The Geologic History of Mars

Total Page:16

File Type:pdf, Size:1020Kb

The Geologic History of Mars 1MS3-1-1 THE GEOLOGIC HISTORY OF MARS James W. Head1, Michael H. Carr2, 1Department of Geological Sciences, Brown University, Providence, R.I. 02912 USA; 2U. S. Geological Survey, Menlo Park, CA 94025 USA. Contact: [email protected]. Introduction: Our current understanding of the geologic history of Mars (Fig. 1) pro- vides insight into a number of outstanding questions that need to be addressed in future Mars exploration missions. Here we review the general themes in our current understanding of the geologic history of Mars [1] and identify a list of key questions that will help to guide future exploration planning. Current Understanding of the Geologic His tory of Mars: Mars accumulated and differentiated into crust, mantle and core within a few tens of mil lions of years of Solar System formation. Formation of the Hellas basin, which has been adopted as the base of the Noachian period, is estimated to have occurred around 4.1 to 3.8 Gyr ago, de- pending on whether or not the planet experienced a late cata clysm. Little is known of the pre-Noachian period except that it was 1) characterized by a magnetic field, and 2) subject to numerous large basin-forming impacts, probably including one that formed the global dichotomy. The Noachian period, which ended around 3.7 Gyr ago, was characterized by high rates of cratering, erosion, and valley network forma tion. During the Noachain, most of the Tharsis rise (volumetrically) formed and surface conditions were at least episodically such as to cause widespread production of hydrous weath- ering products such as phyllosilicates. The precise environment of origin of the phyl- losilicates (surface alteration by water, deep groundwater circulation, impact-energy related, all of the above?) is not well understood, however. Ex tensive sulfate deposits accumulated late in the era. Average erosion rates in the Noachian, though high com- pared with later epochs, fell short of the lowest average terrestrial rates. The record suggests that the warmer, wetter conditions necessary for fluvial ac tivity were met only occasionally, such as might occur if caused by large impacts or volcanic erup tions. At the end of the Noachian, rates of impact, valley formation, weathering, and erosion all dropped precipitously but volcanism continued at a relatively high average rate throughout the Hesperian, resulting in the resurfacing of at least 30% of the planet. Large water floods (the outflow channels) formed episodically, possibly leaving behind large bodies of water, perhaps even forming a sea or ocean in the northern lowlands lasting for an unknown duration. The major canyon system formed. The observations suggest that the change at the end of the Noachian suppressed most aqueous activ- ity at the surface other than large floods, and resulted in growth of a thick cryosphere. However, the presence of discrete sul fate rich deposits, sulfate concentrations in soils, and the occasional presence of Hesperian valley net works indicate that water activity did not decline to zero. After the end of the Hesperian around 3 Gyr ago the pace of geologic activity slowed further. The average rate of volcanism during the Amazonian was approximately a fac- tor of ten lower than in the Hes perian and activity was confined largely to Tharsis and Elysium. The main era of water flooding was over, although small floods (such as at Cerberus Fos sae) occurred episodically until geologically recent times. Canyon devel- opment was largely restricted to formation of large landslides. Erosion and weather ing rates remained extremely low. The most distinc tive characteristic of the Amazonian is formation of features that have been attributed to the presence, accumulation, and movement of ice. Included are the polar layered deposits, glacial deposits on vol- canoes, ice-rich veneers at high latitudes, and a variety of landforms in the 30-550 latitude belts, including lo-bate debris aprons, lineated valley fill and concentric crater fill. Pedestal craters record the presence of thick mantles of mid-to high-latitude ice deposits at many times throughout the Amazonian. Most of the gullies on steep slopes also formed late in this era. The rate of formation of the ice-related features and the gullies probably varied as changes in obliquity affected ice stability relations. Collapse of the CO2 atmosphere may have occurred from time to time in the Amazonian. The current configuration of spin axis/orbital parameters (and thus climate-related deposits) is almost certainly not typical of the Ama zonian as a whole. Lessons for Future Exploration: The advent of the international Mars exploration pro- gram during the last two decades has brought untold new knowl edge of, and perspec- tives on, the geologic history of Mars. It has also raised important new questions [2], which form the