The Rapid Determination of Strontium-89 and Strontium-90 in Environmental Samples

Total Page:16

File Type:pdf, Size:1020Kb

The Rapid Determination of Strontium-89 and Strontium-90 in Environmental Samples The Rapid Determination of Strontium-89 and Strontium-90 in Environmental Samples Terence O’Brien*, Lawrence Jassin, E. Philip Horwitz and Daniel McAlister Eichrom Technologies and PGRF Presented at www.alarasolutions.comthe MARC IX: Conference Kailua-Kona, HI March 29, 2012 www.eichrom.com Monday, December 6th, 2011: Japan Today Some 45 tons of highly radioactive water The utility is testing seawater samples leaked Sunday from desalination taken off the coast near the plant to see equipment used to decontaminate the if it is contaminated with strontium. radioactive water in Tokyo Electric Power It will know the results in about Co.'s Fukushima No. 1 nuclear plant and two to three weeks, Tepco said. it is unclear if any made it to the sea, a Tepco official said Monday… www.eichrom.com Strontium-89 & Strontium-90 www.eichrom.com Strontium-89 & Strontium-90 Strontium-89 Strontium-90 T1/2 = 50.53 days T1/2 = 28.90 years Mean Beta energy = 584.6 keV Mean Beta Energy = 195.8 keV Mean beta-dose = 0.5846 MeV/Bq-s Mean beta-dose = 0.196 Daughter Yttrium-89 Stable MeV/Bq-s Daughter Yttrium-90 T1/2 = 64.0 hours Mean Beta Energy = 933.6 keV Mean beta-dose = 0.9336 MeV/Bq-s Daughter Zirconium-90 Stable www.eichrom.com The Issues Some methods for the determination of radioactive strontium take one of the following approaches. 1. Rapid Radiochemical Method for Total Radiostrontium (Sr-90) in Water for Environmental Restoration Following Homeland Security Events: 2.2.1 This test assumes that it is reasonable to assume the absence of 89Sr in the sample. 2. Eichrom SRW01 – Strontium 89, 90 in Water 7.9.3 “After yttrium ingrowth of approximately 1 week” www.eichrom.com The Issues 3. Rapid separation of actinides and radiostrontium in vegetation samples If 89/90Sr differentiation is needed, there are Čerenkov counting techniques for more rapid determination of 89Sr and 90Sr. 89Sr can be measured directly by Čerenkov counting, employing methodology that takes advantage of the high Čerenkov counting efficiency of 89Sr relative to 90Sr [11]. www.eichrom.com Assumptions 1. Strontium-89 and Strontium-90 could be present in a sample. 2. Strontium-90 and Yttrium-90 will likely be in equilibrium. 3. Rapid sample turnaround required. – 8 Hrs 4. Many samples to be analyzed. – Multi- Detector www.eichrom.com 1st Tool: Preconcentration 1. For Sr Resin – Sr k’ around 80-90. Therefor sample volumes above 50 mL should be avoided to minimize Sr break through. 2. Water sample evaporation is an option but the clock is ticking. 3. Cation Exchange 4. A fast calcium phosphate precipitation can concentrate both Sr and Y. www.eichrom.com 2nd Tool: Sr Resin www.eichrom.com Sr Resin www.eichrom.com 3rd Tool: DGA Resin TRU Resin DGA Resin, Normal DGA Resin, Branched 6 6 6 10 10 10106 106 Ca(II) Pu 5 5 5 Sr(II) 10 10 10105 105 Ba(II) Th Ra(II) 4 4 4 10 10 10 4 4 Y(III) 10 10 Pu U Pu 3 3 3 10 10 10103 k' for Be and Mg < 1 103 for all [HNO ] Ca Th k' 3 k' k' Am k' for Be and Mg < 1 2 2 22 2 10 10 1010 Y(III) 10 Am Th for all [HCl] Sr Sr(II) 1 1 Am 11 1 10 10 1010 10 Ba U Pu(IV) Ra Sr U 0 Th(IV) 0 00 0 Ca 10 10 1010 Sr(II) 10 U(VI) Ba Am(III) Ra -1 -1 -1-1 -1 10 10 1010 10 -2 -1 0 1 -2 -1 0 1 -2 -2 -1 -1 0 0 1 1 -2-2 -1 -1 0 0 1 1 -2 -1 0 1 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 1010 1010 1010 1010 10 10 10 10 [HNO ] [HCl] [HNO ] [HNO ] [HNO[HNO ] ] [HCl] 3 3 3 3 3 www.eichrom.com 4th Tool Vacuum Box www.eichrom.com Sample flow rates 1. Recommended: Load/Elution 1 mL / min Rinse rates of 3 mL / min 2. 