Metaves.’ Various Studies Have Recovered Metaves, a Clade Comprising Most Or All Members of Clades Iii, V, Vi, and Vii As Well As the Hoatzin

Total Page:16

File Type:pdf, Size:1020Kb

Metaves.’ Various Studies Have Recovered Metaves, a Clade Comprising Most Or All Members of Clades Iii, V, Vi, and Vii As Well As the Hoatzin A Fain and Houde (2004) (FGB only) B Ericson (2012) (5 genes) ‘Metaves’ Hoatzin (clades iii, v, vi, vii, and hoatzin) Hoatzin identical to Fain and Houde) Oilbird Tropicbirds ‘Metaves’ (circumscription Potoos Mesites Frogmouths Grebes Doves sensu Flamingos Nightjars Sunbittern Flamingos Sandgrouse Tropicbirds Fain and Houde Doves Hummingbirds Nightjars Swifts Potoos Mesites Oilbird Owlet-nightjars Frogmouths Sunbittern Owlet-nightjars Sandgrouse Hummingbirds Grebes Swifts (all other Neoaves) (all other Neoaves) ‘Coronaves’ ‘Coronaves’ C Hackett et al. (2008) (19 genes) D Yuri et al. (2008) (indels from 19 genes) Grebes ‘Metaves’ Flamingos Other ‘Coronaves’ Tropicbirds (clades iii, v, vi, and vii) (clades iii, v, vi, and hoatzin) Sandgrouse Hoatzin ‘Metaves’ Mesites Doves sensu Doves Sandgrouse Sunbittern Mesites Hackett Oilbird Tropicbirds sensu Potoos Sunbittern Frogmouths Oilbird Nightjars Potoos Yuri et a Owlet-nightjars Frogmouths et a Hummingbirds l. Nightjars Swifts Owlet-nightjars l. ‘Coronaves’ Hummingbirds Swifts Most ‘Coronaves’ plus hoatzin sensu plus clade vii Fain and Houde FIGURE S2. The EB2 noJAR J2-contradicting clade is similar to ‘Metaves.’ Various studies have recovered Metaves, a clade comprising most or all members of clades iii, v, vi, and vii as well as the hoatzin. All of those studies included FGB. Specifically, the studies that recovered Metaves were (A) Fain and Houde (2004) (partially dashed lineages indicate use of a partial oilbird sequence and absence of a potoo in this study); (B) Ericson et al. (2006) and Ericson (2012); (C) Hackett et al. (2008); and (D) Yuri et al. (2013). The Metaves-like clade in the Yuri et al. (2013) indel tree is nested within ‘Coronaves.’ The ‘J2-contradicting clade’ in the EB2 noJAR tree (E; next page) includes many ‘metavian’ taxa (clades v, vi, and vii). The basis for the strong signal in FGB that supports Metaves is unclear (Kimball et al. 2013); the simplest explanation is gene tree-species tree discordance. The EB2 noJAR and EB2 noJAR/noFGB trees are available in Nexus format as Supplementary File S9. E Early Bird II data (no Jarvis overlap) Otidiphaps nobilis 9 6 Treron vernans Columbina passerina (vi) * 7 9 Geotrygon montana Columba livia ‘Metaves-like clade’ (contradicts J2) * Podiceps cristatus 9 4 Podiceps auritus J1 * Phoenicopterus chilensis (vii) Phoenicopterus ruber 3 7 * Monias benschi * Mesitornis unicolor 7 8 7 1 Pterocles namaqua (vi) Pterocles gutturalis * Syrrhaptes paradoxus * Steatornis caripensis Nyctibius bracteatus Nyctibius grandis * * Eurostopodus mystacalis Lyncornis macrotis 3 9 * Systellura longirostris * * Antrostomus carolinensis 5 4 Podargus strigoides Batrachostomus septimus (v) 1 9 * Aegotheles insignis 8 1 Aegotheles cristatus * Hemiprocne mystacea Streptoprocne zonaris * * Chaetura pelagica * Aerodramus vanikorensis * Colibri coruscans * Calypte anna * Phaethornis griseogularis * 8 6 Topaza pella Shorebirds Hoatzin 2 2 2 