basis of future research and mission planning. Among the outstand- ing questions are: What is the history of the magnetic field? What is the history of water on Mars, its total abundance, and its acquisition (accretion, degassing) and loss with time? What was the nature of the Noachian climate? Was it warm and wet, cold *) All the abstracts are the original authors’ versions abst 1 1MS3-1-1 *and wet, or some combi nation that changed with time? Was Noachian val ley net- work formation episodic or continuous? Were there oceans in the northern lowlands in the Noa chian? What factors caused changes in the Noachian climate? Was there a late heavy bombardment and, if so, what were its consequences? How did the seem- ingly pervasive aqueous formation of Noachian crustal rocks occur and over what time scales? What caused the change in surface chemistry and water flux at the end of the Noachian? When did the major canyons of Valles Marineris form and how, and at what rate did they evolve? Are the sediments on the floor of the canyons Noachian, or later, in age, and how did they originate? Were there extensive lakes in the canyons and if so, how were they related to outflow channel formation? Were outflow channels catastrophic or episodic, and how much water and sediment were emplaced in the northern lowlands (ponds, lakes or seas)? What was the fate of the out flow channel effluent? What caused the change from phyllosilicate to sulfate deposits around the Noachian-Hesperian boundary? When did Mars become characterized by a global cryosphere and how much groundwater remains today in the subsur face? How has the thickness and latitudinal distribu tion of the cryosphere changed with time? What was the flux of volcanism during the Hesperian; was it a steady decline from the Noachian, or a peak related to the emplacement of Hesperian ridged plains? Why was volcanism centralized to the Tharsis and Elysium regions? What is the spin-axis/orbital pa rameter history of Mars and how has this controlled the distribution of volatiles in the surface and subsur face? Under what atmospheric and astronomical parameter conditions do tropical mountain glaciers, mid-latitude glaciers, and large circumpolar ice caps form and what do these deposits tell us about the climate history of Mars? What it the age of the cur rent polar ice deposits and why do they apparently differ? What is the origin of the north polar basal unit? How long does it take to form the individual polar layers and what processes of deposition and sublimation are involved? Answering these funda- mental questions requires the sophisticated, multi discipline approach that is necessary for developing an in-depth understanding of the geologic history of Mars. Reaching this new understanding requires a robust future international Mars exploration pro gram. Fig. 1. Geologic history of Mars. References: [1] Carr, M. H. and Head, J. W., 2010. Geologic history of Mars, Earth and Planetary Science Letters 294,185–203. [2] Head, J.W., 2007. The geology of Mars: New insights and outstanding questions, In: Chapman, M., (Ed), The Geology of Mars: Evidence from Earth-Based Analogs, Cam bridge University Press, 2007, pp. 1-46. abst 2 1MS3-1-2 EPISODICITY OF VOLCANIC AND FLUVIAL PROCESSES ON MARS G. Neukum1, A.T. Basilevsky1,2, and the HRSC Team, 1Freie Universitaet Berlin, Malteserstr., 74-100, Haus D, 12249 Berlin Germany; 2Vernadsky Institute, Kosygin Str., 19, 119991 Moscow, Russia. Contact: [email protected] We have investigated 12 typical regions on Mars (Figure 1) in detail with respect to their geologic evolution through time on the basis of detailed geologic mapping and determining age relationships through crater counting techniques using imagery. New data in combination with previously obtained data have been analyzed by way of a refined method of crater- ing age extraction that also gives fine details of periods of resurfacing (Figure 2). We have found that there has been volcanic and fluvial/gla- cial geologic activity on the Martian surface at all times from >4 Ga ago until present. Fig. 1. Regions of this study. This activity shows episodic pulses in intensity of both volcanic and fluvial/glacial processes at ~3.8–3.3 Ga, 2.0–1.8 Ga, 1.6 to 1.2 Ga, ~800 to 300 m.y., ~200 m.y., and ~100 m.y., and a pos- sible weaker phase around ~2.5–2.2 Ga ago (Figure 3). In between these episodes, there was relative quies- Fig. 2. Crater counting methodology cence of volcanic and/or flu- vial/glacial activity. The epi- sodes we find on the Martian surface in the crater frequency analyses of HRSC, MOC and THEMIS data coincide with some age groups of the Martian meteorites (~1.3 Ga, ~600–300 m.y., ~170 m.y.). It appears that the surface activity expressions and their episodicity are related to the interior evo- lution of the planet when convection in the asymptotic stationary state changes from the so-called stagnant-lid regime to an episodic behavior.
