Histological Analysis of Spermatogenesis and the Germ Cell

Total Page:16

File Type:pdf, Size:1020Kb

Histological Analysis of Spermatogenesis and the Germ Cell ARTICLE IN PRESS Ann Anat 190 (2008) 461—476 www.elsevier.de/aanat RESEARCH ARTICLE Histological analysis of spermatogenesis and the germ cell development strategy within the testis of the male Western Cottonmouth Snake, Agkistrodon piscivorus leucostoma Kevin M. Gribbinsa,Ã, Justin L. Rheuberta, Matthew H. Colliera, Dustin S. Siegelb, David M. Severc aDepartment of Biology, Wittenberg University, PO Box 720, Springfield, OH 45501-0720, USA bDepartment of Biology, Saint Louis University, St. Louis, MO 63103, USA cDepartment of Biological Sciences, Southeastern Louisiana University, Hammond, LA 70402, USA Received 7 December 2007; received in revised form 25 June 2008; accepted 1 July 2008 KEYWORDS Summary Cottonmouth; Cottonmouth (Agkistrodon piscivorus leucostoma) testes were examined histologi- Agkistrodon; cally to determine the germ cell development strategy employed during Spermatogenesis; spermatogenesis. Testicular tissues from Cottonmouths were collected monthly Testes; from swamps around Hammond, Louisiana. Pieces of testis were fixed in Trump’s Reproduction; fixative, dehydrated in ethanol, embedded in Spurr’s plastic, sectioned with an Bimodal ultramicrotome, and stained with toluidine blue and basic fuchsin. Spermatogenesis within Cottonmouths occurs in two independent events within a single calendar year. The testes are active during the months of March–June and August–October with spermiation most heavily observed during April–May and October. To our knowledge, this is the first study that describes bimodal spermatogenesis occurring in the same year within the subfamily Crotalinae. During spermatogenesis, no consistent spatial relationships are observed between germ cell generations. Typically, either certain cell types were missing (spermatocytes) or the layering of 3–5 spermatids and/or spermatocytes within the same cross-section of seminiferous tubule prevented consistent spatial stages from occurring. This temporal pattern of sperm develop- ment is different from the spatial development found within birds and mammals, being more reminiscent of that seen in amphibians, and has now been documented within every major clade of reptile (Chelonia, Serpentes, Sauria, Crocodylia). This primitive-like sperm development, within a testis structurally similar to mammals ÃCorresponding author. E-mail address: [email protected] (K.M. Gribbins). 0940-9602/$ - see front matter & 2008 Elsevier GmbH. All rights reserved. doi:10.1016/j.aanat.2008.07.003 ARTICLE IN PRESS 462 K.M. Gribbins et al. and birds, may represent an intermediate testicular model within the basally positioned (phylogenetically) reptiles that may be evolutionarily significant. & 2008 Elsevier GmbH. All rights reserved. Introduction to date have testes with typical amniotic structures (seminiferous tubules, seminiferous epithelium, Two different germ cell development strategies Sertoli cells). However, their germ cell develop- exist within vertebrates. Anamniotic vertebrate ment strategy is more reminiscent of that found in testes are composed of tubules or lobules that are anamniotes. This germ cell development may be lined with cysts. Germ cells develop as a single conserved and considered primitive compared with cohort through mitosis, meiosis, spermiogenesis, the derived spatial spermatogenesis seen in birds and upon completion of spermatogenesis mature and mammals. The basal position of reptiles within spermatozoa are released from these cysts into the the amniotic clade and the reoccurring theme of a lumina of the tubules or lobules in a single temporal germ cell development strategy in every spermiation event (Lofts, 1964; Van Oordt and temperate reptile studied to date suggests that this Brands, 1970). Amniotic testes contain seminifer- pleisomorphic-like spermatogenic cycle within a ous tubules that are lined with seminiferous structurally amniotic testis may be evolutionary epithelia (Leblond and Clermont, 1952). Sperma- significant. togenesis occurs in association with Sertoli cells, The present study on Agkistrodon piscivorus which make up the seminiferous epithelium of leucostoma is a continuation of this long-term amniotic testes. investigation on germ cell development in reptiles. Throughout the spermatogenic cycle in most The Cottonmouth is a viviparous snake that can be amniotes studied to date (limited mostly to found within lowlands of the southeastern United temperate and continually breeding birds and States (Conant and Collins, 1991). Cottonmouths mammals), germ cells within the seminiferous are semi-aquatic snakes that in many cases occupy epithelium are organized in consistent spatial permanent water sources in abundant numbers arrangements as generations of germ cells move within their geographic range. Pairings of males and from the periphery of the epithelium