1 Bustards (clade iv) 7 6 Cuckoos (clade iv) Turacos (clade iv) 3 0 3 2 Gruiformes 2 8 Waterbirds (clade ii) Sunbittern + Kagu (clade iii) J3 8 6 Tropicbirds (clade iii) N 6 9 Landbirds (clade i) REFERENCES Ericson P.G.P. Evolution of terrestrial birds in three continents: biogeography and parallel radiations. J Biogeogr, 2012;39:813-824. Ericson P.G.P., Anderson C.L., Britton T., Elzanowski A., Johansson U.S., Kallersjo M., Ohlson J.I., Parsons T.J., Zuccon D., Mayr G. Diversification of Neoaves: integration of molecular sequence data and fossils. Biol Lett, 2006;2:543-547. Fain, M.G., Houde, P. Parallel radiations in the primary clades of birds. Evolution, 2004;58: 2558-2573. Hackett S.J., Kimball R.T., Reddy S., Bowie R.C.K., Braun E.L., Braun M.J., Chojnowski J.L., Cox W.A., Han K.L., Harshman J., Huddleston C.J., Marks B.D., Miglia K.J., Moore W.S., Sheldon F.H., Steadman D.W., Witt C.C., Yuri T. A phylogenomic study of birds reveals their evolutionary history. Science, 2008;320:1763-1768. Kimball R.T., Wang N., Heimer-McGinn V., Ferguson C., Braun E.L. Identifying localized biases in large datasets: A case study using the avian tree of life. Mol Phylogenet Evol, 2013;69:1021-1032. Yuri T., Kimball R.T., Harshman J., Bowie R.C.K., Braun M.J., Chojnowski J.L., Han K.L., Hackett S.J., Huddleston C.J., Moore W.S., Reddy S., Sheldon F.H., Steadman D.W., Witt C.C., Braun E.L. Parsimony and model-based analyses of indels in avian nuclear genes reveal congruent and incongruent phylogenetic signals. Biology (Basel), 2013;2:419-444. .
Recommended publications
  • Costa Rica 2020
    Sunrise Birding LLC COSTA RICA TRIP REPORT January 30 – February 5, 2020 Photos: Talamanca Hummingbird, Sunbittern, Resplendent Quetzal, Congenial Group! Sunrise Birding LLC COSTA RICA TRIP REPORT January 30 – February 5, 2020 Leaders: Frank Mantlik & Vernon Campos Report and photos by Frank Mantlik Highlights and top sightings of the trip as voted by participants Resplendent Quetzals, multi 20 species of hummingbirds Spectacled Owl 2 CR & 32 Regional Endemics Bare-shanked Screech Owl 4 species Owls seen in 70 Black-and-white Owl minutes Suzy the “owling” dog Russet-naped Wood-Rail Keel-billed Toucan Great Potoo Tayra!!! Long-tailed Silky-Flycatcher Black-faced Solitaire (& song) Rufous-browed Peppershrike Amazing flora, fauna, & trails American Pygmy Kingfisher Sunbittern Orange-billed Sparrow Wayne’s insect show-and-tell Volcano Hummingbird Spangle-cheeked Tanager Purple-crowned Fairy, bathing Rancho Naturalista Turquoise-browed Motmot Golden-hooded Tanager White-nosed Coati Vernon as guide and driver January 29 - Arrival San Jose All participants arrived a day early, staying at Hotel Bougainvillea. Those who arrived in daylight had time to explore the phenomenal gardens, despite a rain storm. Day 1 - January 30 Optional day-trip to Carara National Park Guides Vernon and Frank offered an optional day trip to Carara National Park before the tour officially began and all tour participants took advantage of this special opportunity. As such, we are including the sightings from this day trip in the overall tour report. We departed the Hotel at 05:40 for the drive to the National Park. En route we stopped along the road to view a beautiful Turquoise-browed Motmot.
