Why Proof by Contradiction Is Unreliable and There Is No Such Thing As an Infinite Set

Total Page:16

File Type:pdf, Size:1020Kb

Why Proof by Contradiction Is Unreliable and There Is No Such Thing As an Infinite Set Why Proof by Contradiction is Unreliable and there is no such thing as an Infinite Set Pravin K. Johri Proof by contradiction, relying on the Law of Excluded Middle, is used universally in mathematics even though it is considered unreliable in other sciences. The most notable application is in the Cantor Diagonal Argument to infer that the unit interval is uncountable. Cantor’s theorem uses it to conclude that there are infinitely many cardinalities of infinite sets. The very idea of “Infinite infinities” should boggle everyone’s mind. Excerpts from the Wikipedia page “Georg Cantor” Before Cantor, there were only finite sets (which are easy to understand) and "the infinite" (which was considered a topic for philosophical, rather than mathematical, discussion). By proving that there are (infinitely) many possible sizes for infinite sets, Cantor established that set theory was not trivial, and it needed to be studied. Set theory has come to play the role of a foundational theory in modern mathematics, in the sense that it interprets propositions about mathematical objects (for example, numbers and functions) from all the traditional areas of mathematics (such as algebra, analysis and topology) in a single theory, and provides a standard set of axioms to prove or disprove them. Proof by contradiction was severely criticized by Kronecker, who disliked much of Cantor's set theory because it asserted the existence of sets satisfying certain properties, without giving specific examples of sets whose members did indeed satisfy those properties. If proof by contradiction is indeed unreliable, it would negate Cantor’s infinite set theory and invalidate many areas in mathematics. This profound conclusion requires background on the genesis of such a method, and this is provided in Appendices A and B. 1 The Law of Excluded Middle (LoEM) In logic, the Law of Excluded Middle (or the principle of excluded middle) is the third of the three classic laws of thought. It states that For any proposition, either the proposition is true or its negation is true. Excerpts from the Wikipedia page “Brouwer-Hilbert controversy” The earliest known formulation is Aristotle’s principle of non-contradiction - that of two contradictory propositions (i.e. where one proposition is the negation of the other) one must be true, and the other false. It just seems “logical” that an object of discourse either has a stated property (e.g. “This truck is yellow”) or it does not have that property (“This truck is not yellow”) but not both simultaneously. The LoEM implies two absolutes, the proposition and its negation, and no gray area or middle (ground) between the two. The likelihood of a middle is excluded in this line of reasoning. Even Quinn [6] acknowledges that the LoEM may not be justified. Excerpts from Quinn [6] Excluded-middle arguments are unreliable in many areas of knowledge, but absolutely essential in mathematics. Indeed we might define mathematics as the domain in which excluded middle arguments are valid. Instead of debating whether or not it is true, we should investigate the constraints it imposes on our subject. Given the doubts as to the efficacy of excluded-middle arguments, should they be used in a pure science? Perhaps there is no clear answer. If that is the case, it is unlikely one can come up with meaningful constraints when such logic applies and when it doesn’t. Can one analyze whether or not the LoEM is true? The best way to show it is untrustworthy is to demonstrate that it leads to different conclusions than the ones adopted in mathematics. 2 Complement of a Set It turns out finite set theory has a basic concept which is quite similar. In a Venn diagram, a rectangle represents the Universe U universe U which contains all the entities under consideration. Sets are represented by circles and can only be subsets of U. The complement Sc of a set S is S given by the part of the rectangle outside of S's circle. If an object in not in S it must be in its complement, and vice versa. Hence, showing x S is sufficient to establish that x Sc, and vice versa. It does rely, however, on an implicit assumption that x was in the universe to begin with. In the previous example, the universe can be all trucks and the set S can be all yellow trucks. Then Sc should be made up of all trucks that are not yellow. But is it? Proof by Contradiction A proposition can be established by contradicting its negation. For example, if the proposition this truck is not yellow is negated then one can establish that this truck is yellow. The postulate this truck is not yellow seems to be simple, specific and straightforward, and so is its negation. They both assert a single property of an object in a clear concise manner. Is the same true for more complicated premises like the ones in the Cantor Diagonal Argument (CDA) and in Cantor’s theorem? The CDA negates the proposition that the unit interval is countable, which on the surface is also a succinct description. However, below the surface, there are many axioms, definitions, methods, etc. that have allowed one to reach the point when such a claim can be made. Should any or all of these be included in the proposition? Are any implicit assumptions negated by the proof by contradiction argument along with the main proposition? 