to the lumen females have been seen in Cottonmouths by of the seminiferous tubules. This type of synchro- Wharton (1966) throughout the entire year except nized germ cell development strategy results in January with female ovulation occurring in the consistent cellular associations that can be seen spring (Zaidan et al., 2003). Spermatogenesis and predicted. These stages are typically numeri- begins in April and spermiogenesis is completed cally arranged within large segments of seminifer- by late October (Johnson et al., 1982) for popula- ous tubules, which lead to waves of sperm release tions of Cottonmouths found in Alabama. The throughout the reproductively active months in climax of spermatogenesis, along with increased mammals (Russell et al., 1990). testosterone levels, occurs in mid July in all Current research provides evidence that most Cottonmouth populations studied to date (Johnson temperate pitvipers mate, have a period of et al., 1982; Zaidan et al., 2003; Graham, 2006). testicular quiescence, and then begin spermato- The purpose of this study is to provide a detailed genesis during the late spring/early summer histological evaluation of the major events asso- (Srivastava and Thapliyal, 1965; Saint Girons, ciated with spermatogenesis so that the germ cell 1982; Aldridge, 2002). Although spermatogenesis development strategy of a southeastern Louisiana generally starts during the late spring/early sum- Cottonmouth population (Johnson et al. (1982) did mer, many variations and testicular cycles exist. not provide information about the germ cell These cycles differ from species to species and are development strategy within Alabama male Cotton- associated with internal and external androgenic mouths) can be compared with that of the Swamp cues (Shea, 2001; Bertona and Chiaraviglio, 2003). Snake and other temperate reptiles. Cottonmouths Recent research has also shown that temperate are unique to the other temperate species studied snakes, like the Black Swamp Snake (Seminatrix to date in that there is evidence that spermatogen- pygaea), may rely on a completely different germ esis is seasonal, but breeding may occur any time cell development strategy than that observed in during the year (assuming intersexual pairings are birds and mammals. Black Swamp Snakes (Gribbins indicative of mating activity). Furthermore, within et al., 2005) and other temperate reptiles (Gribbins the population of Cottonmouths from this study and Gist, 2003; Gribbins et al., 2003, 2006) studied mature sperm can be found in the distal regions of ARTICLE IN PRESS Spermatogenesis in Agkistrodon piscivorus leucostoma 463 the female reproductive tract in late spring and fall 0.2–0.5 ml intraperitoneal injection of sodium suggesting that there may be two major breeding pentobarbital (1 g sodium pentobarbital in 10% seasons in Louisiana (Siegel and Sever, 2008). This ethanol/40% propylene glycol solution) and the information leads to the hypothesis that male testes were removed and fixed in Trump’s fixative Cottonmouths in Louisiana either store sperm that (EMS, Hatfield, PA). The testes were then cut is produced from one seasonal peak of spermato- into transverse sections and stored in 70% ethanol genesis as observed by Johnson et al. (1982) or at 4 1C. there may be more than one spermatogenic event (i.e. early summer and late fall) that would provide Tissue preparation for light microscopy sperm for the majority of matings, which are assumed to occur most often during the warmer Sections of each testis were cut into approxi- months of the year. This type of bimodal sperma- mately 3 mm cubes, dehydrated in a graded series togenesis has not been documented within a of ethanol (70%, 85%, 2 Â 95%, 2 Â 100%), incubated species of snake belonging to the subfamily in 1:2 Spurr’s plastic (EMS, Hatfield, PA): 100% Crotalinae. However, a similar biannual germ cell ethanol for 30 min, and then once in 1:1 Spurr’s development in males has been previously de- plastic: 100% ethanol for 30 min. The tissues were scribed during the summer months for species then infiltrated in pure Spurr’s plastic overnight. within Colubridae (Goldberg, 1995, 1998). If a New plastic was prepared and the testes were bimodal type of spermatogenesis occurs in this embedded and cured at 60 1C for 48 h in a Fisher Louisiana population of Cottonmouths, then this isotemperature vacuum oven (Fisher Scientific, new annual pattern of reproduction would be quite Pittsburg, PA). Sections (2–3 mm) were cut from different from the postnuptial pattern of sperma- the plastic blocks using a dry glass knife and an LKB- togenesis typical of temperate-zoned snakes that Ultramicrotome III (LKB Produkter AB, Bromma, was previously described by Johnson
Recommended publications
  • Identification of Differentially Expressed Genes of Primary