    [Show full text]
  • Nesting Behavior of Sunbitterns (Eurypyga Helias) in Venezuela ’
    The Condor 92576-58 1 0 The CooperOrnithological Society 1990 NESTING BEHAVIOR OF SUNBITTERNS (EURYPYGA HELIAS) IN VENEZUELA ’ BETSY TRENT THOMAS Waterfield,Rt. I, Box 212C, Castleton, VA 22716 STUARTD.STRAHL Wildlife ConservationInternational, New York Zoological Society,Bronx, NY 10460 Abstract. Eleven Sunbittem (Eurypygahelias) nests are describedfrom the gallery forest and woodlands of the Venezuelan llanos. The nidicolouschicks were hatched with abundant ploverlike down, but with underdeveloped movement abilities. Both adults incubated, brooded, fed, and defended nestlings.When fledgingoccurred at 17-24 days, the youngwere well below adult weight, and parental care continued for more than a month. Sunbitterns successfullydefended nestlingsagainst much larger raptors and ibisesby usingmostly visual displays. Defense behaviors such as the full Frontal Display, vocalizations, and possible pair-bonding are reported. Key words: Sunbittern;Eurypyga helias; nesting;defense; display; nestling development; Green Ibis; Mesembrinibis cayennensis. INTRODUCTION vocalizations and display behaviors and to the In zoos the Sunbittern (Eurypyga helius) is fairly context in which they occurred. common where it readily adjusts to captivity and The Sunbittern, representing a monotypic lives as long as 17 years (Flower 1938). Sunbit- family divided into three races, lives in low and terns display spectacularly in captivity (Frith medium altitude forest from southern Mexico 1978, Wennrich 1981), and occasionally breed through Amazonian Brazil (Blake 1977). Our there (Bartlett 1866, Wennrich 198 1). Much that study area, in the llanos of Venezuela, is roughly has been published about Sunbittern behavior central to its geographical range. Here, Sunbit- has been observed in zoos, which has led two terns of the nominate race are fairly common authors to suggestthat reported behaviors might (Thomas 1979).
    [Show full text]
  • Current Perspectives on the Evolution of Birds
    Contributions to Zoology, 77 (2) 109-116 (2008) Current perspectives on the evolution of birds Per G.P. Ericson Department of Vertebrate Zoology, Swedish Museum of Natural History, P.O. Box 50007, SE-10405 Stockholm, Sweden, [email protected] Key words: Aves, phylogeny, systematics, fossils, DNA, genetics, biogeography Contents (cf. Göhlich and Chiappe, 2006), making feathers a plesiomorphy in birds. Indeed, only three synapo- Systematic relationships ........................................................ 109 morphies have been proposed for Aves (Chiappe, Genome characteristics ......................................................... 111 2002), although monophyly is never seriously ques- A comparison with previous classifications ...................... 112 Character evolution ............................................................... 113 tioned: 1) the caudal margin of naris nearly reaching Evolutionary trends ............................................................... 113 or overlapping the rostral border of the antorbital Biogeography and biodiversity ............................................ 113 fossa (in the primitive condition the caudal margin Differentiation and speciation ............................................. 114 of naris is farther rostral than the rostral border of Acknowledgements ................................................................ 115 the antorbital fossa), 2) scapula with a prominent References ................................................................................ 115 acromion,