Recommended publications
  • Comprehensive Bibliography on Martian Meteorites (Compiled by C
    Comprehensive Bibliography on Martian Meteorites (compiled by C. Meyer, March 2008) Abu Aghreb A.E., Ghadi A.M., Schlüter J., Schultz L. and Thiedig F. (2003) Hamadah al Hamra and Dar al Gani: A comparison of two meteorite fields in the Libyan Sahara (abs). Meteoritics & Planet. Sci. 38, A48. Agee Carl B. (2002) Garnet and majorite fractionation in the early Earth and Mars (abs#1862). Lunar Planet. Sci. XXXIII Lunar Planetary Institute, Houston. (CD-ROM). (see address of LPI in Appendix III) Agee C.B., Bogard Don D., Draper D.S., Jones J.H., Meyer Chuck and Mittlefehldt D.W. (2000) Proposed science requirements and acquisition priorities for the first Mars sample return (abs). In Concept and Approaches for Mars Exploration. Part 1 (ed. S. Hubbard) LPI Contribution # 1062. Lunar Planetary Institute, Houston. Agee C.B. and Draper Dave S. (2003) Melting of model Martian mantle at high pressure: Implications for the composition of the Martian basalt source region (abs#1408). Lunar Planet. Sci. Conf. 34th, Lunar Planetary Institute, Houston (CD-ROM). Agerkvist D.P. and Vistisen L. (1993) Mössbauer spectroscopy of the SNC meteorite Zagami (abs). Lunar Planet. Sci. XXIV, 1-2. Lunar Planetary Institute, Houston. Zagami Agerkvist D.P., Vistisen L., Madsen M.B. and Knudsen J.M. (1994) Magnetic properties of Zagami and Nakhla (abs). Lunar Planet. Sci. XXV, 1-2. Lunar Planetary Institute, Houston. Zagami Nakhla Akai J. (1997) Characteristics of iron-oxide and iron-sulfide grains in meteorites and terrestrial sediments, with special references to magnetite grains in Allan Hills 84001 (abs). Meteoritics & Planet. Sci.
    [Show full text]
  • Tardi-Magmatic Precipitation of Martian Fe/Mg-Rich Clay Minerals Via Igneous Differentiation
    ©2020TheAuthors Published by the European Association of Geochemistry ▪ Tardi-magmatic precipitation of Martian Fe/Mg-rich clay minerals via igneous differentiation J.-C. Viennet1*, S. Bernard1, C. Le Guillou2, V. Sautter1, P. Schmitt-Kopplin3, O. Beyssac1, S. Pont1, B. Zanda1, R. Hewins1, L. Remusat1 Abstract doi: 10.7185/geochemlet.2023 Mars is seen as a basalt covered world that has been extensively altered through hydrothermal or near surface water-rock interactions. As a result, all the Fe/Mg-rich clay minerals detected from orbit so far have been interpreted as secondary, i.e. as products of aqueous alteration of pre-existing silicates by (sub)surface water. Based on the fine scale petrographic study of the evolved mesostasis of the Nakhla mete- orite, we report here the presence of primary Fe/Mg-rich clay minerals that directly precipitated from a water-rich fluid exsolved from the Cl-rich parental melt of nakhlites during igneous differentiation. Such a tardi-magmatic precipitation of clay minerals requires much lower amounts of water compared to production via aque- ous alteration. Although primary Fe/Mg-rich clay minerals are minor phases in Nakhla, the contribution of such a process to Martian clay formation may have been quite significant during the Noachian given that Noachian magmas were richer in H2O. In any case, the present discovery justifies a re-evaluation of the exact origin of the clay minerals detected on Mars so far, with potential consequences for our vision of the early magmatic and climatic histories of Mars. Received 26 January 2020 | Accepted 27 May 2020 | Published 8 July 2020 Letter mafic crustal materials (Smith and Bandfield, 2012; Ehlmann and Edwards, 2014).