    Cell Research (2004); 14(6):507-512 ARTICLE http://www.cell-research.com Identification of differentially expressed genes of primary spermatocyte against round spermatid isolated from human testis using the laser capture microdissection technique Gang LIANG1,4, Xiao Dong ZHANG1, Lu Jing WANG1, Yu Shen SHA2, Jian Chao ZHANG2, Shi Ying MIAO1, Shu Dong ZONG2, Lin Fang WANG1,*, S.S. KOIDE3 1National Laboratory Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, 5 Dong Dan San Tiao, 100005 Beijing, China 2National Research Institute for Family Planning, WHO Collaboration Center for Research in Human Reproduction, Beijing, 12 Da Hui Si, 100081 Beijing, China 3Center for Biomedical Research, Population Council, 1230 York Avenue, New York, NY 10021, USA 4Chinese National Human Genome Center, Beijing, 3-707 North Yong Chang Road BDA, Beijing 100176, China ABSTRACT The method of laser capture microdissection (LCM) combined with suppressive subtractive hybridization (SSH) was developed to isolate specific germ cells from human testis sections and to identify the genes expressed during differen- tiation and development. In the present study, over 10,000 primary spermatocytes and round spermatid cells were successfully isolated by LCM. Using the cDNAs from primary spermatocytes and round spermatids, SSH cDNAs library of primary spermatocyte-specific was constructed. The average insert size of the cDNA isolated from 75 randomly picked white clones was 500 bp, ranging from 250 bp to 1.7 kb. Using the dot-blot method, a total of 421 clones were examined, resulting in the identification of 390 positive clones emitting strong signals.
    [Show full text]
  • Te2, Part Iii
    TERMINOLOGIA EMBRYOLOGICA Second Edition International Embryological Terminology FIPAT The Federative International Programme for Anatomical Terminology A programme of the International Federation of Associations of Anatomists (IFAA) TE2, PART III Contents Caput V: Organogenesis Chapter 5: Organogenesis (continued) Systema respiratorium Respiratory system Systema urinarium Urinary system Systemata genitalia Genital systems Coeloma Coelom Glandulae endocrinae Endocrine glands Systema cardiovasculare Cardiovascular system Systema lymphoideum Lymphoid system Bibliographic Reference Citation: FIPAT. Terminologia Embryologica. 2nd ed. FIPAT.library.dal.ca. Federative International Programme for Anatomical Terminology, February 2017 Published pending approval by the General Assembly at the next Congress of IFAA (2019) Creative Commons License: The publication of Terminologia Embryologica is under a Creative Commons Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0) license The individual terms in this terminology are within the public domain. Statements about terms being part of this international standard terminology should use the above bibliographic reference to cite this terminology. The unaltered PDF files of this terminology may be freely copied and distributed by users. IFAA member societies are authorized to publish translations of this terminology. Authors of other works that might be considered derivative should write to the Chair of FIPAT for permission to publish a derivative work. Caput V: ORGANOGENESIS Chapter 5: ORGANOGENESIS
    [Show full text]
  • Sex Determination in Mammalian Germ Cells: Extrinsic Versus Intrinsic Factors
    REPRODUCTIONREVIEW Sex determination in mammalian germ cells: extrinsic versus intrinsic factors Josephine Bowles and Peter Koopman Division of Molecular Genetics and Development, and ARC Centre of Excellence in Biotechnology and Development, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia Correspondence should be addressed to J Bowles; Email: [email protected] Abstract Mammalian germ cells do not determine their sexual fate based on their XX or XY chromosomal constitution. Instead, sexual fate is dependent on the gonadal environment in which they develop. In a fetal testis, germ cells commit to the spermatogenic programme of development during fetal life, although they do not enter meiosis until puberty. In a fetal ovary, germ cells commit to oogenesis by entering prophase of meiosis I. Although it was believed previously that germ cells are pre-programmed to enter meiosis unless they are actively prevented from doing so, recent results indicate that meiosis is triggered by a signaling molecule, retinoic acid (RA). Meiosis is avoided in the fetal testis because a male-specifically expressed enzyme actively degrades RA during the critical time period. Additional extrinsic factors are likely to influence sexual fate of the germ cells, and in particular, we postulate that an additional male-specific fate-determining factor or factors is involved. The full complement of intrinsic factors that underlie the competence of gonadal germ cells to respond to RA and other extrinsic factors is yet to be defined. Reproduction (2010) 139 943–958 Introduction A commitment to oogenesis involves pre-meiotic DNA replication and entry into and progression through Germ cells are the special cells of the embryo that prophase of the first meiotic division during fetal life.