3 Failure of Proof by Contradiction It turns out that even the simplest of propositions need not be absolutely precise. What if the truck is red and yellow? Now, the previously incompatible statements this truck is yellow and this truck is not yellow are both neither entirely true nor wholly false! Proof by contradiction failed in the simplest of examples as soon as a second dimension of multiple colors is introduced. Note that the original proposition and its prescribed negation didn’t say anything about single or multiple colors. As stated, it should have applied in both cases. Potential Fixes? Perhaps, the proposition needs to include a condition that the truck is of a single color: IF the truck is of a single color, THEN either it is yellow or it is not yellow. But now the result only applies to a part of the Universe (trucks of a single color) and not the entire Universe (all trucks) and it is no longer true in general. Perhaps, the original proposition has be enhanced to include a second claim that the truck is of a single color in order to rule out the red and yellow truck: Proposition The truck is of a single color AND it is yellow 4 Now the proposition is a conjunction of two assertions, and there is more than one negation of such a compound postulate with multiple claims. Either claim, the truck is of a single color or the truck is yellow, can be negated resulting in three possible negations. Negation 1 The truck is of a single color and it is not yellow Negation 2 The truck is not of a single color and it is yellow Negation 3 The truck is not of a single color and it is not yellow Some negations, like negation 2, need not be consistent. If the truck is not of a single color, then just specifying that it is yellow is not a sufficient description. However, negations 1 and 3 are valid. Which negation does the proof by contradiction argument establish? Negation in Logic A conjunction (AND) of logical propositions p q is true only if both propositions are true. A disjunction (OR) of logical propositions p q is true if at least one proposition is true. Negation is an operation that takes a logical proposition p to another proposition "not p", written ¬p, which is true when p is false and false when p is true. The negation of a conjunction of two propositions p and q is defined as ¬(p q) ¬p ¬q The right hand side evaluates to true if: (1) ¬p is true and ¬q is false; or (2) ¬p is false and ¬q is true; or (3) ¬p is true and ¬q is true. In general, a proposition with n simultaneous claims has 2n – 1 negations. 5 The Cantor Diagonal Argument (CDA) How many logical claims are there in more complicated propositions like the one in the CDA? The CDA makes an explicit assumption that the unit interval is countable, creates a contradiction, and concludes that the unit interval must, therefore, be uncountable. It is normal to expect the explicit assumption caused the violation. However, some mathematicians have asserted that this need not be the case - that the CDA is a contradiction of the concept of actual infinity itself and is denying an implicit assumption instead of the explicit supposition. The CDA is based on many prior assumptions: the concept of actual infinity, the axiom of infinity, the notion of one-to-one correspondence between infinite sets, the Field axioms, etc. The contradiction could easily be indicating that one or more of these concepts is flawed. A proof-by-contradiction argument, if used improperly, can arrive at a wrong conclusion. In Appendix C the CDA itself is used to show that the CDA is ill-defined and does not actually examine numbers to infinite digits. Lots of underlying assumptions are, in fact, wrong! The Two Notions of Infinity and the Axiom of Infinity Aristotle’s abstract notion of a potential infinity is “something” without a bound and larger than any known number. Excerpts from the Wikipedia page “Brouwer-Hilbert controversy” Cantor extended the intuitive notion of "the infinite" – one foot placed after the other in a never-ending march toward the horizon – to the notion of "a completed infinite" – the arrival "all the way, way out there" in one fell swoop, and he symbolized this [as] … ℵ0 (aleph-null).
Recommended publications
  • Classifying Material Implications Over Minimal Logic
    Classifying Material Implications over Minimal Logic Hannes Diener and Maarten McKubre-Jordens March 28, 2018 Abstract The so-called paradoxes of material implication have motivated the development of many non- classical logics over the years [2–5, 11]. In this note, we investigate some of these paradoxes and classify them, over minimal logic. We provide proofs of equivalence and semantic models separating the paradoxes where appropriate. A number of equivalent groups arise, all of which collapse with unrestricted use of double negation elimination. Interestingly, the principle ex falso quodlibet, and several weaker principles, turn out to be distinguishable, giving perhaps supporting motivation for adopting minimal logic as the ambient logic for reasoning in the possible presence of inconsistency. Keywords: reverse mathematics; minimal logic; ex falso quodlibet; implication; paraconsistent logic; Peirce’s principle. 1 Introduction The project of constructive reverse mathematics [6] has given rise to a wide literature where various the- orems of mathematics and principles of logic have been classified over intuitionistic logic. What is less well-known is that the subtle difference that arises when the principle of explosion, ex falso quodlibet, is dropped from intuitionistic logic (thus giving (Johansson’s) minimal logic) enables the distinction of many more principles. The focus of the present paper are a range of principles known collectively (but not exhaustively) as the paradoxes of material implication; paradoxes because they illustrate that the usual interpretation of formal statements of the form “. → . .” as informal statements of the form “if. then. ” produces counter-intuitive results. Some of these principles were hinted at in [9]. Here we present a carefully worked-out chart, classifying a number of such principles over minimal logic.