2007 RRMC - Julie Gostic reports work with flow rates of 6-7 mL/min with good recoveries for Am-241 on TRU and DGA 3. 2009 Maxwell publishes the use of 2-4 mL/min for rapid / emergency sample analysis. www.eichrom.com Flow Sheet: Rapid Sr-89 & Sr-90 Preconcentration Aliquot & Acidify <pH 2 Add Sr & Y Carrier/Tracer and Matrix Spikes Add Calcium Nitrate, Barium Chloride, Ammonium Phosphate, Phenolphthalein Add Concentrated Ammonium Hydroxide To dark pink phenolphthalein end point Centrifuge 2000-3000 rpm 5-10 minutes Pour off supernate Dissolve Precipitate with 8M Nitric Acid and 0.5M Aluminum Nitrate Dispose of Liquid www.eichrom.com Strontium / Yttrium Separation and Retention Precondition 8M HNO3 Dissolved Sample C-Tube Rinse Reservoir 8M HNO3•0.5M Al(NO3)3 Sr Resin Reservoir DGA Resin Vacuum Box Vacuum Box5 mL 3M HNO3 + 0.05M Oxalic Acid 5 mL 8M HNO3 Elution… 0.05M HNO3 www.eichrom.com Strontium Elution 1000 100 10 [Sr] in ppm[Sr] in 1 0.05M HNO3 - 96 %R 0.1 0.01 0 1 2 3 4 5 6 7 8 Free Bed Volumes www.eichrom.com Yttrium on DGA… Reservoir What could be there beside Y ? How do we get the DGA Y off without Resin interferences? Vacuum Box www.eichrom.com Load/Rinse 8 M HNO3 with 0.5M Aluminum Nitrate Rinse with 0.1M HNO3 Distribution coefficients (Kd) of 60 elements on TODGA resin in logarithmic scale as a function of HNO3 molaritywww.eichrom.com Secondary Rinse with 3M HCL Distribution coefficients (Kd) of 60 elements on TODGA resin in logarithmic scale as a function of HCl molarity www.eichrom.com Yttrium elution from DGA 1000.00 100.00 10.00 1M HCl - 27.1 %R 0.5M HCl - 86.2 %R [Y] in ppm 0.1M HCl - 90.8 %R 1.00 1M Acetic - 84.4 %R 0.5M Acetic - 88.1 %R 0.10 0.01 0 1 2 3 4 5 6 7 8 Bed Volumn www.eichrom.com Beta Detection LSC/Cherenkov GPC Low Background Counters www.eichrom.com Carrier Recoveries Matrix/Carrier Avg.Recovery RSD% De-ionized Water Strontium 84.9% 4% Yttrium -- -- Tap Water: Strontium 75.0% 7% Yttrium -- Waters; n=4 www.eichrom.com Yttrium and REEs Waters of Hydration Thermal Gravimetric Analysis The issue: C: Yttrium Oxalate has many waters of Hydration The solution: Conversion to Yttrium Oxide at 800 www.eichrom.com Sr-89 Sr-90 Certified Measured Difference Certified Measured Difference Sample Value Value ±% Value Value ±% Blank -0.35±0.37 0.30±023 De-ionized Water-A 2.8±1.2 +18 0.72±0.27 -40 2.39 1.20 De-ionized Water-B 2.4±1.0 +2 0.97±0.33 -19 ±0.05 ±0.02 De-ionized Water-C 2.0±.81 -16 1.21±0.38 +1 Tap Water-A 2.7±1.1 +13 1.12±0.38 -7 2.39 1.20 Tap Water-B 2.5±1.0 +5 1.24±0.39 3 ±0.05 ±0.02 Tap Water-C 3.1±1.3 +30 1.18±0.38 -2 Sample count time was 20 minutes and results are in Bq/L Estimated Time Line (10 samples) Step Minutes Elapsed Time (hrs) Sample Aliquot & Spiking 30 0:30 Sample Pre-Concentration 45+ 1:15 Sample Separation Sr & DGA 30 1:45 Sr Purification 30 2:15 Y Purification (Concurrent with 30 -- Sr Purification) Sample Mounting (Sr & Y) 45 3:00 Counting Time Sr-89 – 3.5 Bq/L MDA 20+ 3:20 Sr-90 – 3.0 Bq/L MDA Data Reduction 20 4:00 www.eichrom.com Future Work 1. Yttrium Yield Measurement Technique a) Oxalates and Hydroxides b) Gravimetric vs AA/ICP 2. Interference Rejection 3. Additional Matrix Preparation www.eichrom.com Acknowledgments Phil Horwitz, Dan McAlister, Larry Jassin at PRGF and Eichrom Tim Winters at GEL Labs Bob Shannon at Quality Radioanalytical Support Environmental Resource Associates Thank you for you attention and your questions. www.eichrom.com .