    [Show full text]
  • Testicular Migration, Spermatogenesis, Temperature Taphozous Georgianus
    Testicular migration, spermatogenesis, temperature regulation and environment of the sheath-tail bat, Taphozous georgianus S. E. Jolly and A. W. Blackshaw Department of Physiology and Pharmacology, University of Queensland, St Lucia, Queensland 4067, Australia Summary. The testes of the common sheath-tail bat of tropical Australia undergo a seasonal migration between the abdomen and the scrotal pouches, while each cauda epididymidis is permanently maintained in the scrotal pouch. Straps of smooth muscle attach to both the cranial and caudal poles of the testes, and these extend cranially to the diaphragm and caudally to the cauda epididymidis. The testicular arteries are not coiled. Among the environmental factors investigated, maximum temperature corre- lated most significantly with testicular descent, and the number of spermatogonia per bat also correlated most significantly with maximum temperature. Body temperature of a captive bat ranged from 25 to 38\s=deg\Cand this was closely related to body weight and ambient temperature. It seems likely that the scrotal pouch provides a temperature slightly below that of the body and so facilitates sperm storage in the permanently scrotal cauda epididymidis. Migration of the testes probably serves to ameliorate the seasonal temperature fluctuations to which they are exposed while the relatively high correlation between maximum environmental temperature and spermatogonial numbers suggests that temperature may be a proximate influence on reproduction in the sheath-tail bat. Keywords: testicular migration; spermatogenesis; temperature regulation; sheath-tail bat Introduction The teleology of scrotal evolution has been debated for many years and still remains one of the great unresolved mysteries of biology. Earlier theories on the functional significance of the mam¬ malian scrotum centred on spermatogenesis and its apparent need for the reduced temperatures supplied by the scrotum (see Cowles, 1965).
    [Show full text]
  • Skates and Rays Diversity, Exploration and Conservation – Case-Study of the Thornback Ray, Raja Clavata
    UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ANIMAL SKATES AND RAYS DIVERSITY, EXPLORATION AND CONSERVATION – CASE-STUDY OF THE THORNBACK RAY, RAJA CLAVATA Bárbara Marques Serra Pereira Doutoramento em Ciências do Mar 2010 UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ANIMAL SKATES AND RAYS DIVERSITY, EXPLORATION AND CONSERVATION – CASE-STUDY OF THE THORNBACK RAY, RAJA CLAVATA Bárbara Marques Serra Pereira Tese orientada por Professor Auxiliar com Agregação Leonel Serrano Gordo e Investigadora Auxiliar Ivone Figueiredo Doutoramento em Ciências do Mar 2010 The research reported in this thesis was carried out at the Instituto de Investigação das Pescas e do Mar (IPIMAR - INRB), Unidade de Recursos Marinhos e Sustentabilidade. This research was funded by Fundação para a Ciência e a Tecnologia (FCT) through a PhD grant (SFRH/BD/23777/2005) and the research project EU Data Collection/DCR (PNAB). Skates and rays diversity, exploration and conservation | Table of Contents Table of Contents List of Figures ............................................................................................................................. i List of Tables ............................................................................................................................. v List of Abbreviations ............................................................................................................. viii Agradecimentos ........................................................................................................................
