Danubian, West Balkan, Struma North Dobrogea Kula, Forebalkan, Istanbul zone 200 km Krakow 0 50º 50º Alpine-Carpathian foreland basin 365000 370000 375000 A‘ 380000 385000 12° 14° 16° 18° 20° 22° 24° 26° (a) Simplified overview map of major tectonic Alluvium 50° M Alpine Tethys sutures ioc e External Dinarides Internal Dinarides Europe-derived Variscan orogen & Moesia Neotethys suture 49º 10º t ne units and fault zones of the Alps-Carpathians- Lower Pliocene hr A u 12ºl Pre-Karst East-Bosnian-Durmitor Tisza 15 s p 14º t b s 26 10 Middle Miocene - 16º Dinarides region (modifiedPrecambrian afterplatform Schmid et al., e C High-Karst -Ivanjica Dacia 49º Lešnica Čokešina lt a 45 (Badenian-Sarmatian?) r 41 16422F/18928B 48° p 26º 6 29 9 a Dalmatian Jadar-Kopaonik-Studenica

12 42 m 2020). MHSZ, Mid-Hungarian shear zone; PAL,

46 14 Base Middle Miocene t r 5 ALCAPA h 67 43 50

o 8 i

f a

17 (Lower Badenian?) 30 n Kosice 45 27 38 38 n 4945000 57 40 y s Cernovcy 45 40 17801J TW

S 16421D Periadriatic line; TW, Tauern window. Shaded

48 Ophiolites and suture zones 35 a Upper Cretaceous München 50 PAL MHSZ c 47 S 20 38 i ou Wien Southern Alps, Austroalpine 52 n th Straža 37 17801I er L. Constance Ceahlau-Severin suture a 18928D n A Bratislava area depicts extent of the Pannonian Ba-sin. 52 40 lps Tisza z 18925H 46° a45 Middle Triassic r t Western Vardar Ophiolites 20 S Foreland basins and platforms 30 45 45 17918D 11 Eastern Vardar Ophiolites 28 Lower Triassic 76 Dacia 12 Budapest 17918E 47º Debrecen 30º 39 42 55 Sava Suture Zone Digital Elevation map (based on SRTM data 33 Dinarides (b) 42 40 75 28º Donji Dobrić 50 35 Permian 35 29 44° Iaşi 10 33 Major low-angle with 90 m resolution) of the Pannonian Basin 50 37 Caboniferous Major thrusts extensional detachmentsL. Balaton Cluj-Napoca 53 71 Bacau 40 35 and surrounding orogens with their respective 4940000 a) 70 15

44.6° Devonian 18926C 15°E 20°E 25°E Elevation (m) 150906D 14° 16° 18° 20° 22° deformation fronts. Abbreviations (white bold 0

Pre-Devonian (?) 50°N 50°N 400 Ljubljana 28 (metamorphosed) athia Carp ns 800 italic) indicate major subbasins of the Pannonian 17803D 31 rn Mylonitic shear zone Milanoe 1200 16416B st VeronaE 18 e as 1600 Trieste 29 te Zagreb Basin system: Bb, Banat Basin; Db, Danube 25 50 25 W rn 2000 19.3° 24 19.4° 30 Tcb 50 10 15 25 I-type granite C 2400 Požeška Gora 40 27 15 45º D Db a a a Prosara Fruška Gora 6 9 e z r 2800 basin; Drt, Drava trough; GrHP, Great Hungarian 11 nub 17917A is p 5 S-type granite T a A 40 40 Eastern LtHP t 45° 50 35 35 GrHP h 25 1 Plain; LtHP, Little Hungarian Plain; Svt, Sava Apuseni i 25 Alps a 15 Panno 4935000 25 nia Piteşti Bradić Tekeriš 20 + large WM n n 30 Basin Beograd Southern Drt s Cer 20 Körös Mts. Banja Luka Motajica trough; Tb, Tran-sylvanian basin; Tcb, Transcar- Lamprophyres (?) Alps Dr Tb ava . Bukulja Bucureşti Svt rp pathian basin. Sava Bb uthern a Pegmatites So C 45°N 5 km 45°N Cer 19.5° D Sarajevo Kopaonik in Moesian Plattform a a (c) Tectonic units of the Dinarides and neigh- own | map stretching lineation ls discordant contact r n high-angle normal fault C And Grt St i i C d r 43º e extensional low-angle l with transport direction Apennines D concordant contact foliation s2 s s boring regions (modified after Schmid et al., detachment Fig. 1b Balkanides bedding intersecting lineation li Helle- Studenica intrusive contact A detachment covered by Hbl Cpx d nides Rhodope Massif 43° 2020) with locations of metamorphicBlack Sea core com- ri Jastrebac mapped fault younger sediments Fold axis FA1 at ic assumed fault Se Dubrovnik Sofia 15°E a 20°E 25°E plexes and asso-ciated low-angle detachment outcrop locations sample locations for Ar-Ar dating b) c)