Recommended publications
  • Strontium-90
    EPA Facts about Strontium-90 What is strontium-90? The most common isotope of strontium is strontium-90. Radioactive strontium-90 is produced when uranium and plutonium undergo fission. Fission The time required for a radioactive substance to is the process in which the nucleus of a lose 50 percent of its radioactivity by decay is radionuclide breaks into smaller parts. Large known as the half-life. Strontium-90 has a half- amounts of radioactive strontium-90 were life of 29 years and emits beta particles of produced during atmospheric nuclear weapons relatively low energy as it decays. Yttrium-90, its tests conducted in the 1950s and 1960s. As a decay product, has a shorter half-life (64 hours) result of atmospheric testing and radioactive than strontium-90, but it emits beta particles of fallout, this strontium was dispersed and higher energy. deposited on the earth. How are people exposed to strontium- 90? What are the uses of strontium-90? Although external exposure to strontium-90 Strontium-90 is used in medical and agricultural from nuclear testing is of minor concern because studies. It is also used in thermoelectric devices environmental concentrations are low, that are built into small power supplies for use strontium in the environment can become part of the food chain. This pathway of exposure in remote locations, such as navigational beacons, remote weather stations, and space became a concern in the 1950s with the advent vehicles. Additionally, strontium-90 is used in of atmospheric testing of nuclear explosives. electron tubes, radioluminescent markers, as a With the suspension of atmospheric testing of radiation source in industrial thickness gauges, nuclear weapons, dietary intake has steadily and for treatment of eye diseases.
    [Show full text]
  • The Chemistry of Strontium and Barium Scales
    Association of Water Technologies October 20 -23, 2010 Reno, NV, USA The Chemistry of Strontium and Barium Scales Robert J. Ferguson and Baron R. Ferguson French Creek Software, Inc. Kimberton, PA 19442 (610) 935-8337 (610) 935-1008 FAX [email protected] [email protected] Abstract New ‘mystery scales’ are being encountered as cooling tower operators increase cycles to new highs, add ‘reuse’ water to the make-up, and utilize new make-up water sources as part of an overall water conservation strategy. Scales rarely, if ever, encountered in the past are emerging as potential problems. This threat of unexpected scale is compounded because most water treatment service companies do not include barium and strontium in their make-up water analyses. Water sources with even as little 0.01 mg/L of Ba (as Ba) can become very scale-forming with respect to barite (BaSO4) when tower concentration ratios are increased and sulfuric acid used for pH control. Make-up waters incorporating reverse osmosis concentrate can also provide a strontium and barium source. In some cases, produced waters are also being used in an effort for greener water use. This paper discusses the chemistry of the barium and strontium based scales barite (BaSO4), celestite (SrSO4), witherite (BaCO3) and strontianite (SrCO3). Conditions for formation and control from a water treater’s perspective are emphasized. Indices for prediction are discussed. Scale Prediction and the Concept of Saturation A majority of the indices used routinely by water treatment chemists are derived from the basic concept of saturation. A water is said to be saturated with a compound (e.g.