    [Show full text]
  • Anatomia Associada Ao Comportamento Reprodutivo De
    Jimena García Rodríguez Anatomia associada ao comportamento reprodutivo de Cubozoa Anatomy associated with the reproductive behavior of Cubozoa São Paulo 2015 Jimena García Rodríguez Anatomia associada ao comportamento reprodutivo de Cubozoa Anatomy associated with the reproductive behavior of Cubozoa Dissertação apresentada ao Instituto de Biociências da Universidade de São Paulo para obtenção de Título de Mestre em Ciências, na Área de Zoologia Orientador: Prof. Dr. Antonio Carlos Marques São Paulo 2015 García Rodríguez, Jimena Anatomia associada ao comportamento reprodutivo de Cubozoa 96 páginas Dissertação (Mestrado) - Instituto de Biociências da Universidade de São Paulo. Departamento de Zoologia. 1. Cubozoa; 2. Histologia; 3. Reprodução. I. Universidade de São Paulo. Instituto de Biociências. Departamento de Zoologia. Comissão Julgadora Prof(a) Dr(a) Prof(a) Dr(a) Prof. Dr. Antonio Carlos Marques A mis padres, hermana y en especial a mi abuelita “Caminante, son tus huellas el camino y nada más; Caminante, no hay camino, se hace camino al andar. Al andar se hace el camino, y al volver la vista atrás se ve la senda que nunca se ha de volver a pisar. Caminante no hay camino sino estelas en la mar” Antonio Machado, 1912 Agradecimentos Em primeiro lugar, eu gostaria de agradecer ao meu orientador Antonio Carlos Marques, Tim, pela confiança desde o primeiro dia, pela ajuda tanto pessoal como profissional durante os dois anos de mestrado, pelas discussões de cada tema tratado e estudado e pelas orientações que tornaram possível a elaboração deste trabalho. Agradeço também o apoio institucional do Instituto de Biociências e do Centro de Biologia Marinha da Universidade de São Paulo.
    [Show full text]
  • Development of Sexual Dimorphism in the Drosophila Testis
    review REVIEW Spermatogenesis 2:3, 129-136; July/August/September 2012; © 2012 Landes Bioscience Development of sexual dimorphism in the Drosophila testis Cale Whitworth, Erin Jimenez and Mark Van Doren* Department of Biology; The Johns Hopkins University; Baltimore, MD USA Keywords: Drosophila, gonad, germ cell, sexual dimorphism, testis, doublesex, DMRT, germline stem cell, stem cell niche The creation of sexual dimorphism in the gonads is essential for posterior (A/P) and dorsal/ventral (D/V) patterning systems that producing the male and female gametes required for sexual divide the mesoderm into distinct cell types (reviewed in ref. 1). reproduction. Sexual development of the gonads involves Three clusters of ≈12 SGPs each will form on either side of the both somatic cells and germ cells, which often undergo sex embryo in parasegments (PSs) 10–12 (ref. 2, Figure 1) (“paraseg- determination by different mechanisms. While many sex- specific characteristics evolve rapidly and are very different ments” are the units of segmental identity along the A/P axis). between animal species, gonad function and the formation Each mesodermal PS is divided into an anterior (“even skipped of sperm and eggs appear more similar and may be more (eve) domain”) and posterior (“sloppy paired domain”). SGPs conserved. Consistent with this, the doublesex/mab3 Related form within the eve domain while in other PSs this domain gives Transcription factors (DMRTs) are important for gonad sexual rise to the fat body.3,4 The D/V axis is also divided into distinct dimorphism in a wide range of animals, including flies, worms domains, and the SGPs in PS10–12 form within the dorso-lateral and mammals.