    [Show full text]
  • Houde2009chap64.Pdf
    Cranes, rails, and allies (Gruiformes) Peter Houde of these features are subject to allometric scaling. Cranes Department of Biology, New Mexico State University, Box 30001 are exceptional migrators. While most rails are generally MSC 3AF, Las Cruces, NM 88003-8001, USA ([email protected]) more sedentary, they are nevertheless good dispersers. Many have secondarily evolved P ightlessness aJ er col- onizing remote oceanic islands. Other members of the Abstract Grues are nonmigratory. 7 ey include the A nfoots and The cranes, rails, and allies (Order Gruiformes) form a mor- sungrebe (Heliornithidae), with three species in as many phologically eclectic group of bird families typifi ed by poor genera that are distributed pantropically and disjunctly. species diversity and disjunct distributions. Molecular data Finfoots are foot-propelled swimmers of rivers and lakes. indicate that Gruiformes is not a natural group, but that it 7 eir toes, like those of coots, are lobate rather than pal- includes a evolutionary clade of six “core gruiform” fam- mate. Adzebills (Aptornithidae) include two recently ilies (Suborder Grues) and a separate pair of closely related extinct species of P ightless, turkey-sized, rail-like birds families (Suborder Eurypygae). The basal split of Grues into from New Zealand. Other extant Grues resemble small rail-like and crane-like lineages (Ralloidea and Gruoidea, cranes or are morphologically intermediate between respectively) occurred sometime near the Mesozoic– cranes and rails, and are exclusively neotropical. 7 ey Cenozoic boundary (66 million years ago, Ma), possibly on include three species in one genus of forest-dwelling the southern continents. Interfamilial diversifi cation within trumpeters (Psophiidae) and the monotypic Limpkin each of the ralloids, gruoids, and Eurypygae occurred within (Aramidae) of both forested and open wetlands.
    [Show full text]
  • Dieter Thomas Tietze Editor How They Arise, Modify and Vanish
    Fascinating Life Sciences Dieter Thomas Tietze Editor Bird Species How They Arise, Modify and Vanish Fascinating Life Sciences This interdisciplinary series brings together the most essential and captivating topics in the life sciences. They range from the plant sciences to zoology, from the microbiome to macrobiome, and from basic biology to biotechnology. The series not only highlights fascinating research; it also discusses major challenges associated with the life sciences and related disciplines and outlines future research directions. Individual volumes provide in-depth information, are richly illustrated with photographs, illustrations, and maps, and feature suggestions for further reading or glossaries where appropriate. Interested researchers in all areas of the life sciences, as well as biology enthusiasts, will find the series’ interdisciplinary focus and highly readable volumes especially appealing. More information about this series at http://www.springer.com/series/15408 Dieter Thomas Tietze Editor Bird Species How They Arise, Modify and Vanish Editor Dieter Thomas Tietze Natural History Museum Basel Basel, Switzerland ISSN 2509-6745 ISSN 2509-6753 (electronic) Fascinating Life Sciences ISBN 978-3-319-91688-0 ISBN 978-3-319-91689-7 (eBook) https://doi.org/10.1007/978-3-319-91689-7 Library of Congress Control Number: 2018948152 © The Editor(s) (if applicable) and The Author(s) 2018. This book is an open access publication. Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.