    [Show full text]
  • Two Sources of Explosion
    Two sources of explosion Eric Kao Computer Science Department Stanford University Stanford, CA 94305 United States of America Abstract. In pursuit of enhancing the deductive power of Direct Logic while avoiding explosiveness, Hewitt has proposed including the law of excluded middle and proof by self-refutation. In this paper, I show that the inclusion of either one of these inference patterns causes paracon- sistent logics such as Hewitt's Direct Logic and Besnard and Hunter's quasi-classical logic to become explosive. 1 Introduction A central goal of a paraconsistent logic is to avoid explosiveness { the inference of any arbitrary sentence β from an inconsistent premise set fp; :pg (ex falso quodlibet). Hewitt [2] Direct Logic and Besnard and Hunter's quasi-classical logic (QC) [1, 5, 4] both seek to preserve the deductive power of classical logic \as much as pos- sible" while still avoiding explosiveness. Their work fits into the ongoing research program of identifying some \reasonable" and \maximal" subsets of classically valid rules and axioms that do not lead to explosiveness. To this end, it is natural to consider which classically sound deductive rules and axioms one can introduce into a paraconsistent logic without causing explo- siveness. Hewitt [3] proposed including the law of excluded middle and the proof by self-refutation rule (a very special case of proof by contradiction) but did not show whether the resulting logic would be explosive. In this paper, I show that for quasi-classical logic and its variant, the addition of either the law of excluded middle or the proof by self-refutation rule in fact leads to explosiveness.
    [Show full text]
  • 'The Denial of Bivalence Is Absurd'1
    On ‘The Denial of Bivalence is Absurd’1 Francis Jeffry Pelletier Robert J. Stainton University of Alberta Carleton University Edmonton, Alberta, Canada Ottawa, Ontario, Canada [email protected] [email protected] Abstract: Timothy Williamson, in various places, has put forward an argument that is supposed to show that denying bivalence is absurd. This paper is an examination of the logical force of this argument, which is found wanting. I. Introduction Let us being with a word about what our topic is not. There is a familiar kind of argument for an epistemic view of vagueness in which one claims that denying bivalence introduces logical puzzles and complications that are not easily overcome. One then points out that, by ‘going epistemic’, one can preserve bivalence – and thus evade the complications. James Cargile presented an early version of this kind of argument [Cargile 1969], and Tim Williamson seemingly makes a similar point in his paper ‘Vagueness and Ignorance’ [Williamson 1992] when he says that ‘classical logic and semantics are vastly superior to…alternatives in simplicity, power, past success, and integration with theories in other domains’, and contends that this provides some grounds for not treating vagueness in this way.2 Obviously an argument of this kind invites a rejoinder about the puzzles and complications that the epistemic view introduces. Here are two quick examples. First, postulating, as the epistemicist does, linguistic facts no speaker of the language could possibly know, and which have no causal link to actual or possible speech behavior, is accompanied by a litany of disadvantages – as the reader can imagine.