L. Skoder faults in red. The dashed line depicts the locati- Roma SSW NNE on of the cross section trace (Fig. 12). Skopje Drina-I vanjica t h r u st s h eet Jad ar-Kopa onik t h r u st s h eet Edirne 6 breakaway1 st 2 nd 6 41º segment segment Cer Adriatic Sea P a nnonia n Basi n Drina Jad a r (d) Geological map of Cer metamorphicIstanbul core Tirana L. Ohrid 4 4 Kavala Napoli L. Prespes complex (MCC) based on the Yugoslavian map 2 2 Thessalonikisheets “Zvornik” and “”, 1:100000 Bursa Lecce 0 0 (WGS84, UTM Zone 34N, Filipović (1971); Tyrrhenian Sea Mojsilović et al. (1975)), supplemented by own -2 -2 39º observations. Grey structural elements are ? -4 East-Bosnian-Durmitor thrust sheet -4 adopted from the Yugoslavian maps. -6 -6 (e) Balanced cross-sectionIzmir through the Cer -8 Palermo -8 Patra metamorphic core complex (MCC) and the Denizli elevation (km above sea level) Athina -10 -10 southerly adja-cent nappe contact between the NCD 37º Jadar-Kopaonik thrust sheet in the north and the -20 Adriatic crust (undifferentiated) -20 Bodrum CCD Calabrian Drina-Ivanjica composite nappe in the south. arc Geological Setting 10 km Upper Jurassic strata are composed of Nabeul W-Vardar ophiolites and as-sociated mélange.

4880000 4890000 4900000 4910000 4920000 4930000 4940000 4950000 4960000 The breakaway fault that roots in the low-angle Neogene sediments 00 Ionian Sea Aegean Sea 340000 350000 3600 Jadar-Kopaonik thrust sheet 370000 extensional shear zone border-ing the Cer MCC Pliocene Chania W 35º Iraklio Miocene Cer intrusion (undiff.) Upper Cretaceous N reactivates the ramp-segment of the nappe

Projected dip of bedding/foliation S Mylonitic shear zone Middle Triassic E contact. Drina-Ivanjica thrust sheet Cretaceous-Paleogene thrust contact 33 20 Lower Triassic 54 24 38 24 380000 30 45 40 55 8 40 Miocene extensional detachment fault 17 36 10 Upper Jurassic Rhaetian Permian 6 42 24 Cross-section trace 30 Hellenic trench ophiolitic Fault covered by younger sediments 38 20 40 36 20 10 Norian Carboniferous 30 65 rocks 10º 25 Carnian Devonian 12º 28º Triassic Metamorphic foliation / bedding 14º 26º 16º 24º Ladinian 18º 20º 22º Carboniferous 390000 metamorphosed Pre-Devonian (?) rocks Ophiolites10 km & oceanic accretionary prisms Rhodopes (units of disputed origin) Adria-derived allochthons in the Dinarides, Continental ribbon of disputed origin Devonian Hellenides & W-Turkey Rhodope uppermost unit (Asenitsa- Calabro-Peloritani unit Sutures Thrace-Sakar) Antalya-Alanya nappes