    [Show full text]
  • New Mars Meteorite Fall in Marocco: Final Strewn Field
    Available online at www.ilcpa.pl International Letters of Chemistry, Physics and Astronomy 11 (2013) 20-25 ISSN 2299-3843 New Mars meteorite fall in Marocco: final strewn field Abderrahmane Ibhi Laboratory of Geo-heritage and Geo-materials Science, Ibn Zohr University, Agadir, Morocco E-mail address: [email protected] ABSTRACT The Tissint fireball is the only fireball to have been observed and reported by numerous witnesses across the south-east of Morocco. The event was extremely valuable to the scientific community; show an extraordinary and rare event and were also the brightest and most comprehensively observed fireball in Morocco’s known astronomical history. Since the abstract of A. Ibhi (2011) [1]. In 1012-2013 concerning a number of Martian meteorite fragments found in the region of Tata (Morocco), a number of expeditions have been made to the area. A. ibhi has done a great amount of field work. He discovered the strewn field and collected the fragments of this Martian meteorite and many information. Each expedition has had the effect of expanding the size of the strewn field which is now documented to cover more than 70 sq. kilometers. The size of the strewn field is now estimated to be about a 17 km long. Keywords: fireball; Martian meteorite; Shergottite; Strewn field; Tissint; Morocco. 1. INTRODUCTION A meteoritic body entered the earth’s atmosphere in the south-east skies of Tata, Morocco, On Sunday July, 18th, 2011 at 2 o’clock in the morning. Its interaction with the atmosphere led to brilliant light flashes accompanied with detonations.
    [Show full text]
  • Lost Lake by Robert Verish
    Meteorite-Times Magazine Contents by Editor Like Sign Up to see what your friends like. Featured Monthly Articles Accretion Desk by Martin Horejsi Jim’s Fragments by Jim Tobin Meteorite Market Trends by Michael Blood Bob’s Findings by Robert Verish IMCA Insights by The IMCA Team Micro Visions by John Kashuba Galactic Lore by Mike Gilmer Meteorite Calendar by Anne Black Meteorite of the Month by Michael Johnson Tektite of the Month by Editor Terms Of Use Materials contained in and linked to from this website do not necessarily reflect the views or opinions of The Meteorite Exchange, Inc., nor those of any person connected therewith. In no event shall The Meteorite Exchange, Inc. be responsible for, nor liable for, exposure to any such material in any form by any person or persons, whether written, graphic, audio or otherwise, presented on this or by any other website, web page or other cyber location linked to from this website. The Meteorite Exchange, Inc. does not endorse, edit nor hold any copyright interest in any material found on any website, web page or other cyber location linked to from this website. The Meteorite Exchange, Inc. shall not be held liable for any misinformation by any author, dealer and or seller. In no event will The Meteorite Exchange, Inc. be liable for any damages, including any loss of profits, lost savings, or any other commercial damage, including but not limited to special, consequential, or other damages arising out of this service. © Copyright 2002–2010 The Meteorite Exchange, Inc. All rights reserved. No reproduction of copyrighted material is allowed by any means without prior written permission of the copyright owner.
    [Show full text]
  • March 21–25, 2016
    FORTY-SEVENTH LUNAR AND PLANETARY SCIENCE CONFERENCE PROGRAM OF TECHNICAL SESSIONS MARCH 21–25, 2016 The Woodlands Waterway Marriott Hotel and Convention Center The Woodlands, Texas INSTITUTIONAL SUPPORT Universities Space Research Association Lunar and Planetary Institute National Aeronautics and Space Administration CONFERENCE CO-CHAIRS Stephen Mackwell, Lunar and Planetary Institute Eileen Stansbery, NASA Johnson Space Center PROGRAM COMMITTEE CHAIRS David Draper, NASA Johnson Space Center Walter Kiefer, Lunar and Planetary Institute PROGRAM COMMITTEE P. Doug Archer, NASA Johnson Space Center Nicolas LeCorvec, Lunar and Planetary Institute Katherine Bermingham, University of Maryland Yo Matsubara, Smithsonian Institute Janice Bishop, SETI and NASA Ames Research Center Francis McCubbin, NASA Johnson Space Center Jeremy Boyce, University of California, Los Angeles Andrew Needham, Carnegie Institution of Washington Lisa Danielson, NASA Johnson Space Center Lan-Anh Nguyen, NASA Johnson Space Center Deepak Dhingra, University of Idaho Paul Niles, NASA Johnson Space Center Stephen Elardo, Carnegie Institution of Washington Dorothy Oehler, NASA Johnson Space Center Marc Fries, NASA Johnson Space Center D. Alex Patthoff, Jet Propulsion Laboratory Cyrena Goodrich, Lunar and Planetary Institute Elizabeth Rampe, Aerodyne Industries, Jacobs JETS at John Gruener, NASA Johnson Space Center NASA Johnson Space Center Justin Hagerty, U.S. Geological Survey Carol Raymond, Jet Propulsion Laboratory Lindsay Hays, Jet Propulsion Laboratory Paul Schenk,
