could have used a different parameter, e.g., λ = 1/θ, and if prior π(θ) is constant, then π(λ) is not! ‘Complete prior ignorance’ is not well defined. RelationshipRelationship betweenbetween MLML andand BayesianBayesian estimatorsestimators The main concern expressed by frequentist statisticians regarding the use of Bayesian probability is its intrinsic dependence on a prior probability that can be chosen in an arbitrary way. This arbitrariness makes Bayesian probability to some extent subjective. Adding more measurements increases one’s knowledge of the unknown parameter, hence the posterior probability will depend less, and be less sensitive to the choice of the prior probability. In those cases, where a large number of measurements occurs, in most of the cases the results of Bayesian calculations tend to be identical to those of frequentist calculations. Many interesting statistical problems arise in the cases of low statistics, i.e. a small number of measurements. In those cases, Bayesian or frequentist methods usually leads to different results. In those cases, using the Bayesian approach, the choice of the prior probabilities plays a crucial role and has great influence in the results. One main difficulty is how to chose a PDF that models one’s complete ignorance on an unknown parameter. One naively could choose a uniform (“flat”) PDF in the interval of validity of the parameter. But it is clear that if we move the parametrization from x to a function of x (say log x or 1/x), the resulting 17 transformed parameter will no longer have a uniform prior PDF TheThe JeffreysJeffreys priorprior One possible approach has been proposed by Harold Jeffreys, adopting a choice of prior PDF that results invariant under parameter transformation. This choice is: with: Determinant of the Fischer information matrix Examples of Jeffreys prior distributions for some important parameters 18 IntervalInterval estimation,estimation, settingsetting limitslimits 19 IntervalInterval estimationestimation —— introductionintroduction In addition to a ‘point estimate’ of a parameter we should report an interval reflecting its statistical uncertainty. Desirable properties of such an interval may include: ● communicate objectively the result of the experiment; ● have a given probability of containing the true parameter; ● provide informations needed to draw conclusions about the parameter possibly incorporating stated prior beliefs. Often use +/- the estimated standard deviation of the estimator. In some cases, however, this is not adequate: ● estimate near a physical boundary, e.g., an observed event rate consistent with zero. We will look briefly at Frequentist and Bayesian intervals. 20 NeymanNeyman confidenceconfidence intervalsintervals Rigorous procedure to get confidence intervals in frequentist approach Consider an estimator for a parameter (measurable) We also need the pdf Specify upper and lower tail probabilities, e.g., α = 0.05, β = 0.05, then find functions uα(θ) and vβ(θ) such that Integral over all the possible estimator values We obtain a confidence interval (CL = 1-α-β) for the estimator function of the true parameter value θ. This is the interval for the estimator 21 No unique way to define this interval with the same CL ConfidenceConfidence intervalinterval fromfrom thethe confidenceconfidence beltbelt Confident belt region is a function of the parameter Find points where observed estimate intersects the confidence belt This gives the confidence interval for The true parameter Confidence level = 1 - α - β = probability for the interval to cover true
Recommended publications
  • Estimating Confidence Regions of Common Measures of (Baseline, Treatment Effect) On
    Estimating confidence regions of common measures of (baseline, treatment effect) on dichotomous outcome of a population Li Yin1 and Xiaoqin Wang2* 1Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Box 281, SE- 171 77, Stockholm, Sweden 2Department of Electronics, Mathematics and Natural Sciences, University of Gävle, SE-801 76, Gävle, Sweden (Email: [email protected]). *Corresponding author Abstract In this article we estimate confidence regions of the common measures of (baseline, treatment effect) in observational studies, where the measure of baseline is baseline risk or baseline odds while the measure of treatment effect is odds ratio, risk difference, risk ratio or attributable fraction, and where confounding is controlled in estimation of both baseline and treatment effect. To avoid high complexity of the normal approximation method and the parametric or non-parametric bootstrap method, we obtain confidence regions for measures of (baseline, treatment effect) by generating approximate distributions of the ML estimates of these measures based on one logistic model. Keywords: baseline measure; effect measure; confidence region; logistic model 1 Introduction Suppose that one conducts a randomized trial to investigate the effect of a dichotomous treatment z on a dichotomous outcome y of certain population, where = 0, 1 indicate the 푧 1 active respective control treatments while = 0, 1 indicate positive respective negative outcomes. With a sufficiently large sample,푦 covariates are essentially unassociated with treatments z and thus are not confounders. Let R = pr( = 1 | ) be the risk of = 1 given 푧 z. Then R is marginal with respect to covariates and thus푦 conditional푧 on treatment푦 z only, so 푧 R is also called marginal risk.