    [Show full text]
  • 4. CHEMICAL, PHYSICAL, and RADIOLOGICAL INFORMATION
    STRONTIUM 189 4. CHEMICAL, PHYSICAL, and RADIOLOGICAL INFORMATION 4.1 CHEMICAL IDENTITY Strontium is an alkaline earth element in Group IIA of the periodic table. Because of its high reactivity, elemental (or metallic) strontium is not found in nature; it exists only as molecular compounds with other elements. The chemical information for elemental strontium and some of its compounds is listed in Table 4-1. Radioactive isotopes of strontium (e.g., 89Sr and 90Sr, see Section 4.2) are the primary cause of concern with regard to human health (see Chapter 3). 4.2 PHYSICAL, CHEMICAL, AND RADIOLOGICAL PROPERTIES The physical properties of strontium metal and selected strontium compounds are listed in Table 4-2. The percent occurrence of strontium isotopes and the radiologic properties of strontium isotopes are listed in Table 4-3. Strontium can exist in two oxidation states: 0 and +2. Under normal environmental conditions, only the +2 oxidation state is stable enough to be of practical importance since it readily reacts with both water and oxygen (Cotton and Wilkenson 1980; Hibbins 1997). There are 26 isotopes of strontium, 4 of which occur naturally. The four stable isotopes, 84Sr, 86Sr, 87Sr, and 88Sr, are sometimes referred to as stable strontium. The most important radioactive isotopes, 89Sr and 90Sr, are formed during nuclear reactor operations and during nuclear explosions by the nuclear fission of 235U, 238U, or 239Pu. For example, 235U is split into smaller atomic mass fragments such as 90Sr by a nuclear chain reaction initiated by high energy neutrons of approximately 1 million electron volts (or 1 MeV).
    [Show full text]
  • Strontium-90 and Strontium-89: a Review of Measurement Techniques in Environmental Media
    STRONTIUM-90 AND STRONTIUM-89: A REVIEW OF MEASUREMENT TECHNIQUES IN ENVIRONMENTAL MEDIA Robert J. Budnitz Lawrence Berkeley Laboratory University of California Berkeley, CA 91*720 1. IntroiUiction 2. Sources of Enivronmental Radiostrontium 3. Measurement Considerations a. Introduction b. Counting c. •»Sr/"Sr Separation 4. Chemical Techniques a. Air b. Water c. Milk d. Other Media e. Yttrium Recovery after Ingrowth f. Interferences S- Calibration Techniques h. Quality Control 5. Summary and Conclusions 6. Acknowli'J.jnent 7. References -NOTICE- This report was prepared as an account of worK sponsored by the United States Government. Neither the United States nor the United Slates Atomic Energy Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any wananty, express or implied, or asjumes any legal liabili:y or responsibility for the accuracy, com­ pleteness or usefulness of any Information, apparatus, J product or process disclosed, or represents that its use I would not infringe privately owned rights. Mmh li\ -1- 1. INTRODUCTION There are only two radioactive isotopes SrflO of strontium of significance in radiological measurements in the environment: strontium-89 Avg.jS energy 196-1 k«V and strontium-90. 100 Strontium-90 is the more significant from the point of view of environmental impact. 80 Energy keV 644 This is due mostly to its long half-life % Emission 100 (28.1 years). It is a pure beta emitter with 60 Typ* of only one decay mode, leading to yttrium-90 •mission by emission of a negative beta with HUBX * 40 h S46 keV.