    [Show full text]
  • Organic Matter in Meteorites Department of Inorganic Chemistry, University of Barcelona, Spain
    REVIEW ARTICLE INTERNATIONAL MICROBIOLOGY (2004) 7:239-248 www.im.microbios.org Jordi Llorca Organic matter in meteorites Department of Inorganic Chemistry, University of Barcelona, Spain Summary. Some primitive meteorites are carbon-rich objects containing a vari- ety of organic molecules that constitute a valuable record of organic chemical evo- lution in the universe prior to the appearance of microorganisms. Families of com- pounds include hydrocarbons, alcohols, aldehydes, ketones, carboxylic acids, amino acids, amines, amides, heterocycles, phosphonic acids, sulfonic acids, sugar-relat- ed compounds and poorly defined high-molecular weight macromolecules. A vari- ety of environments are required in order to explain this organic inventory, includ- ing interstellar processes, gas-grain reactions operating in the solar nebula, and hydrothermal alteration of parent bodies. Most likely, substantial amounts of such Received 15 September 2004 organic materials were delivered to the Earth via a late accretion, thereby provid- Accepted 15 October 2004 ing organic compounds important for the emergence of life itself, or that served as a feedstock for further chemical evolution. This review discusses the organic con- Address for correspondence: Departament de Química Inorgànica tent of primitive meteorites and their relevance to the build up of biomolecules. Universitat de Barcelona [Int Microbiol 2004; 7(4):239-248] Martí i Franquès, 1-11 08028 Barcelona, Spain Tel. +34-934021235. Fax +34-934907725 Key words: primitive meteorites · prebiotic chemistry · chemical evolution · E-mail: [email protected] origin of life providing new opportunities for scientific advancement. One Introduction of the most important findings regarding such bodies is that comets and certain types of meteorites contain organic mole- Like a carpentry shop littered with wood shavings after the cules formed in space that may have had a relevant role in the work is done, debris left over from the formation of the Sun origin of the first microorganisms on Earth.
    [Show full text]
  • Using Oxygen and Carbon Stable Isotopes, 53Mn-53Cr Isotope Systematics, and Petrology to Constrain the History of Carbonates
    University of New Mexico UNM Digital Repository Earth and Planetary Sciences ETDs Electronic Theses and Dissertations 7-10-2013 Using oxygen and carbon stable isotopes, 53Mn-53Cr isotope systematics, and petrology to constrain the history of carbonates and water in the CR and CM chondrite parent bodies Mark Tyra Follow this and additional works at: https://digitalrepository.unm.edu/eps_etds Recommended Citation Tyra, Mark. "Using oxygen and carbon stable isotopes, 53Mn-53Cr isotope systematics, and petrology to constrain the history of carbonates and water in the CR and CM chondrite parent bodies." (2013). https://digitalrepository.unm.edu/eps_etds/93 This Dissertation is brought to you for free and open access by the Electronic Theses and Dissertations at UNM Digital Repository. It has been accepted for inclusion in Earth and Planetary Sciences ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact [email protected]. Mark Anthony Tyra Candidate Earth and Planetary Sciences Department This dissertation is approved, and it is acceptable in quality and form for publication: Approved by the Dissertation Committee: Adrian J. Brearley , Chairperson Ian D. Hutcheon Rhian H. Jones Zachary D. Sharp Charles K. Shearer i USING OXYGEN AND CARBON STABLE ISOTOPES, 53MN-53CR ISOTOPE SYSTEMATICS, AND PETROLOGY TO CONSTRAIN THE HISTORY OF CARBONATES AND WATER IN THE CR AND CM CHONDRITE PARENT BODIES by MARK ANTHONY TYRA B.S., Geology, University of Kentucky, 2000 M.S., Geology, University of Maryland, 2005 DISSERTATION Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Earth and Planetary Sciences The University of New Mexico Albuquerque, New Mexico May, 2013 ii DEDICATION Education, on the other hand, means emancipation.