    [Show full text]
  • Confidence Interval Estimation in System Dynamics Models: Bootstrapping Vs
    Confidence Interval Estimation in System Dynamics Models: Bootstrapping vs. Likelihood Ratio Method Gokhan Dogan* MIT Sloan School of Management, 30 Wadsworth Street, E53-364, Cambridge, Massachusetts 02142 [email protected] Abstract In this paper we discuss confidence interval estimation for system dynamics models. Confidence interval estimation is important because without confidence intervals, we cannot determine whether an estimated parameter value is significantly different from 0 or any other value, and therefore we cannot determine how much confidence to place in the estimate. We compare two methods for confidence interval estimation. The first, the “likelihood ratio method,” is based on maximum likelihood estimation. This method has been used in the system dynamics literature and is built in to some popular software packages. It is computationally efficient but requires strong assumptions about the model and data. These assumptions are frequently violated by the autocorrelation, endogeneity of explanatory variables and heteroskedasticity properties of dynamic models. The second method is called “bootstrapping.” Bootstrapping requires more computation but does not impose strong assumptions on the model or data. We describe the methods and illustrate them with a series of applications from actual modeling projects. Considering the empirical results presented in the paper and the fact that the bootstrapping method requires less assumptions, we suggest that bootstrapping is a better tool for confidence interval estimation in system dynamics
    [Show full text]
  • Theory Pest.Pdf
    Theory for PEST Users Zhulu Lin Dept. of Crop and Soil Sciences University of Georgia, Athens, GA 30602 [email protected] October 19, 2005 Contents 1 Linear Model Theory and Terminology 2 1.1 Amotivationexample ...................... 2 1.2 General linear regression model . 3 1.3 Parameterestimation. 6 1.3.1 Ordinary least squares estimator . 6 1.3.2 Weighted least squares estimator . 7 1.4 Uncertaintyanalysis ....................... 9 1.4.1 Variance-covariance matrix of βˆ and estimation of σ2 . 9 1.4.2 Confidence interval for βj ................ 9 1.4.3 Confidence region for β ................. 10 1.4.4 Confidence interval for E(y0) .............. 10 1.4.5 Prediction interval for a future observation y0 ..... 11 2 Nonlinear regression model 13 2.1 Linearapproximation. 13 2.2 Nonlinear least squares estimator . 14 2.3 Numericalmethods ........................ 14 2.3.1 Steepest Descent algorithm . 16 2.3.2 Gauss-Newton algorithm . 16 2.3.3 Levenberg-Marquardt algorithm . 18 2.3.4 Newton’smethods . 19 1 2.4 Uncertainty analysis . 22 2.4.1 Confidence intervals for parameter and model prediction 22 2.4.2 Nonlinear calibration-constrained method . 23 3 Miscellaneous 27 3.1 Convergence criteria . 27 3.2 Derivatives computation . 28 3.3 Parameter estimation of compartmental models . 28 3.4 Initial values and prior information . 29 3.5 Parametertransformation . 30 1 Linear Model Theory and Terminology Before discussing parameter estimation and uncertainty analysis for nonlin- ear models, we need to review linear model theory as many of the ideas and methods of estimation and analysis (inference) in nonlinear models are essentially linear methods applied to a linear approximate of the nonlinear models.