    [Show full text]
  • The Reproductive System
    27 The Reproductive System PowerPoint® Lecture Presentations prepared by Steven Bassett Southeast Community College Lincoln, Nebraska © 2012 Pearson Education, Inc. Introduction • The reproductive system is designed to perpetuate the species • The male produces gametes called sperm cells • The female produces gametes called ova • The joining of a sperm cell and an ovum is fertilization • Fertilization results in the formation of a zygote © 2012 Pearson Education, Inc. Anatomy of the Male Reproductive System • Overview of the Male Reproductive System • Testis • Epididymis • Ductus deferens • Ejaculatory duct • Spongy urethra (penile urethra) • Seminal gland • Prostate gland • Bulbo-urethral gland © 2012 Pearson Education, Inc. Figure 27.1 The Male Reproductive System, Part I Pubic symphysis Ureter Urinary bladder Prostatic urethra Seminal gland Membranous urethra Rectum Corpus cavernosum Prostate gland Corpus spongiosum Spongy urethra Ejaculatory duct Ductus deferens Penis Bulbo-urethral gland Epididymis Anus Testis External urethral orifice Scrotum Sigmoid colon (cut) Rectum Internal urethral orifice Rectus abdominis Prostatic urethra Urinary bladder Prostate gland Pubic symphysis Bristle within ejaculatory duct Membranous urethra Penis Spongy urethra Spongy urethra within corpus spongiosum Bulbospongiosus muscle Corpus cavernosum Ductus deferens Epididymis Scrotum Testis © 2012 Pearson Education, Inc. Anatomy of the Male Reproductive System • The Testes • Testes hang inside a pouch called the scrotum, which is on the outside of the body
    [Show full text]
  • Male Reproductive System
    MALE REPRODUCTIVE SYSTEM DR RAJARSHI ASH M.B.B.S.(CAL); D.O.(EYE) ; M.D.-PGT(2ND YEAR) DEPARTMENT OF PHYSIOLOGY CALCUTTA NATIONAL MEDICAL COLLEGE PARTS OF MALE REPRODUCTIVE SYSTEM A. Gonads – Two ovoid testes present in scrotal sac, out side the abdominal cavity B. Accessory sex organs - epididymis, vas deferens, seminal vesicles, ejaculatory ducts, prostate gland and bulbo-urethral glands C. External genitalia – penis and scrotum ANATOMY OF MALE INTERNAL GENITALIA AND ACCESSORY SEX ORGANS SEMINIFEROUS TUBULE Two principal cell types in seminiferous tubule Sertoli cell Germ cell INTERACTION BETWEEN SERTOLI CELLS AND SPERM BLOOD- TESTIS BARRIER • Blood – testis barrier protects germ cells in seminiferous tubules from harmful elements in blood. • The blood- testis barrier prevents entry of antigenic substances from the developing germ cells into circulation. • High local concentration of androgen, inositol, glutamic acid, aspartic acid can be maintained in the lumen of seminiferous tubule without difficulty. • Blood- testis barrier maintains higher osmolality of luminal content of seminiferous tubules. FUNCTIONS OF SERTOLI CELLS 1.Germ cell development 2.Phagocytosis 3.Nourishment and growth of spermatids 4.Formation of tubular fluid 5.Support spermiation 6.FSH and testosterone sensitivity 7.Endocrine functions of sertoli cells i)Inhibin ii)Activin iii)Follistatin iv)MIS v)Estrogen 8.Sertoli cell secretes ‘Androgen binding protein’(ABP) and H-Y antigen. 9.Sertoli cell contributes formation of blood testis barrier. LEYDIG CELL • Leydig cells are present near the capillaries in the interstitial space between seminiferous tubules. • They are rich in mitochondria & endoplasmic reticulum. • Leydig cells secrete testosterone,DHEA & Androstenedione. • The activity of leydig cell is different in different phases of life.
    [Show full text]
  • Morphology of the Male Reproductive Tract in the Water Scavenger Beetle Tropisternus Collaris Fabricius, 1775 (Coleoptera: Hydrophilidae)
    Revista Brasileira de Entomologia 65(2):e20210012, 2021 Morphology of the male reproductive tract in the water scavenger beetle Tropisternus collaris Fabricius, 1775 (Coleoptera: Hydrophilidae) Vinícius Albano Araújo1* , Igor Luiz Araújo Munhoz2, José Eduardo Serrão3 1Universidade Federal do Rio de Janeiro, Instituto de Biodiversidade e Sustentabilidade (NUPEM), Macaé, RJ, Brasil. 2Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil. 3Universidade Federal de Viçosa, Departamento de Biologia Geral, Viçosa, MG, Brasil. ARTICLE INFO ABSTRACT Article history: Members of the Hydrophilidae, one of the largest families of aquatic insects, are potential models for the Received 07 February 2021 biomonitoring of freshwater habitats and global climate change. In this study, we describe the morphology of Accepted 19 April 2021 the male reproductive tract in the water scavenger beetle Tropisternus collaris. The reproductive tract in sexually Available online 12 May 2021 mature males comprised a pair of testes, each with at least 30 follicles, vasa efferentia, vasa deferentia, seminal Associate Editor: Marcela Monné vesicles, two pairs of accessory glands (a bean-shaped pair and a tubular pair with a forked end), and an ejaculatory duct. Characters such as the number of testicular follicles and accessory glands, as well as their shape, origin, and type of secretion, differ between Coleoptera taxa and have potential to help elucidate reproductive strategies and Keywords: the evolutionary history of the group. Accessory glands Hydrophilid Polyphaga Reproductive system Introduction Coleoptera is the most diverse group of insects in the current fauna, The evolutionary history of Coleoptera diversity (Lawrence et al., with about 400,000 described species and still thousands of new species 1995; Lawrence, 2016) has been grounded in phylogenies with waiting to be discovered (Slipinski et al., 2011; Kundrata et al., 2019).