    [Show full text]
  • How the Law of Excluded Middle Pertains to the Second Incompleteness Theorem and Its Boundary-Case Exceptions
    How the Law of Excluded Middle Pertains to the Second Incompleteness Theorem and its Boundary-Case Exceptions Dan E. Willard State University of New York .... Summary of article in Springer’s LNCS 11972, pp. 268-286 in Proc. of Logical Foundations of Computer Science - 2020 Talk was also scheduled to appear in ASL 2020 Conference, before Covid-19 forced conference cancellation S-0 : Comments about formats for these SLIDES 1 Slides 1-15 were presented at LFCS 2020 conference, meeting during Janaury 4-7, 2020, in Deerfield Florida (under a technically different title) 2 Published as refereed 19-page paper in Springer’s LNCS 11972, pp. 268-286 in Springer’s “Proceedings of Logical Foundations of Computer Science 2020” 3 Second presentaion of this talk was intended for ASL-2020 conference, before Covid-19 cancelled conference. Willard recommends you read Item 2’s 19-page paper after skimming these slides. They nicely summarize my six JSL and APAL papers. Manuscript is also more informative than the sketch outlined here. Manuscript helps one understand all of Willard’s papers 1. Main Question left UNANSWERED by G¨odel: 2nd Incomplet. Theorem indicates strong formalisms cannot verify their own consistency. ..... But Humans Presume Their Own Consistency, at least PARTIALLY, as a prerequisite for Thinking ? A Central Question: What systems are ADEQUATELY WEAK to hold some type (?) knowledge their own consistency? ONLY PARTIAL ANSWERS to this Question are Feasible because 2nd Inc Theorem is QUITE STRONG ! Let LXM = Law of Excluded Middle OurTheme: Different USES of LXM do change Breadth and LIMITATIONS of 2nd Inc Theorem 2a.
    [Show full text]
  • Logic, Sets, and Proofs David A
    Logic, Sets, and Proofs David A. Cox and Catherine C. McGeoch Amherst College 1 Logic Logical Statements. A logical statement is a mathematical statement that is either true or false. Here we denote logical statements with capital letters A; B. Logical statements be combined to form new logical statements as follows: Name Notation Conjunction A and B Disjunction A or B Negation not A :A Implication A implies B if A, then B A ) B Equivalence A if and only if B A , B Here are some examples of conjunction, disjunction and negation: x > 1 and x < 3: This is true when x is in the open interval (1; 3). x > 1 or x < 3: This is true for all real numbers x. :(x > 1): This is the same as x ≤ 1. Here are two logical statements that are true: x > 4 ) x > 2. x2 = 1 , (x = 1 or x = −1). Note that \x = 1 or x = −1" is usually written x = ±1. Converses, Contrapositives, and Tautologies. We begin with converses and contrapositives: • The converse of \A implies B" is \B implies A". • The contrapositive of \A implies B" is \:B implies :A" Thus the statement \x > 4 ) x > 2" has: • Converse: x > 2 ) x > 4. • Contrapositive: x ≤ 2 ) x ≤ 4. 1 Some logical statements are guaranteed to always be true. These are tautologies. Here are two tautologies that involve converses and contrapositives: • (A if and only if B) , ((A implies B) and (B implies A)). In other words, A and B are equivalent exactly when both A ) B and its converse are true.
    [Show full text]
  • On the Analysis of Indirect Proofs: Contradiction and Contraposition
    On the analysis of indirect proofs: Contradiction and contraposition Nicolas Jourdan & Oleksiy Yevdokimov University of Southern Queensland [email protected] [email protected] roof by contradiction is a very powerful mathematical technique. Indeed, Premarkable results such as the fundamental theorem of arithmetic can be proved by contradiction (e.g., Grossman, 2009, p. 248). This method of proof is also one of the oldest types of proof early Greek mathematicians developed. More than two millennia ago two of the most famous results in mathematics: The irrationality of 2 (Heath, 1921, p. 155), and the infinitude of prime numbers (Euclid, Elements IX, 20) were obtained through reasoning by contradiction. This method of proof was so well established in Greek mathematics that many of Euclid’s theorems and most of Archimedes’ important results were proved by contradiction. In the 17th century, proofs by contradiction became the focus of attention of philosophers and mathematicians, and the status and dignity of this method of proof came into question (Mancosu, 1991, p. 15). The debate centred around the traditional Aristotelian position that only causality could be the base of true scientific knowledge. In particular, according to this traditional position, a mathematical proof must proceed from the cause to the effect. Starting from false assumptions a proof by contradiction could not reveal the cause. As Mancosu (1996, p. 26) writes: “There was thus a consensus on the part of these scholars that proofs by contradiction were inferior to direct Australian Senior Mathematics Journal vol. 30 no. 1 proofs on account of their lack of causality.” More recently, in the 20th century, the intuitionists went further and came to regard proof by contradiction as an invalid method of reasoning.