    [Show full text]
  • Meteoroids: the Smallest Solar System Bodies
    Passage of Bolides through the Atmosphere 1 O. Popova Abstract Different fragmentation models are applied to a number of events, including the entry of TC3 2008 asteroid in order to reproduce existing observational data. keywords meteoroid entry · fragmentation · modeling 1 Introduction Fragmentation is a very important phenomenon which occurs during the meteoroid entry into the atmosphere and adds more drastic effects than mere deceleration and ablation. Modeling of bolide 6 fragmentation (100 – 10 kg in mass) may be divided into several approaches. Detail fitting of observational data (deceleration and/or light curves) allows the determination of some meteoroid parameters (ablation and shape-density coefficients, fragmentation points, amount of mass loss) (Ceplecha et al. 1993; Ceplecha and ReVelle 2005). Observational data with high accuracy are needed for the gross-fragmentation model (Ceplecha et al. 1993), which is used for the analysis of European and Desert bolide networks data. Hydrodynamical models, which describe the entry of the meteoroid 6 including evolution of its material, are applied mainly for large bodies (>10 kg) (Boslough et al. 1994; Svetsov et al. 1995; Shuvalov and Artemieva 2002, and others). Numerous papers were devoted to the application of standard equations for large meteoroid entry in the attempts to reproduce dynamics and/or radiation for different bolides and to predict meteorite falls. These modeling efforts are often supplemented by different fragmentation models (Baldwin and Sheaffer, 1971; Borovi6ka et al. 1998; Artemieva and Shuvalov, 2001; Bland and Artemieva, 2006, and others). The fragmentation may occur in different ways. For example, few large fragments are formed. These pieces initially interact through their shock waves and then continue their flight independently.
    [Show full text]
  • Magnetite Plaquettes Are Naturally Asymmetric Materials in Meteorites
    1 (Revision 2) 2 Magnetite plaquettes are naturally asymmetric materials in meteorites 3 Queenie H. S. Chan1, Michael E. Zolensky1, James E. Martinez2, Akira Tsuchiyama3, and Akira 4 Miyake3 5 1ARES, NASA Johnson Space Center, Houston, Texas 77058, USA. 6 2Jacobs Engineering, Houston, Texas 77058, USA. 7 3Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 8 606-8502, Japan. 9 10 Correspondence to: Queenie H. S. Chan. Correspondence and requests for materials should be 11 addressed to Q.H.S.C. (Email: [email protected]) 12 13 Abstract 14 Life on Earth shows preference towards the set of organics with particular spatial configurations. 15 Enantiomeric excesses have been observed for α-methyl amino acids in meteorites, which 16 suggests that chiral asymmetry might have an abiotic origin. A possible abiotic mechanism that 17 could produce chiral asymmetry in meteoritic amino acids is their formation under the influence 18 of asymmetric catalysts, as mineral crystallization can produce spatially asymmetric structures. 19 Although magnetite plaquettes have been proposed to be a possible candidate for an asymmetric 20 catalyst, based on the suggestion that they have a spiral structure, a comprehensive description of 21 their morphology and interpretation of the mechanism associated with symmetry-breaking in 22 biomolecules remain elusive. Here we report observations of magnetite plaquettes in 1 23 carbonaceous chondrites (CCs) which were made with scanning electron microscopy and 24 synchrotron X-ray computed microtomography (SXRCT). We obtained the crystal orientation of 25 the plaquettes using electron backscatter diffraction (EBSD) analysis. SXRCT permits 26 visualization of the internal features of the plaquettes.