N N ophiolites Left: SSW NNE carrying obducted a) b) 17917A3 composite nappes, St Stereographic projections (equal area, lower 17801I hemisphere) of structural data from various parts of the Cer MCC: (a) mylonitic shear zone within C‘ Grt the central Stražanica synform; (b) northern Grt Stražanica synform; (c) S-type granite at the St eastern limb of the Stražanica synform with Stražanica Grt synform kinematic indicators showing top-N transport; d) mylonites at the northeastern margin of Cer s (48); l (10) 2 i l (9); FA (7); s (43) i 2 5 mm 1 mm 500 µm MCC; e) structural data collected north of Teke- a) 16421D b) 17917A c) ris; f) brittle fault planes with slip lineations from N N the magmatic core of Cer MCC. c) d) SW 17801J (x-z) NE 17801J (y-z) St 17918E Grt s2 Right: 16422F C‘ Thin section photomicrographs of igneous and metamorphic rocks from Cer MCC under plane- WM and cross-polarized light (for locations of the corresponding outcrops see above). Bt a) Garnet-bearing mica schist developing C’-ty- s2 s (46); ls (49) s2 (6); ls (16) 2 pe shear bands that indicate top-N transport; s max: 086/38 Grt s 2 1 b) garnet-staurolite-bearing micaschist from the ls max: 010/13 1 mm d) 1 mm e) f) south-eastern part of Cer (Tekeriš); N N c) Detailed view of Grt from (b) exhibiting snow- e) f) SSW 17803D NNE S 16416B N ball structure that indicate syntectonic growth; d) C‘ mylonitic garnet- and staurolite-bearing mica- 17917A Hbl schist from the northern Stražanica-synform, Pl extensional shear bands that developed in s2 WM indicate top-N transport; e-f) y-z- section of the same sample reveals a Bt folded s1-foliation, resulting in the axial-planar

Microstructures Cpx Grt s2-foliation; and petrography l (8); lm (5); ls (14) c g) garnet- and pyroxene-bearing hornblen- s max: 140/30 (44) 2 500 µm g) 17918D h) 1 mm i) 5 mm de-hornfels with mylonitic s2 foliation (Stražani- ca-synform); foliation s (pole) intersection lineation l stretching lineation l h) monzodiorite with metamorphic foliation 2 i s composed of biotite that developed C’-type fold axis FA mineral lineation lm crenulation lineation lc pole to s max l max movement direction of the hanging wall shear bands, indicating top-N transport; 2 s i) deformed, garnet-bearing S-type granite. Prekinematic white mica forming mica fish and S-C-fabric indicate top-N sense of shear. NNE Top: 5 cm Outcrop 16422F near Bela Reka exposing Leucosome Sample 18928B injected migmatites, i.e. injected leucosomes in a melanocratic host rock. Detailed view of sample 16422F1 and 18928B 1 mm (used for Ar-Ar in-situ LA-NGMS and sing- le-grain total fusion/step heating analyses). Melanosome Asymmetric boudins and the nebulous occurren- ce of leucocratic material in the lower left. C‘ Thin section micrographs of the leucosome and melano-some of the rock. Note that only relics of biotite are present in the leucosome. Both domains show mica fish and C’-type shear 10 cm bands. f) 1 mm Bottom: Left: Rank order plots with weighted mean ages (WMA) and inverse isochron plots of white mica (sam-ple 16422F1) obtained by in-situ laser ablation dating. Analytical uncertainties are In-Situ LA-NGMS shown on a 95% confidence level. MSWD, mean square of weighted deviates. WMA = 17.32±0.12 (n=56/56) 17.40±0.2217.28±0.29 a) Data with and without atmospheric correction a) MSWD = 0.30 age = 17.30±0.17 Ma (n=56) 17.07±0.2517.09±0.37 40 36 17.57±0.30 due to 36Ar signals below the detection limit. ( Ar/ Ar)i = 300.2±8.4 17.57±0.83 0.002 WMA = 17.89±0.08 MSWD = 0.32 17.38±0.30 17.68±0.48 17.52±0.57 The lack of atmospheric correction leads to a 36 (n=11/12) Ar>0 weighted mean age that is significantly older MSWD = 5.66 17.31±0.58 18.14±0.84 16.95±0.90 than the WMA of aliquots corrected for atmo- Ar 17.29±0.51 17.30±0.53 40 16.92±0.55 17.48±0.72 spheric Ar. 0.001 36 Ar/ b) Inverse isochron plot of the same spot analy- Ar=0 36 17.07±0.40 500 µm 500 µm 500 µm ses as shown in a) of the leucosome. a) d) g) c-d) WMA and IIA plot of white mica of the mela- age = 17.36±0.71 Ma (n=6) age = 17.29±0.54 Ma (n=5) 0.0015 age = 17.1±1.0 Ma (n=6) nosome. 40 36 40 36 40 36 0.000 ( Ar/ Ar) = 299.3±26.7 ( Ar/ Ar) = 298.2±53.3 ( Ar/ Ar) = 315±75 b) leucosome 0.0015 i i i Right: Examples of intra-granular dating of MSWD = 0.46 0.0008 MSWD = 0.77 MSWD = 0.14 0.0010 14 16 18 20 22 0.20 0.25 0.30 0.35 0.40 Ar white mica from the low-angle shear zone