    [Show full text]
  • Logic and Proof Release 3.18.4
    Logic and Proof Release 3.18.4 Jeremy Avigad, Robert Y. Lewis, and Floris van Doorn Sep 10, 2021 CONTENTS 1 Introduction 1 1.1 Mathematical Proof ............................................ 1 1.2 Symbolic Logic .............................................. 2 1.3 Interactive Theorem Proving ....................................... 4 1.4 The Semantic Point of View ....................................... 5 1.5 Goals Summarized ............................................ 6 1.6 About this Textbook ........................................... 6 2 Propositional Logic 7 2.1 A Puzzle ................................................. 7 2.2 A Solution ................................................ 7 2.3 Rules of Inference ............................................ 8 2.4 The Language of Propositional Logic ................................... 15 2.5 Exercises ................................................. 16 3 Natural Deduction for Propositional Logic 17 3.1 Derivations in Natural Deduction ..................................... 17 3.2 Examples ................................................. 19 3.3 Forward and Backward Reasoning .................................... 20 3.4 Reasoning by Cases ............................................ 22 3.5 Some Logical Identities .......................................... 23 3.6 Exercises ................................................. 24 4 Propositional Logic in Lean 25 4.1 Expressions for Propositions and Proofs ................................. 25 4.2 More commands ............................................
    [Show full text]
  • Fourier's Proof of the Irrationality of E
    Ursinus College Digital Commons @ Ursinus College Transforming Instruction in Undergraduate Calculus Mathematics via Primary Historical Sources (TRIUMPHS) Summer 2020 Fourier's Proof of the Irrationality of e Kenneth M. Monks Follow this and additional works at: https://digitalcommons.ursinus.edu/triumphs_calculus Click here to let us know how access to this document benefits ou.y Fourier's Proof of the Irrationality of e Kenneth M Monks ∗ August 6, 2020 We begin with a short passage from Aristotle's1 Prior Analytics2. This translation was completed by Oxford scholars in 1931 and compiled by Richard McKeon into The Basic Works of Aristotle [McKeon, 1941]. 1111111111111111111111111111111111111111 xI.23. For all who effect an argument per impossibile infer syllogistically what is false, and prove the original conclusion hypothetically when something impossible results from the as- sumption of its contradictory; e.g. that the diagonal of a square is incommensurate with the side, because odd numbers are equal to evens if it is supposed to be commensurate. 1111111111111111111111111111111111111111 The goal of this project is to work through a proof of the irrationality of the number e due to Joseph Fourier. This number would not have even been defined in any publication for another two millennia3 (plus a few years) after the writing of Prior Analytics! So, the reader may wonder why we are rewinding our clocks so far back. Well, it turns out that the key ideas required to understand Fourier's proof of the irrationality of e can be traced right back to that passage from Aristotle. In Section 1, we extract the key pattern of Aristotelian logic needed to understand Fourier's proof, and give it a bit more of a modern formulation.
    [Show full text]
  • Beginning Logic MATH 10130 Spring 2019 University of Notre Dame Contents
    Beginning Logic MATH 10130 Spring 2019 University of Notre Dame Contents 0.1 What is logic? What will we do in this course? . .1 I Propositional Logic 5 1 Beginning propositional logic 6 1.1 Symbols . .6 1.2 Well-formed formulas . .7 1.3 Basic translation . .8 1.4 Implications . 11 1.5 Nuances with negations . 12 2 Proofs 13 2.1 Introduction to proofs . 13 2.2 The first rules of inference . 14 2.3 Rule for implications . 20 2.4 Rules for conjunctions . 24 2.5 Rules for disjunctions . 28 2.6 Proof by contradiction . 32 2.7 Bi-conditional statements . 35 2.8 More examples of proofs . 36 2.9 Some useful proofs . 39 3 Truth 48 3.1 Definition of Truth . 48 3.2 Truth tables . 49 3.3 Analysis of arguments using truth tables . 53 4 Soundness and Completeness 56 4.1 Two notions of validity . 56 4.2 Examples: proofs vs. truth tables . 57 4.3 More examples . 63 4.4 Verifying Soundness . 70 4.5 Explanation of Completeness . 72 i II Predicate Logic 74 5 Beginning predicate logic 75 5.1 Shortcomings of propositional logic . 75 5.2 Symbols of predicate logic . 76 5.3 Definition of well-formed formula . 77 5.4 Translation . 82 5.5 Learning the idioms for predicate logic . 84 5.6 Free variables and sentences . 86 6 Proofs 91 6.1 Basic proofs . 91 6.2 Rules for universal quantifiers . 93 6.3 Rules for existential quantifiers . 98 6.4 Rules for equality . 102 7 Structures and Truth 106 7.1 Languages and structures .