    [Show full text]
  • Random Vectors
    Random Vectors x is a p×1 random vector with a pdf probability density function f(x): Rp→R. Many books write X for the random vector and X=x for the realization of its value. E[X]= ∫ x f.(x) dx = µ Theorem: E[Ax+b]= AE[x]+b Covariance Matrix E[(x-µ)(x-µ)’]=var(x)=Σ (note the location of transpose) Theorem: Σ=E[xx’]-µµ’ If y is a random variable: covariance C(x,y)= E[(x-µ)(y-ν)’] Theorem: For constants a, A, var (a’x)=a’Σa, var(Ax+b)=AΣA’, C(x,x)=Σ, C(x,y)=C(y,x)’ Theorem: If x, y are independent RVs, then C(x,y)=0, but not conversely. Theorem: Let x,y have same dimension, then var(x+y)=var(x)+var(y)+C(x,y)+C(y,x) Normal Random Vectors The Central Limit Theorem says that if a focal random variable x consists of the sum of many other independent random variables, then the focal random variable will asymptotically have a 2 distribution that is basically of the form e−x , which we call “normal” because it is so common. 2 ⎛ x−µ ⎞ 1 − / 2 −(x−µ) (x−µ) / 2 1 ⎜ ⎟ 1 2 Normal random variable has pdf f (x) = e ⎝ σ ⎠ = e σ 2πσ2 2πσ2 Denote x p×1 normal random variable with pdf 1 −1 f (x) = e−(x−µ)'Σ (x−µ) (2π)p / 2 Σ 1/ 2 where µ is the mean vector and Σ is the covariance matrix: x~Np(µ,Σ).
    [Show full text]
  • WHAT DID FISHER MEAN by an ESTIMATE? 3 Ideas but Is in Conflict with His Ideology of Statistical Inference
    Submitted to the Annals of Applied Probability WHAT DID FISHER MEAN BY AN ESTIMATE? By Esa Uusipaikka∗ University of Turku Fisher’s Method of Maximum Likelihood is shown to be a proce- dure for the construction of likelihood intervals or regions, instead of a procedure of point estimation. Based on Fisher’s articles and books it is justified that by estimation Fisher meant the construction of likelihood intervals or regions from appropriate likelihood function and that an estimate is a statistic, that is, a function from a sample space to a parameter space such that the likelihood function obtained from the sampling distribution of the statistic at the observed value of the statistic is used to construct likelihood intervals or regions. Thus Problem of Estimation is how to choose the ’best’ estimate. Fisher’s solution for the problem of estimation is Maximum Likeli- hood Estimate (MLE). Fisher’s Theory of Statistical Estimation is a chain of ideas used to justify MLE as the solution of the problem of estimation. The construction of confidence intervals by the delta method from the asymptotic normal distribution of MLE is based on Fisher’s ideas, but is against his ’logic of statistical inference’. Instead the construc- tion of confidence intervals from the profile likelihood function of a given interest function of the parameter vector is considered as a solution more in line with Fisher’s ’ideology’. A new method of cal- culation of profile likelihood-based confidence intervals for general smooth interest functions in general statistical models is considered. 1. Introduction. ’Collected Papers of R.A.
    [Show full text]
  • A Framework for Sample Efficient Interval Estimation with Control
    A Framework for Sample Efficient Interval Estimation with Control Variates Shengjia Zhao Christopher Yeh Stefano Ermon Stanford University Stanford University Stanford University Abstract timates, e.g. for each individual district or county, meaning that we need to draw a sufficient number of We consider the problem of estimating confi- samples for every district or county. Another diffi- dence intervals for the mean of a random vari- culty can arise when we need high accuracy (i.e. a able, where the goal is to produce the smallest small confidence interval), since confidence intervals possible interval for a given number of sam- producedp by typical concentration inequalities have size ples. While minimax optimal algorithms are O(1= number of samples). In other words, to reduce known for this problem in the general case, the size of a confidence interval by a factor of 10, we improved performance is possible under addi- need 100 times more samples. tional assumptions. In particular, we design This dilemma is generally unavoidable because concen- an estimation algorithm to take advantage of tration inequalities such as Chernoff or Chebychev are side information in the form of a control vari- minimax optimal: there exist distributions for which ate, leveraging order statistics. Under certain these inequalities cannot be improved. No-free-lunch conditions on the quality of the control vari- results (Van der Vaart, 2000) imply that any alter- ates, we show improved asymptotic efficiency native estimation algorithm that performs better (i.e. compared to existing estimation algorithms. outputs a confidence interval with smaller size) on some Empirically, we demonstrate superior perfor- problems, must perform worse on other problems.