16 18 20 22 40 Age (Ma) (sample 16422F1) with BSE images showing WMA = 17.39±0.31 (n=7/7) Ar/

36 0.0004 0.0005 MSWD = 2.27 age = 17.05±0.43 Ma (n=7) spot sites (top row; filled: with atmospheric 40Ar/36Ar = 313.86±11.53 i correction, empty: no atmospheric correction MSWD = 0.46 0 0 b) 0 e) h) due to 36Ar signal below detection limit) and 0.20 0.25 0.30 0.35 0.40 0.30 0.32 0.34 0.36 0.38 0.40 0.42 0.25 0.30 0.35 0.40 inverse isochron plots and weighted mean ages

0.001 39Ar/40Ar 39 40 39 40 Ar Ar/ Ar Ar/ Ar (middle and bottom row, respectively). Note that 40 20 20 20 WMA = 17.38±0.36 (n=6/6) WMA = 17.28±0.51 (n=6/10)

Ar/ the ages without atmospheric correc-tion (white

36 MSWD = 0.37 WMA = 17.29±0.24 (n=5/5) MSWD = 0.19 40 19 19 19 MSWD = 0.56 bars in (i)) are slightly older (too much Ar) and have lower uncertainties (no propagation of the 18 18 18 uncertainty of the 36Ar signal into the final age). 17 17 17 0.000 c) d) melanosome Age (Ma) 16 16 12 14 16 18 20 22 0.20 0.25 0.30 0.35 0.40 16 39 40 DOOHUURUVDUHı

f) 15 i) Age (Ma) Ar/ Ar 15 c) 15

Left: conventional step heating Age spectra and inverse isochron plots of Multi-grain step heating Single-grain total fusion/step heating step-heating experiments. a-b) White mica from a boudined leucosome of DOOHUURUVDUHı White Mica Biotite the low-angle shear zone.

30 c-d) White mica from an undeformed S-type 0.004 WPA = 16.35±0.35 Ma (n=15/18) 17918E 17801I 18928B (leucosome) 18928B (melanosome) MSWD = 0.29 granite below the shear zone (18925H). (µm) 25 Deformed S-type granite Pegmatite intruding shear zone Migmatite of Bela Reka (Outcrop 16422F) Ar-Geochronology includes 90% of the 39Ar 0.003 grainsize e-f) Amphibole from I-type granitoid (18926C2).

Ar WMA = 18.00±0.33 (n=30/30) WMA = 17.88±0.18 (n=30/32) WMA = 17.23±0.14 (n=29/29) WMA = 17.11±0.24 (n=34/34) 20 40 Recalculation of the age spectrum in (e) MSWD = 0.97 MSWD = 0.59 MSWD = 0.86 MSWD = 0.64 g-h)

39 40 36 Ar/ 0.002 with an initial Ar/ Ar-ratio of 316±11, deter- 36 age (Ma) 15

ages calculated with mined by the inverse isochron through the first

40 36 0.001 10 ( Ar/ Ar) =350±97 i Age = 16.35±0.57 Ma (n=15) four steps (h). 40 36 ( Ar/ Ar)i = 350±97

5 a) 16422F2 - white mica b) MSWD = 0.32 i-j) Biotite from the same sam-ple (18926C2). 0.000 Ar/ 0.0 0.2 0.4 0.6 0.8 1.0 0.00 0.05 0.10 0.15 0.20 0.25 80-250 The age spectrum indicates Ar-loss for the

20 low-temperature steps. 0.004 40 0.003

15 Right: SGTF/SGSH Ar 40 (a) Rank order plots of single-grain total fusion 0.002 WPA = 16.62±0.21 Ma (n=14/16) Ar/ 36 age (Ma) ages obtained on white mica and biotite for MSWD = 0.64 10 10 15 20 25 10 15 20 25 10 15 20 25 10 15 20 25 includes 99% of the 39Ar 0.001 differ-ent grain sizes. WMA, weighted mean age Age = 16.66±0.25 Ma (n=14) 40 36 ( Ar/ Ar)i = 290±18 WMA = 17.78±0.22 (n=29/30) WMA = 17.41±0.04 (n=33/33) WMA = 17.14±0.04 (n=23/23) WMA = 17.03±0.12 (n=32/33) (confidence interval=95%, corresponding to 1.96 MSWD = 0.65