    [Show full text]
  • AOU Classification Committee – North and Middle America
    AOU Classification Committee – North and Middle America Proposal Set 2016-C No. Page Title 01 02 Change the English name of Alauda arvensis to Eurasian Skylark 02 06 Recognize Lilian’s Meadowlark Sturnella lilianae as a separate species from S. magna 03 20 Change the English name of Euplectes franciscanus to Northern Red Bishop 04 25 Transfer Sandhill Crane Grus canadensis to Antigone 05 29 Add Rufous-necked Wood-Rail Aramides axillaris to the U.S. list 06 31 Revise our higher-level linear sequence as follows: (a) Move Strigiformes to precede Trogoniformes; (b) Move Accipitriformes to precede Strigiformes; (c) Move Gaviiformes to precede Procellariiformes; (d) Move Eurypygiformes and Phaethontiformes to precede Gaviiformes; (e) Reverse the linear sequence of Podicipediformes and Phoenicopteriformes; (f) Move Pterocliformes and Columbiformes to follow Podicipediformes; (g) Move Cuculiformes, Caprimulgiformes, and Apodiformes to follow Columbiformes; and (h) Move Charadriiformes and Gruiformes to precede Eurypygiformes 07 45 Transfer Neocrex to Mustelirallus 08 48 (a) Split Ardenna from Puffinus, and (b) Revise the linear sequence of species of Ardenna 09 51 Separate Cathartiformes from Accipitriformes 10 58 Recognize Colibri cyanotus as a separate species from C. thalassinus 11 61 Change the English name “Brush-Finch” to “Brushfinch” 12 62 Change the English name of Ramphastos ambiguus 13 63 Split Plain Wren Cantorchilus modestus into three species 14 71 Recognize the genus Cercomacroides (Thamnophilidae) 15 74 Split Oceanodroma cheimomnestes and O. socorroensis from Leach’s Storm- Petrel O. leucorhoa 2016-C-1 N&MA Classification Committee p. 453 Change the English name of Alauda arvensis to Eurasian Skylark There are a dizzying number of larks (Alaudidae) worldwide and a first-time visitor to Africa or Mongolia might confront 10 or more species across several genera.
    [Show full text]
  • 2019 ABA Bird of the Year on the Biology, Field Identification, and General Coolness of the Red-Billed Tropicbird, Phaethon Aethereus
    RED-BILLED TROPICBIRD | 2019 BIRD OF THE YEAR 2019 ABA Bird of the Year On the biology, field identification, and general coolness of the Red-billed Tropicbird, Phaethon aethereus IOANA SERITAN Berkeley, California [email protected] PETER PYLE San Francisco, California [email protected] 20 BIRDING | FEBRUARY 2019 he Red-billed Tropicbird is one of of the continental U.S. Read on to learn more Red-billed Tropicbird is joined by the White- three tropicbird species, all of which about tropicbirds in general and Red-billed tailed and Red-tailed tropicbirds to make up Tcan be found in the ABA Area with a Tropicbirds specifically—how to identify the monotypic family Phaethontidae within bit of legwork. Tropicbirds are a fun challenge them, where to find them, and why they are no the order Phaethontiformes. The latest ABA to find, a beauty to look at, and an interesting longer grouped with pelicans. Checklist, updated in December 2018, lists the evolutionary dilemma to consider. You may be Let’s start with some general context on White-tailed Tropicbird as Code 2 (regularly lucky enough to see a pair engaging in court- the tropicbird family. Tropicbirds are pelagic, occurring but range-restricted), while Red- ship display at a breeding site, perhaps meaning “open ocean,” birds that look kind of tailed and Red-billed are both Code 3 (rare in Hawaii, or you may be graced with like glorified terns. Their most famous phys- but annual); before Hawaii was added to the a sighting of a vagrant along ical features are the long tail plumes they ABA Area in late 2016, White-tailed was Code the East or West coast grow as adults.