    [Show full text]
  • PUBLIC HEALTH STATEMENT Strontium CAS#: 7440-24-6
    PUBLIC HEALTH STATEMENT Strontium CAS#: 7440-24-6 Division of Toxicology April 2004 This Public Health Statement is the summary External exposure to radiation may occur from chapter from the Toxicological Profile for natural or man-made sources. Naturally occurring strontium. It is one in a series of Public Health sources of radiation are cosmic radiation from space Statements about hazardous substances and their or radioactive materials in soil or building materials. health effects. A shorter version, the ToxFAQs™, is Man-made sources of radioactive materials are also available. This information is important found in consumer products, industrial equipment, because this substance may harm you. The effects atom bomb fallout, and to a smaller extent from of exposure to any hazardous substance depend on hospital waste and nuclear reactors. the dose, the duration, how you are exposed, personal traits and habits, and whether other If you are exposed to strontium, many factors chemicals are present. For more information, call determine whether you’ll be harmed. These factors the ATSDR Information Center at 1-888-422-8737. include the dose (how much), the duration (how _____________________________________ long), and how you come in contact with it. You must also consider the other chemicals you’re This public health statement tells you about exposed to and your age, sex, diet, family traits, strontium and the effects of exposure. lifestyle, and state of health. The Environmental Protection Agency (EPA) identifies the most serious hazardous waste sites in 1.1 WHAT IS STRONTIUM? the nation. These sites make up the National Priorities List (NPL) and are the sites targeted for Strontium is a natural and commonly occurring long-term federal cleanup activities.
    [Show full text]
  • Sequential Isotopic Determination of Plutonium, Strontium, Americium
    Sequential Isotopic Determination of Plutonium, Americium, Uranium, and Strontium in Soil Sample Jeng-Jong Wang, Shing-Fa Fang, and Tzu-Wen Wang Institute of Nuclear Energy Research, Atomic Energy Council, Taiwan, R.O.C. Abstract A procedure is developed to provide sequential analysis of 238Pu, 239/240Pu, 241Am, 238U, and 90Sr in soil sample. Tracers and/or carriers (242Pu, 243Am, 232U, and stable strontium) are added into the soil sample as chemical yield monitors, and then digested and extracted with nitric acid. Plutonium, strontium, americium, and uranium are sequential separated and purified by Dowex ion-exchange resin, EiChroM Sr-resin, EiChroM TRU-resin, and Chelate-100 resin, respectively. 90Sr is measured by Cerenkov counting. The actinides are determined by alpha-particle spectrometer. This method is verified by analyzed the U.S. National Institute of Standard and Technology NRIP2000 soil samples. The analytical results of 241Am, 238Pu, 239/240Pu, 238U, and 90Sr agree with the NIST values within +5.7%, +2.4%, +1.6%, -2.2%, and -2.7%, respectively. According to the traceability limits defined in ANSI N42.22 criteria and measurement traceability to NIST for low-level radionuclides has been demonstrated to be better than 23%, 22%, 22%, 22% and 34% for 241Am, 238Pu, 239/240Pu, 238U, and 90Sr, respectively. Keywords: sequential analysis, NIST, traceability Introduction 238Pu, 239/240Pu, 241Am, 238U, and 90Sr in the environmental samples, such as soil, vegetation, and water, are frequently analyzed for both emergency and routine radiation monitoring. Health physicists use the analytical results of environmental samples to estimate the amount of radioactive material present in the environment, calculating its burden for the radiological workers and the general public.
    [Show full text]
  • Periodic Table 1 Periodic Table
    Periodic table 1 Periodic table This article is about the table used in chemistry. For other uses, see Periodic table (disambiguation). The periodic table is a tabular arrangement of the chemical elements, organized on the basis of their atomic numbers (numbers of protons in the nucleus), electron configurations , and recurring chemical properties. Elements are presented in order of increasing atomic number, which is typically listed with the chemical symbol in each box. The standard form of the table consists of a grid of elements laid out in 18 columns and 7 Standard 18-column form of the periodic table. For the color legend, see section Layout, rows, with a double row of elements under the larger table. below that. The table can also be deconstructed into four rectangular blocks: the s-block to the left, the p-block to the right, the d-block in the middle, and the f-block below that. The rows of the table are called periods; the columns are called groups, with some of these having names such as halogens or noble gases. Since, by definition, a periodic table incorporates recurring trends, any such table can be used to derive relationships between the properties of the elements and predict the properties of new, yet to be discovered or synthesized, elements. As a result, a periodic table—whether in the standard form or some other variant—provides a useful framework for analyzing chemical behavior, and such tables are widely used in chemistry and other sciences. Although precursors exist, Dmitri Mendeleev is generally credited with the publication, in 1869, of the first widely recognized periodic table.