0.000 MSWD = 0.87 MSWD = 2.00 MSWD = 0.25 MSWD = 1.41 5 c) 18925H - white mica (500-1500µm) d) σ); MSWD, mean square of weighted deviates. 0.0 0.2 0.4 0.6 0.8 1.0 0.1 0.2 0.3 0.4 0.5 0.6 Empty bars are outlier which were excluded 40 WPA = 25.01±0.74 Ma (n=13/18) from the calculation of the weighted mean ages. MSWD = 2.86 35 includes 86% of the 39Ar Dashed curves show the corresponding Kernel 0.0025 30

Ar density es-timates. 250-500 40 40 36

25 (b) Initial Ar/ Ar-ratios of single-grain total Ar/ 36 age (Ma) fusion (SGTF; same data as in (a), inverse 20 ages calculated with 0.0015 40 36 Age = 25.4±1.2 Ma (n=13) ( Ar/ Ar)i=324±30 40 36 isochron plots in Fig. S1) and single-grain

15 ( Ar/ Ar)i = 324±30 MSWD = 3.3 step-heating experiments (SGSH; Fig. S2). 18926C2 - Hbl 10 e) f)

0.0005 Inset: same plot type as (b), but for single-grain 0.0 0.2 0.4 0.6 0.8 1.0 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 10 15 20 25 10 15 20 25 10 15 20 25 10 15 20 25

40 in-situ measurements (SGIS) of 5 WM grains. WPA = 16.8±2.0 Ma (n=4/18) Age (Ma) Age (Ma) Age (Ma) MSWD = 0.44 WMA = 17.44±0.08 (n=33/34) 35 includes 9.1% of the 39Ar MSWD = 0.55 16422F1 0.0025

30 400 Ar 320 40 25 Ar/ 36 age (Ma) Age = 16.7±5.1 Ma (n=4) b)

20 40 36 0.0015 ( Ar/ Ar)i = 316±11 MSWD = 0.73 Errors are 2ı

15 310 ages calculated with SGIS

40 36 500-1000 ( Ar/ Ar)i=316±11

10 g) h)

0.0005 200 0.0 0.2 0.4 0.6 0.8 1.0 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 Errors are 1ı Ar ratio 30 WPA = 17.32±0.29 Ma (n=13/18) Age = 17.44±0.30 Ma (n=18) 36 300 16 17 18 MSWD = 0.24 (40Ar/36Ar) = 294.83±0.42

0.0030 i 25

39 Ar/ includes 87% of the Ar MSWD = 1.6 present-day 40 40 36 Ar 20 10 15 20 25 Ar/ Ar-ratio 40

0.0020 Age (Ma) Lee et al. (2006) Ar/

15 290 36 age (Ma) initial 0.0010 10 Bt WM 17801I 17918E 18928B

5 i) 18926C2 - Bt j) 280 SGSH SGTF 0.0000 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 a) 16.5 17.0 17.5 18.0 18.5 cumulative 39Ar fraction 39Ar/40Ar Inverse Isochron Age (Ma)

Top: Conceptual kinematic model along a SSW 10 km NNE SSW-NNE-oriented transect, illustrating the evolution of the most internal part of the Dinari- present-day topography des since early Late Cretaceous times, post-da- ting the obduction of the western Vardar ophioli- The opening of the Pannonian Drina-Ivanjica Jadar-Kopaonik tes. These ophiolites are considered as the uppermost part of the re-spective thrust sheets. Basin in response to slab-re- Red arrows and lines depict areas of active Adriatic crust (undiff.) deformation; black lines those of inactive defor- mation. treat underneath the Carpathi- 1: ~early Late Cretaceous 1) Thrusting of Jadar-Kopaonik unit onto an orogen also affected the Drina-Ivanjica (DI) unit. 2) In-sequence thrusting of DI onto the East Dinarides EBD Drina-Ivanjica Jadar-Kopaonik Bosnian-Durmitor (EBD) unit.