    [Show full text]
  • Likelihood Confidence Intervals When Only Ranges Are Available
    Article Likelihood Confidence Intervals When Only Ranges are Available Szilárd Nemes Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg 405 30, Sweden; [email protected] Received: 22 December 2018; Accepted: 3 February 2019; Published: 6 February 2019 Abstract: Research papers represent an important and rich source of comparative data. The change is to extract the information of interest. Herein, we look at the possibilities to construct confidence intervals for sample averages when only ranges are available with maximum likelihood estimation with order statistics (MLEOS). Using Monte Carlo simulation, we looked at the confidence interval coverage characteristics for likelihood ratio and Wald-type approximate 95% confidence intervals. We saw indication that the likelihood ratio interval had better coverage and narrower intervals. For single parameter distributions, MLEOS is directly applicable. For location-scale distribution is recommended that the variance (or combination of it) to be estimated using standard formulas and used as a plug-in. Keywords: range, likelihood, order statistics, coverage 1. Introduction One of the tasks statisticians face is extracting and possibly inferring biologically/clinically relevant information from published papers. This aspect of applied statistics is well developed, and one can choose to form many easy to use and performant algorithms that aid problem solving. Often, these algorithms aim to aid statisticians/practitioners to extract variability of different measures or biomarkers that is needed for power calculation and research design [1,2]. While these algorithms are efficient and easy to use, they mostly are not probabilistic in nature, thus they do not offer means for statistical inference. Yet another field of applied statistics that aims to help practitioners in extracting relevant information when only partial data is available propose a probabilistic approach with order statistics.
    [Show full text]
  • Statistical Data Analysis Stat 4: Confidence Intervals, Limits, Discovery
    Statistical Data Analysis Stat 4: confidence intervals, limits, discovery London Postgraduate Lectures on Particle Physics; University of London MSci course PH4515 Glen Cowan Physics Department Royal Holloway, University of London [email protected] www.pp.rhul.ac.uk/~cowan Course web page: www.pp.rhul.ac.uk/~cowan/stat_course.html G. Cowan Statistical Data Analysis / Stat 4 1 Interval estimation — introduction In addition to a ‘point estimate’ of a parameter we should report an interval reflecting its statistical uncertainty. Desirable properties of such an interval may include: communicate objectively the result of the experiment; have a given probability of containing the true parameter; provide information needed to draw conclusions about the parameter possibly incorporating stated prior beliefs. Often use +/- the estimated standard deviation of the estimator. In some cases, however, this is not adequate: estimate near a physical boundary, e.g., an observed event rate consistent with zero. We will look briefly at Frequentist and Bayesian intervals. G. Cowan Statistical Data Analysis / Stat 4 2 Frequentist confidence intervals Consider an estimator for a parameter θ and an estimate We also need for all possible θ its sampling distribution Specify upper and lower tail probabilities, e.g., α = 0.05, β = 0.05, then find functions uα(θ) and vβ(θ) such that: G. Cowan Statistical Data Analysis / Stat 4 3 Confidence interval from the confidence belt The region between uα(θ) and vβ(θ) is called the confidence belt. Find points where observed estimate intersects the confidence belt. This gives the confidence interval [a, b] Confidence level = 1 - α - β = probability for the interval to cover true value of the parameter (holds for any possible true θ).
    [Show full text]
  • Confidence Intervals for Functions of Variance Components Kok-Leong Chiang Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 2000 Confidence intervals for functions of variance components Kok-Leong Chiang Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Statistics and Probability Commons Recommended Citation Chiang, Kok-Leong, "Confidence intervals for functions of variance components " (2000). Retrospective Theses and Dissertations. 13890. https://lib.dr.iastate.edu/rtd/13890 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while ottiers may be f^ any type of computer printer. The quality of this reproduction is dependent upon the quality of ttw copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author dkl not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g.. maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overiaps.