    [Show full text]
  • Strontium-90 (90Sr)
    Strontium-90 (90Sr) July 2002 Fact Sheet 320-076 Division of Environmental Health Office of Radiation Protection WHO DISCOVERED STRONTIUM? Strontium was discovered by Adair Crawford, an Irish chemist, in 1790 while studying the mineral withe rite (BaCO3). When he mixed witherite with hydrochloric acid (HCl) he did not get the results he expected. He assumed that his sample of witherite was contaminated with an unknown mineral, a mineral he named strontianite (SrCO3). Strontium was first isolated by Sir Humphry Davy, a British chemist, in 1808 through the electrolysis of a mixture of strontium chloride (SrCl2) and mercuric oxide (HgO). Today, strontium is obtained from two of its most common ores, celestite (SrSO4) and strontianite (SrCO3), by treating them with hydrochloric acid, forming strontium chloride. The strontium chloride, usually mixed with potassium chloride (KCl), is then melted and electrolyzed, forming strontium and chlorine gas (Cl2). WHAT IS STRONTIUM-90 USED FOR? Many radioactive sealed sources, such as 137Cs, 192Ir, 90Sr, and 125I, are used to treat cancer. Strontium-90 also has some uses in luminous signs, nuclear batteries and industrial gauging. WHERE DOES STRONTIUM-90 COME FROM AND WHERE IS IT FOUND? Stronium-90 is an artificially produced fission by-product resulting from nuclear bombs, above-ground nuclear testing, nuclear reactor operations and nuclear accidents. Strontium-90 is found in the liquid waste stream of nuclear reactors, but is not released to the environment during normal nuclear reactor operations. It is not as likely as cesium-137 to be released as a part of a nuclear reactor accident because it is much less volatile, but it is probably the most dangerous components of the radioactive fallout from a nuclear weapon.
    [Show full text]
  • The Role of Calcium and Strontium As the Most Dominant Elements During
    crystals Article The Role of Calcium and Strontium as the Most Dominant Elements during Combinations of Different Alkaline Earth Metals in the Synthesis of Crystalline Silica-Carbonate Biomorphs Mayra Cuéllar-Cruz 1,2,* and Abel Moreno 2,* 1 Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta S/N, Col. Noria Alta, Guanajuato C.P. 36050, Mexico 2 Instituto de Química, Universidad Nacional Autónoma de México, Av. Universidad 3000, Ciudad Universitaria, Ciudad de México 04510, Mexico * Correspondence: [email protected] (M.C.-C.); [email protected] (A.M.) Received: 22 June 2019; Accepted: 22 July 2019; Published: 24 July 2019 Abstract: The origin of life from the chemical point of view is an intriguing and fascinating topic, and is of continuous interest. Currently, the chemical elements that are part of the different cellular types from microorganisms to higher organisms have been described. However, although science has advanced in this context, it has not been elucidated yet which were the first chemical elements that gave origin to the first primitive cells, nor how evolution eliminated or incorporated other chemical elements to give origin to other types of cells through evolution. Calcium, barium, and strontium silica-carbonates have been obtained in vitro and named biomorphs, because they mimic living organism structures. Therefore, it is considered that these forms can resemble the first structures that were part of primitive organisms. Hence, the objective of this work was to synthesize biomorphs starting with different mixtures of alkaline earth metals—beryllium (Be2+), magnesium (Mg2+), calcium (Ca2+), barium (Ba2+), and strontium (Sr2+)—in the presence of nucleic acids, RNA and genomic DNA (gDNA).