    [Show full text]
  • Current Perspectives on the Evolution of Birds
    Contributions to Zoology, 77 (2) 109-116 (2008) Current perspectives on the evolution of birds Per G.P. Ericson Department of Vertebrate Zoology, Swedish Museum of Natural History, P.O. Box 50007, SE-10405 Stockholm, Sweden, [email protected] Key words: Aves, phylogeny, systematics, fossils, DNA, genetics, biogeography Contents (cf. Göhlich and Chiappe, 2006), making feathers a plesiomorphy in birds. Indeed, only three synapo- Systematic relationships ........................................................ 109 morphies have been proposed for Aves (Chiappe, Genome characteristics ......................................................... 111 2002), although monophyly is never seriously ques- A comparison with previous classifications ...................... 112 Character evolution ............................................................... 113 tioned: 1) the caudal margin of naris nearly reaching Evolutionary trends ............................................................... 113 or overlapping the rostral border of the antorbital Biogeography and biodiversity ............................................ 113 fossa (in the primitive condition the caudal margin Differentiation and speciation ............................................. 114 of naris is farther rostral than the rostral border of Acknowledgements ................................................................ 115 the antorbital fossa), 2) scapula with a prominent References ................................................................................ 115 acromion,
    [Show full text]
  • Alpha Codes for 2168 Bird Species (And 113 Non-Species Taxa) in Accordance with the 62Nd AOU Supplement (2021), Sorted Taxonomically
    Four-letter (English Name) and Six-letter (Scientific Name) Alpha Codes for 2168 Bird Species (and 113 Non-Species Taxa) in accordance with the 62nd AOU Supplement (2021), sorted taxonomically Prepared by Peter Pyle and David F. DeSante The Institute for Bird Populations www.birdpop.org ENGLISH NAME 4-LETTER CODE SCIENTIFIC NAME 6-LETTER CODE Highland Tinamou HITI Nothocercus bonapartei NOTBON Great Tinamou GRTI Tinamus major TINMAJ Little Tinamou LITI Crypturellus soui CRYSOU Thicket Tinamou THTI Crypturellus cinnamomeus CRYCIN Slaty-breasted Tinamou SBTI Crypturellus boucardi CRYBOU Choco Tinamou CHTI Crypturellus kerriae CRYKER White-faced Whistling-Duck WFWD Dendrocygna viduata DENVID Black-bellied Whistling-Duck BBWD Dendrocygna autumnalis DENAUT West Indian Whistling-Duck WIWD Dendrocygna arborea DENARB Fulvous Whistling-Duck FUWD Dendrocygna bicolor DENBIC Emperor Goose EMGO Anser canagicus ANSCAN Snow Goose SNGO Anser caerulescens ANSCAE + Lesser Snow Goose White-morph LSGW Anser caerulescens caerulescens ANSCCA + Lesser Snow Goose Intermediate-morph LSGI Anser caerulescens caerulescens ANSCCA + Lesser Snow Goose Blue-morph LSGB Anser caerulescens caerulescens ANSCCA + Greater Snow Goose White-morph GSGW Anser caerulescens atlantica ANSCAT + Greater Snow Goose Intermediate-morph GSGI Anser caerulescens atlantica ANSCAT + Greater Snow Goose Blue-morph GSGB Anser caerulescens atlantica ANSCAT + Snow X Ross's Goose Hybrid SRGH Anser caerulescens x rossii ANSCAR + Snow/Ross's Goose SRGO Anser caerulescens/rossii ANSCRO Ross's Goose
    [Show full text]
  • Introns Outperform Exons in Analyses of Basal Avian Phylogeny Using Clathrin Heavy Chain Genes ⁎ Jena L
    Author's personal copy Available online at www.sciencedirect.com Gene 410 (2008) 89–96 www.elsevier.com/locate/gene Introns outperform exons in analyses of basal avian phylogeny using clathrin heavy chain genes ⁎ Jena L. Chojnowski, Rebecca T. Kimball, Edward L. Braun Department of Zoology, 223 Bartram Hall, PO Box 118525, University of Florida, Gainesville, FL 32611, USA Received 20 July 2007; received in revised form 28 November 2007; accepted 30 November 2007 Available online 11 January 2008 Received by T. Gojobori Abstract Neoaves is the most diverse major avian clade, containing ~95% of avian species, and it underwent an ancient but rapid diversification that has made resolution of relationships at the base of the clade difficult. In fact, Neoaves has been suggested to be a “hard” polytomy that cannot be resolved with any amount of data. However, this conclusion was based on slowly evolving coding sequences and ribosomal RNAs and some recent studies using more rapidly evolving intron sequences have suggested some resolution at the base of Neoaves. To further examine the utility of introns and exons for phylogenetics, we sequenced parts of two unlinked clathrin heavy chain genes (CLTC and CLTCL1). Comparisons of phylogenetic trees based upon individual partitions (i.e. introns and exons), the combined dataset, and published phylogenies using Robinson– Foulds distances (a metric of topological differences) revealed more similarity than expected by chance, suggesting there is structure at the base of Neoaves. We found that introns provided more informative sites, were subject to less homoplasy, and provided better support for well-accepted clades, suggesting that intron evolution is better suited to determining closely-spaced branching events like the base of Neoaves.