    [Show full text]
  • Monte Carlo Methods for Confidence Bands in Nonlinear Regression Shantonu Mazumdar University of North Florida
    UNF Digital Commons UNF Graduate Theses and Dissertations Student Scholarship 1995 Monte Carlo Methods for Confidence Bands in Nonlinear Regression Shantonu Mazumdar University of North Florida Suggested Citation Mazumdar, Shantonu, "Monte Carlo Methods for Confidence Bands in Nonlinear Regression" (1995). UNF Graduate Theses and Dissertations. 185. https://digitalcommons.unf.edu/etd/185 This Master's Thesis is brought to you for free and open access by the Student Scholarship at UNF Digital Commons. It has been accepted for inclusion in UNF Graduate Theses and Dissertations by an authorized administrator of UNF Digital Commons. For more information, please contact Digital Projects. © 1995 All Rights Reserved Monte Carlo Methods For Confidence Bands in Nonlinear Regression by Shantonu Mazumdar A thesis submitted to the Department of Mathematics and Statistics in partial fulfillment of the requirements for the degree of Master of Science in Mathematical Sciences UNIVERSITY OF NORTH FLORIDA COLLEGE OF ARTS AND SCIENCES May 1995 11 Certificate of Approval The thesis of Shantonu Mazumdar is approved: Signature deleted (Date) ¢)qS- Signature deleted 1./( j ', ().-I' 14I Signature deleted (;;-(-1J' he Depa Signature deleted Chairperson Accepted for the College: Signature deleted Dean Signature deleted ~-3-9£ III Acknowledgment My sincere gratitude goes to Dr. Donna Mohr for her constant encouragement throughout my graduate program, academic assistance and concern for my graduate success. The guidance, support and knowledge that I received from Dr. Mohr while working on this thesis is greatly appreciated. My gratitude is extended to the members of my reviewing committee, Dr. Ping Sa and Dr. Peter Wludyka for their invaluable input into the writing of this thesis.
    [Show full text]
  • 32. Statistics 1 32
    32. Statistics 1 32. STATISTICS Revised September 2007 by G. Cowan (RHUL). This chapter gives an overview of statistical methods used in High Energy Physics. In statistics, we are interested in using a given sample of data to make inferences about a probabilistic model, e.g., to assess the model’s validity or to determine the values of its parameters. There are two main approaches to statistical inference, which we may call frequentist and Bayesian. In frequentist statistics, probability is interpreted as the frequency of the outcome of a repeatable experiment. The most important tools in this framework are parameter estimation, covered in Section 32.1, and statistical tests, discussed in Section 32.2. Frequentist confidence intervals, which are constructed so as to cover the true value of a parameter with a specified probability, are treated in Section 32.3.2. Note that in frequentist statistics one does not define a probability for a hypothesis or for a parameter. Frequentist statistics provides the usual tools for reporting objectively the outcome of an experiment without needing to incorporate prior beliefs concerning the parameter being measured or the theory being tested. As such they are used for reporting most measurements and their statistical uncertainties in High Energy Physics. In Bayesian statistics, the interpretation of probability is more general and includes degree of belief (called subjective probability). One can then speak of a probability density function (p.d.f.) for a parameter, which expresses one’s state of knowledge about where its true value lies. Bayesian methods allow for a natural way to input additional information, such as physical boundaries and subjective information; in fact they require as input the prior p.d.f.
    [Show full text]
  • Interval Estimation Statistics (OA3102)
    Module 5: Interval Estimation Statistics (OA3102) Professor Ron Fricker Naval Postgraduate School Monterey, California Reading assignment: WM&S chapter 8.5-8.9 Revision: 1-12 1 Goals for this Module • Interval estimation – i.e., confidence intervals – Terminology – Pivotal method for creating confidence intervals • Types of intervals – Large-sample confidence intervals – One-sided vs. two-sided intervals – Small-sample confidence intervals for the mean, differences in two means – Confidence interval for the variance • Sample size calculations Revision: 1-12 2 Interval Estimation • Instead of estimating a parameter with a single number, estimate it with an interval • Ideally, interval will have two properties: – It will contain the target parameter q – It will be relatively narrow • But, as we will see, since interval endpoints are a function of the data, – They will be variable – So we cannot be sure q will fall in the interval Revision: 1-12 3 Objective for Interval Estimation • So, we can’t be sure that the interval contains q, but we will be able to calculate the probability the interval contains q • Interval estimation objective: Find an interval estimator capable of generating narrow intervals with a high probability of enclosing q Revision: 1-12 4 Why Interval Estimation? • As before, we want to use a sample to infer something about a larger population • However, samples are variable – We’d get different values with each new sample – So our point estimates are variable • Point estimates do not give any information about how far
    [Show full text]