    [Show full text]
  • The Plutonium Challenge-Environmental Issues
    Plutonium Overview The Plutonium Challenge Environmental issues he environmental concerns about plutonium stem from its potentially harmful effects on human health. Unlike many industrial materials whose Ttoxicity was discovered only after years of use, plutonium was immediately recognized as dangerous and as requiring special handling care. Consequently, the health effects on plutonium workers in the United States and the general public have been remarkably benign. Nevertheless, the urgency of the wartime effort and the intensity of the arms race during the early years of the Cold War resulted in large amounts of radioactivity being released into the environment in the United States and Russia. These issues are being addressed now, especially in the United States. Science and international cooperation will play a large role in minimizing the potential health effects on future generations. Environmental Consequences of the Cold War The environmental problems resulting from wartime and Cold War nuclear operations were for the most part kept out of public view during the arms race between the United States and the Soviet Union. On the other hand, concerns over health effects from atmospheric testing were debated during the 1950s, leading to the 1963 Limited Test Ban Treaty, which banned nuclear testing everywhere except underground. The U.S. nuclear weapons complex was not opened for public scrutiny until the late 1980s, following a landmark court decision on mercury cont- amination at the Oak Ridge, Tennessee, facilities of the Department of Energy (DOE) in 1984. In the Soviet Union, all nuclear matters, including environmental problems in the nuclear weapons complex, were kept secret.
    [Show full text]
  • Chemistry of Strontium in Natural Water
    Chemistry of Strontium in Natural Water GEOLOGICAL SURVEY WATER-SUPPLY PAPER 1496 This water-supply paper was printed as separate chapters A-D UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1963 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director The U.S. Geological Survey Library has cataloged this publication as follows: U.S. Geological Survey. Chemistry of strontium in natural water. Washington, U.S. Govt. Print. Off., 1962. iii, 97 p. illus., diagrs., tables. 24 cm. (Its Water-supply paper 1496) Issued as separate chapters A-D. Includes bibliographies. 1. Strontium. 2. Water-Analysis. I. Title. (Series) CONTENTS [The letters in parentheses preceding the titles are those used to designate the separate chapters] Page (A) A survey of analytical methods for the determination of strontium in natural water, by C. Albert Horr____________________________ 1 (B) Copper-spark method for spectrochemical determination of strontirm in water, by Marvin W. Skougstad-______-_-_-_--_~__-___-_- 19 (C) Flame photometric determination of strontium in natural water, by C. Albert Horr_____._____._______________... 33 (D) Occurrence and distribution of strontium in natural water, by Margin W. Skougstad and C. Albert Horr____________.___-._-___-. 55 iii A Survey of Analytical Methods fc r The Determination of Strontium in Natural Water By C. ALBERT HORR CHEMISTRY OF STRONTIUM IN NATURAL rVATER GEOLOGICAL SURVEY WATER-SUPPLY PAPER 1496-A This report concerns work done on behalf of the U.S. Atomic Energy Commission and is published with the permission of the Commission UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1959 UNITED STATES DEPARTMENT OF THE INTERIOR FRED A.
    [Show full text]
  • Reactive Metals Hazards Packaging
    Document No: RXM20172301 Publication Date: January 23, 2017 Revised Date: October 25, 2017 Hazard Awareness & Packaging Guidelines for Reactive Metals General Due to recent events resulting from reactive metals handling, CEI personnel and clients are being updated regarding special packaging guidelines designed to protect the safety of our personnel, physical assets, and customer environments. CEI’s Materials Management staff, in conjunction with guidelines from third party disposal outlets, has approved these alternative packaging guidelines to provide for safe storage and transportation of affected materials. This protocol primarily impacts water reactive or potentially water reactive metals in elemental form, although there are many compounds that are also affected. The alkali metals are a group in the periodic table consisting of the chemical elements lithium, sodium , potassium, rubidium, cesium and francium. This group lies in the s-block of the periodic table as all alkali metals have their outermost electron in an s-orbital. The alkali metals provide the best example of group trends in properties in the periodic table, with elements exhibiting well- characterized homologous behavior. The alkali metals have very similar properties: they are all shiny, soft, highly reactive metals at standard temperature and pressure, and readily lose their outermost electron to form cations with charge +1. They can all be cut easily with a knife due to their softness, exposing a shiny surface that tarnishes rapidly in air due to oxidation. Because of their high reactivity, they must be stored under oil to prevent reaction with air, and are found naturally only in salts and never as the free element.
    [Show full text]