    [Show full text]
  • 2006 Male Anatomy and Spermatogenisis.PPT
    Male Anatomy MMaalele AAnnaatotommyy • Primary Organ – testes, genetically determined in mammals - testis releases hormones that then control the development of secondary sex characteristics 1) Secondary Organs – internal duct system • e.g., vas deferens, epididymus – external genitalia 2) Secondary Sexual Characters – e.g., antlers, coloration, facial hair Eutherian Mammal Testes • Paired and oval shaped • Shiny connective covering called the Tunica Albuginea • Divided into testicular lobules – Approximately 250 in human testis Seminiferous tubules (ST) • Each testicular lobule contains several coiled seminiferous tubules (ST) – ST site of sperm production • Each ST ~ 1.3 ft in humans • Total length of ST almost the length of a football field Testis vascularization Arterial supply Venous supply Testicular development • Develops in the abdominal cavity from the medulla of the primordial gonad Testicular location • In most animals the testes lie in the scrotum • Exceptions: – Lumbar: monotremes, elephants, hyraxes, reptiles, fishes – Inguinal canal: hedgehogs, moles, some seals – Seasonal migration: wild ungulates, most rodents Reasons for scrotal position unclear - sexual selection ?, cooling testis? Models for testicular migration • Testis is firmly attached to abdominal wall by: 1) Posterior gonad ligament (Gubernaculum) - as body grows the gubernaculum does not, thus testis is drawn downward -in females gubernaculum grows Johnson and Everitt 1.8 Hormonal control of testicular migration • Migration of testis thought to involve 2 hormones
    [Show full text]
  • Coleoptera: Curculionidae: Scolytinae)
    biology Article The Sperm Structure and Spermatogenesis of Trypophloeus klimeschi (Coleoptera: Curculionidae: Scolytinae) Jing Gao 1, Guanqun Gao 2, Jiaxing Wang 1 and Hui Chen 1,3,* 1 College of Forestry, Northwest A&F University, Yangling 712100, China; [email protected] (J.G.); [email protected] (J.W.) 2 Information Institute, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China; [email protected] 3 State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China * Correspondence: [email protected]; Tel.: +86-29-8708-2083 Simple Summary: In the mating, reproduction, and phylogenetic reconstruction of various in- sect taxa, the morphological characteristics of the male reproductive system, spermatogenesis, and sperm ultrastructure are important. We investigated these morphological characteristics of Trypophloeus klimeschi (Coleoptera: Curculionidae: Scolytinae), which is one of the most destructive pests of Populus alba var. pyramidalis (Bunge) using light microscopy, scanning electron microscopy, and transmission electron microscopy. We also compared these morphological characteristics with that found in other Curculionidae. Abstract: The male reproductive system, sperm structure, and spermatogenesis of Trypophloeus klimeschi (Coleoptera: Curculionidae: Scolytinae), which is one of the most destructive pests of Populus alba var. Citation: Gao, J.; Gao, G.; Wang, J.; pyramidalis (Bunge), were investigated using light microscopy, scanning electron microscopy, and Chen, H. The Sperm Structure and transmission electron microscopy. The male reproductive system of T. klimeschi is composed of testes, Spermatogenesis of Trypophloeus seminal vesicles, tubular accessory glands, multilobulated accessory glands, vasa deferentia, and a klimeschi (Coleoptera: Curculionidae: Scolytinae).
    [Show full text]