    [Show full text]
  • Logic, Ontological Neutrality, and the Law of Non-Contradiction
    Logic, Ontological Neutrality, and the Law of Non-Contradiction Achille C. Varzi Department of Philosophy, Columbia University, New York [Final version published in Elena Ficara (ed.), Contradictions. Logic, History, Actuality, Berlin: De Gruyter, 2014, pp. 53–80] Abstract. As a general theory of reasoning—and as a theory of what holds true under every possi- ble circumstance—logic is supposed to be ontologically neutral. It ought to have nothing to do with questions concerning what there is, or whether there is anything at all. It is for this reason that tra- ditional Aristotelian logic, with its tacit existential presuppositions, was eventually deemed inade- quate as a canon of pure logic. And it is for this reason that modern quantification theory, too, with its residue of existentially loaded theorems and inferential patterns, has been claimed to suffer from a defect of logical purity. The law of non-contradiction rules out certain circumstances as impossi- ble—circumstances in which a statement is both true and false, or perhaps circumstances where something both is and is not the case. Is this to be regarded as a further ontological bias? If so, what does it mean to forego such a bias in the interest of greater neutrality—and ought we to do so? Logic in the Locked Room As a general theory of reasoning, and especially as a theory of what is true no mat- ter what is the case (or in every “possible world”), logic is supposed to be ontolog- ically neutral. It should be free from any metaphysical presuppositions. It ought to have nothing substantive to say concerning what there is, or whether there is any- thing at all.
    [Show full text]
  • Common Sense for Concurrency and Strong Paraconsistency Using Unstratified Inference and Reflection
    Published in ArXiv http://arxiv.org/abs/0812.4852 http://commonsense.carlhewitt.info Common sense for concurrency and strong paraconsistency using unstratified inference and reflection Carl Hewitt http://carlhewitt.info This paper is dedicated to John McCarthy. Abstract Unstratified Reflection is the Norm....................................... 11 Abstraction and Reification .............................................. 11 This paper develops a strongly paraconsistent formalism (called Direct Logic™) that incorporates the mathematics of Diagonal Argument .......................................................... 12 Computer Science and allows unstratified inference and Logical Fixed Point Theorem ........................................... 12 reflection using mathematical induction for almost all of Disadvantages of stratified metatheories ........................... 12 classical logic to be used. Direct Logic allows mutual Reification Reflection ....................................................... 13 reflection among the mutually chock full of inconsistencies Incompleteness Theorem for Theories of Direct Logic ..... 14 code, documentation, and use cases of large software systems Inconsistency Theorem for Theories of Direct Logic ........ 15 thereby overcoming the limitations of the traditional Tarskian Consequences of Logically Necessary Inconsistency ........ 16 framework of stratified metatheories. Concurrency is the Norm ...................................................... 16 Gödel first formalized and proved that it is not possible
    [Show full text]
  • Proofs and Mathematical Reasoning
    Proofs and Mathematical Reasoning University of Birmingham Author: Supervisors: Agata Stefanowicz Joe Kyle Michael Grove September 2014 c University of Birmingham 2014 Contents 1 Introduction 6 2 Mathematical language and symbols 6 2.1 Mathematics is a language . .6 2.2 Greek alphabet . .6 2.3 Symbols . .6 2.4 Words in mathematics . .7 3 What is a proof? 9 3.1 Writer versus reader . .9 3.2 Methods of proofs . .9 3.3 Implications and if and only if statements . 10 4 Direct proof 11 4.1 Description of method . 11 4.2 Hard parts? . 11 4.3 Examples . 11 4.4 Fallacious \proofs" . 15 4.5 Counterexamples . 16 5 Proof by cases 17 5.1 Method . 17 5.2 Hard parts? . 17 5.3 Examples of proof by cases . 17 6 Mathematical Induction 19 6.1 Method . 19 6.2 Versions of induction. 19 6.3 Hard parts? . 20 6.4 Examples of mathematical induction . 20 7 Contradiction 26 7.1 Method . 26 7.2 Hard parts? . 26 7.3 Examples of proof by contradiction . 26 8 Contrapositive 29 8.1 Method . 29 8.2 Hard parts? . 29 8.3 Examples . 29 9 Tips 31 9.1 What common mistakes do students make when trying to present the proofs? . 31 9.2 What are the reasons for mistakes? . 32 9.3 Advice to students for writing good proofs . 32 9.4 Friendly reminder . 32 c University of Birmingham 2014 10 Sets 34 10.1 Basics . 34 10.2 Subsets and power sets . 34 10.3 Cardinality and equality .
    [Show full text]