    [Show full text]
  • Data Types and the Phylogeny of Neoaves
    Article Data Types and the Phylogeny of Neoaves Edward L. Braun * and Rebecca T. Kimball * Department of Biology, University of Florida, Gainesville, FL 32611, USA * Correspondence: ebraun68@ufl.edu (E.L.B.); rkimball@ufl.edu (R.T.K.) Simple Summary: Some of the earliest studies using molecular data to resolve evolutionary history separated birds into three main groups: Paleognathae (ostriches and allies), Galloanseres (ducks and chickens), and Neoaves (the remaining ~95% of avian species). The early evolution of Neoaves, however, has remained challenging to understand, even as data from whole genomes have become available. We have recently proposed that some of the conflicts among recent studies may be due to the type of genomic data that is analyzed (regions that code for proteins versus regions that do not). However, a rigorous examination of this hypothesis using coding and non-coding data from the same genomic regions sequenced from a relatively large number of species has not yet been conducted. Here we perform such an analysis and show that data type does influence the methods used to infer evolutionary relationships from molecular sequences. We also show that conducting analyses using models of sequence evolution that were chosen to minimize reconstruction errors result in coding and non-coding trees that are much more similar, and we add to the evidence that non-coding data provide better information regarding neoavian relationships. While a few relationships remain problematic, we are approaching a good understanding of the evolutionary history for major avian groups. Abstract: The phylogeny of Neoaves, the largest clade of extant birds, has remained unclear despite intense study.
    [Show full text]
  • Whole-Genome Analyses Resolve Early Branches in the Tree of Life of Modern Birds Erich D
    AFLOCKOFGENOMES 90. J. F. Storz, J. C. Opazo, F. G. Hoffmann, Mol. Phylogenet. Evol. RESEARCH ARTICLE 66, 469–478 (2013). 91. F. G. Hoffmann, J. F. Storz, T. A. Gorr, J. C. Opazo, Mol. Biol. Evol. 27, 1126–1138 (2010). Whole-genome analyses resolve ACKNOWLEDGMENTS Genome assemblies and annotations of avian genomes in this study are available on the avian phylogenomics website early branches in the tree of life (http://phybirds.genomics.org.cn), GigaDB (http://dx.doi.org/ 10.5524/101000), National Center for Biotechnology Information (NCBI), and ENSEMBL (NCBI and Ensembl accession numbers of modern birds are provided in table S2). The majority of this study was supported by an internal funding from BGI. In addition, G.Z. was 1 2 3 4,5,6 7 supported by a Marie Curie International Incoming Fellowship Erich D. Jarvis, *† Siavash Mirarab, * Andre J. Aberer, Bo Li, Peter Houde, grant (300837); M.T.P.G. was supported by a Danish National Cai Li,4,6 Simon Y. W. Ho,8 Brant C. Faircloth,9,10 Benoit Nabholz,11 Research Foundation grant (DNRF94) and a Lundbeck Foundation Jason T. Howard,1 Alexander Suh,12 Claudia C. Weber,12 Rute R. da Fonseca,6 grant (R52-A5062); C.L. and Q.L. were partially supported by a 4 4 4 4 7,13 14 Danish Council for Independent Research Grant (10-081390); Jianwen Li, Fang Zhang, Hui Li, Long Zhou, Nitish Narula, Liang Liu, and E.D.J. was supported by the Howard Hughes Medical Institute Ganesh Ganapathy,1 Bastien Boussau,15 Md.
    [Show full text]