Adriatic crust (undiff.) 3) Emplacement of I-type in-trusion at ~32 Ma. Early Miocene onset of extension (Pannonian Miocene extension in the Pan- 2: ~Latest Cretaceous - Mid-Eocene Basin peak extension at ~19 Ma) with reactivati- breakaway on of the ramp segment of the former thrust nonian Basin also affected the contact as a low-angle normal fault. 4-5) Continuing extension along listric normal distal Adriatic margin, where faults rooting in a flat detachment along the (in the case of Cer) the reacti- EBD Drina-Ivanjica Jadar-Kopaonik former thrust plane. 6) Denudation and isostatic uplift of continental Adriatic crust (undiff.) crust followed by the intru-sion of the S-type Conclusions vation of nappe contacts as granite. Continuing exhumation of Cer MCC. 3: Early Oligocene - Earliest Miocene I-type low-angle detachment sys- qtz-monzodiorite Bottom: a) Geochronological data from the Cer massif, tems resulted in the exhumati- own data and published ones, with data from the shear zone in solid boxes and the the undefor- med footwall in dashed boxes. WMA, weighted on of mid-crustal core com- EBD Drina-Ivanjica Jadar-Kopaonik mean age; IIA, inverse isochron age; L, leucoso- me; M, melanosome. plexes such as Cer MCC at Adriatic crust (undiff.) b) Interpretative P-T-t path of the Cer Massif and approx. 17-18 Ma. 4: Early Miocene surrounding metamorphic rocks. Intrusion of the I-type granitoid at ~32 Ma is followed by isobaric cooling until c. 20 Ma and final cooling by tecto- nic denudation. Extension was most pronoun- ced in the internal Dinarides EBD Drina-Ivanjica Jadar-Kopaonik

and involved the reactivation Adriatic crust (undiff.) of former suturing thrusts of 5: ~20 Ma Amount of horizontal displacement: ~14 km the Sava zone as low-angle (brittle) (ductile) detachments, shown by 2 km 12 km Ustaszewski et al. (2010). EBD Drina-Ivanjica S-type granite Adriatic crust (undiff.) 6: ~18 Ma - 14 Ma

370000 375000 380000 16422F2 17801I 18925H SH IIA (WM): AFT ZFT Ar (Bt) $U :0 Ar (Hbl) SGTF WMA (WM): SH IIA (WM): 16.35±0.57 Ma 17.88±0.18 Ma 16.66±0.25 Ma 17.41±0.04 Ma AFT: 14±1 Ma2) 16422F1 (L) IS WMA (WM): water-saturated SGSH IIA (WM): 15

4945000 17.31±0.12 Ma granite solidus 17.3-17.5 Ma IS IIA (WM): Ky Amph. 17.29±0.17 Ma 0.4 Sil 30°C/km Granulite1) 18928B (L) §0D 1) And U-Pb (Zrn): 31.36±0.49 Ma SGSH IIA (WM):  10 17918E 1) §0D ZFT: 15.1±0.5 Ma 17.16±0.10 Ma Greenschist SGSH IIA (WM): AFT: 12.5±1.1 Ma1) 18928B (M) Prh-Pmp  Zrn 17.26-17.40 Ma Zeolite §0D SGSH IIA (Bt):

(17.32±0.04 Ma)* Depth (km) 18926C2 Hbl- SGTF WMA (WM): 17.01-17.21 Ma 0.2 Px- SH IIA (Hbl): §0D1) Hornfels

18.00±0.33 Ma Pressure (GPa) 5 4940000 25.4±1.2 Ma Hornfels - U-Pb (Zrn): 32.21±0.3 Ma1)   SH IIA (Bt): §0D §0D 17.44±0.08 Ma ZFT: 16.3±0.5 Ma1) 17.44±0.30 Ma Ab-Ep- Sanidinite Hornfels

AFT: 14.4±1.4 Ma1) deformed rocks of the shear zone 200 400 600 800 ZFT: 16.1±0.6 Ma1) undeformed rocks of the footwall a) b) Temperature (°C) Ar/Ar-dating method: Source: cooling by tectonic exhumation SGTF - single grain total fusion AFT - Apatite Fission Track 1) Stojadinovic et al. (2017) SGSH - single grain stepwise heating ZFT - Zircon Fission Track 2) Ustaszewski et al. (2010) isobaric cooling by conductive heat transfer SH - stepwise heating WM - white mica Hbl - hornblende  6WRMDGLQRYLüHWDO    WKLVVWXG\  8VWDV]HZVNLHWDO  IS - in-situ * WMA of IIAs (n=5) Bt - biotite Zrn - zircon

The supplementary Material can be accessed here!