    [Show full text]
  • Oxygen Isotope Compositions of the Kaidun Meteorite – Indications for Aqueous Alteration of E-Chondrites
    OXYGEN ISOTOPE COMPOSITIONS OF THE KAIDUN METEORITE – INDICATIONS FOR AQUEOUS ALTERATION OF E-CHONDRITES. K. Ziegler1,*, M. Zolensky2, E. D. Young1,3, A. Ivanov4. 1Institute of Geophysics and Planetary Physics, University of California Los Angeles (UCLA), Los Angeles, CA 90095, U.S.A., 2ARES, NASA Johnson Space Center, Houston, TX 77058, U.S.A., 3Department of Earth and Space Sciences, UCLA, Los Angeles, CA 90095, U.S.A., 4Vernadsky Institute, Moscow, Russia. *Current address: Institute of Meteoritics, University of New Mexico, Albuquerque, NM 87131, U.S.A., ([email protected], [email protected], [email protected], [email protected]). Introduction: The Kaidun microbreccia is a Results: The clasts are comprised of the following unique meteorite due to the diversity of its constituent lithologies: altered enstatite chondrites or aubrites, clasts. Fragments of various types of carbonaceous (CI, CM2, C1 (most likely CI1), C2, and a microbreccia. CM, CV, CR), enstatite (EH, EL), and ordinary chon- Surviving E-chondrite or aubrite primary minerals drites, basaltic achondrites, and impact melt products include enstatite, augite, diopside, silica, plagioclase have been described, and also several unknown clasts (albite to anorthite), ilmenite and heideite. Alteration [1, and references therein]. The small mm-sized clasts products of the enstatite material are: poorly-crystalline represent material from different places and times in enstatite, calcite, phyllosilicates, neoformed albite, and the early solar system, involving a large variety of par- amphiboles (actinolite) (Fig. 1). Alteration mineralogy ent bodies [2]; meteorites are of key importance to the of the CM2 clast include Ca carbonates, tochilinite, study of the origin and evolution of the solar system, serpentine, sulfides, and chromite.
    [Show full text]
  • Can Mars' Current Atmosphere Land Block Island Sized Meteorites?
    41st Lunar and Planetary Science Conference (2010) 2351.pdf CAN MARS’ CURRENT ATMOSPHERE LAND BLOCK ISLAND SIZED METEORITES? J.E.Chappelow1 and M.P. Golombek2, 1SAGA Inc., 1148 Sundance Loop, Fairbanks, AK 99709 (john.chap- [email protected]), 2Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109. Introduction: In 2005-6 Chappelow and Sharpton mass and vf is the final velocity, were used to sort the showed that iron meteorites up to a few kg in mass BI meteorite outcomes out of the results. should be expected on Mars [1,2] and that even irons Results: We found that Mars’ current atmosphere the mass of Heat Shield Rock (hereafter HSR, also can decelerate iron meteoroids as large as Block Is- named Meridiani Planum) (50 – 60 kg) could be land below 2 km/s, but only if they start with very spe- landed, even under as low-density a martian atmo- cific masses, speeds, and (especially) entry angles. All sphere as the one that exists today, though only rarely. of the positive results for BI that were found followed They would have to encounter the planet within nar- the type 3 flight path shown on Fig. 1 (termed “fall- row limits of initial mass, entry velocity, and entry back” trajectories in the caption). On this type of tra- angle [3] to have their velocity reduced sufficiently be- jectory, the meteoroid enters the atmosphere, initially low hypervelocity impact speeds (< 2 km/s) to land a descends, but then ascends briefly as the planet curves meteorite as opposed to forming a primary crater and away beneath it, before finally slowing and redescend- being destroyed or severely deformed.
    [Show full text]
  • The Tennessee Meteorite Impact Sites and Changing Perspectives on Impact Cratering
    UNIVERSITY OF SOUTHERN QUEENSLAND THE TENNESSEE METEORITE IMPACT SITES AND CHANGING PERSPECTIVES ON IMPACT CRATERING A dissertation submitted by Janaruth Harling Ford B.A. Cum Laude (Vanderbilt University), M. Astron. (University of Western Sydney) For the award of Doctor of Philosophy 2015 ABSTRACT Terrestrial impact structures offer astronomers and geologists opportunities to study the impact cratering process. Tennessee has four structures of interest. Information gained over the last century and a half concerning these sites is scattered throughout astronomical, geological and other specialized scientific journals, books, and literature, some of which are elusive. Gathering and compiling this widely- spread information into one historical document benefits the scientific community in general. The Wells Creek Structure is a proven impact site, and has been referred to as the ‘syntype’ cryptoexplosion structure for the United State. It was the first impact structure in the United States in which shatter cones were identified and was probably the subject of the first detailed geological report on a cryptoexplosive structure in the United States. The Wells Creek Structure displays bilateral symmetry, and three smaller ‘craters’ lie to the north of the main Wells Creek structure along its axis of symmetry. The question remains as to whether or not these structures have a common origin with the Wells Creek structure. The Flynn Creek Structure, another proven impact site, was first mentioned as a site of disturbance in Safford’s 1869 report on the geology of Tennessee. It has been noted as the terrestrial feature that bears the closest resemblance to a typical lunar crater, even though it is the probable result of a shallow marine impact.
    [Show full text]