Distribution and Erosion of the Paleozoic Tectonic Unconformities In

Total Page:16

File Type:pdf, Size:1020Kb

Distribution and Erosion of the Paleozoic Tectonic Unconformities In Journal of Asian Earth Sciences 46 (2012) 1–19 Contents lists available at SciVerse ScienceDirect Journal of Asian Earth Sciences journal homepage: www.elsevier.com/locate/jseaes Distribution and erosion of the Paleozoic tectonic unconformities in the Tarim Basin, Northwest China: Significance for the evolution of paleo-uplifts and tectonic geography during deformation ⇑ Changsong Lin a, , Haijun Yang b, Jingyan Liu c, Zhifeng Rui c, Zhenzhong Cai b, Yongfeng Zhu b a School of Ocean Sciences and Resources, China University of Geosciences, Beijing 100083, China b Petroleum Exploration & Production Institute, PetroChina Company Limited, Beijing 100083, China c School of Energy Resources, China University of Geosciences, Beijing 100083, China article info abstract Article history: The distribution and erosional features of the Paleozoic major tectonic unconformities in the Tarim Basin, Received 4 March 2011 and their genetic relation to the development of paleo-uplifts as well as the evolution of geodynamic set- Received in revised form 20 September tings, are documented in this paper based on the integral analysis of seismic, drilling, and outcrop data. 2011 During the Paleozoic, the Tarim Basin underwent three major tectonic deformation stages, which resulted Accepted 11 October 2011 in three angular unconformities and in significant changes in basin geomorphology and paleogeography. Available online 23 November 2011 The tectonic deformation at the end of the Middle Ordovician was characterized by development of the southern central paleo-uplift, the northern depression, and the southeastern Tangguzibasi depression in Keywords: the basin. The thickest denudation belts of the unconformity (T ) are distributed mainly along the Unconformities g5-2 Paleo-uplifts thrust structural highs. A stronger deformation event took place at the end of the Late Ordovician and Tectonic setting formed a huge uplift along the southwestern and southeastern basin margins and the western part of Tectonogeography the Tabei uplift along the northern basin margin, producing an extensive angular unconformity (Tg5) with Paleozoic Tarim Basin maximum erosion thickness of 1500–2000 m. This tectonic event resulted in an abrupt change in overall geography of the basin, from a deepwater marine environment at the late stages of the Late Ordovician to a littoral and neritic basin in the Early Silurian. The deformation that occurred at the end of the Middle Devonian was the strongest in the Paleozoic. It generated the most widespread angular unconformity (Tg3) within the basin and led to extensive erosion, with maximum denudation thickness of 3000– 5000 m in the northern and northeastern parts of the basin. The topography of the basin during the late Devonian was characterized by a high in the northeast and a low in the southwest, forming an embay- ment basin opening to the southwest during the Early Devonian to Carboniferous. The transgression in general from southwest to northeast deposited extensive coastal sandstones onlapping the erosion-lev- eled unconformity (Tg3). Comparative analysis of uplifting in the basin with the regional tectonic setting shows that deformation that took place during the three periods was related to the evolution of the paleo-oceanic plates and the orogenesis around the basin. The closure of the North Kunlun Ocean and subsequent collision is suggested to be the main cause for the development of the central paleo-uplift at the end of the Middle Ordovician and the strong uplift and erosion of the southwestern and southeast- ern basin margin at the end of the Late Ordovician. The large-scale uplift and denudation of the northern part of the basin, including the Tabei–Kongquehe uplift belt, as well as the folding and hinging of the Manjiaer depression, was coeval with, and more related to, the subduction and collision of the South Tianshan orogenic belt and the Altyn trench-arc-basin system at the end of the Middle Devonian. Ó 2011 Elsevier Ltd. All rights reserved. 1. Introduction development of a series of large-scale paleo-uplifts and tectonic unconformities. The deformation stages indicated by extensive The Tarim Basin, located in western China, is a large superim- angular unconformities resulted in significant changes in tectonic posed basin that underwent multiple phases of tectonic deforma- geomorphology and geography of the basin. An investigation of tion from the Sinian to Cenozoic (Li et al., 1996; Jia, 1997). The the development of the unconformities and paleo-uplifts is impor- basin architecture is complicated, and is characterized by the tant in unraveling the geodynamic setting of the basin’s evolution. Petroleum exploration in the basin has shown that most of the ⇑ Corresponding author. hydrocarbon accumulation was closely related to development of E-mail address: [email protected] (C. Lin). the paleo-uplifts and distribution of the unconformities. Thus, 1367-9120/$ - see front matter Ó 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.jseaes.2011.10.004 2 C. Lin et al. / Journal of Asian Earth Sciences 46 (2012) 1–19 research on the evolution of paleo-uplifts and the tectonogeogra- et al., 2009), but in this paper we aim to investigate the evolution phy of the Tarim Basin has greatly intensified over the past two of the Paleozoic tectonogeography of the basin during critical decades (Xu et al., 2005; Li et al., 1996; Jia, 2002; Jin and Wang, deformation stages. 2004; Lin et al., 2004; Pang et al., 2006; Kang, 2007; Liu et al., The study in this paper has shown that the contact feature and 2008; Lin et al., 2008, 2009). erosion distribution of a tectonic unconformity can provide very The development of unconformities, particularly their erosion useful information for reconstruction of paleo-uplifts and tectono- and origin within the basin’s dynamic setting, has been one of geography, and that the formation of paleo-uplifts and angular the imperative and long-term controversies in basin analysis. The unconformities within the basin was closely related to the coeval formation of stratigraphic unconformities can be attributed to tec- subduction of the surrounding paleo-ocean and the collision of tonics, eustasy, or climatic change (Huuse and Clausen, 2001; orogenic belts. We address these issues by integrating the analysis Dickinson et al., 2002; Jaimes and de De Freitas, 2006; Otonicar, of seismic profiles, well logs and outcrop data, with a focus on the 2007; Baranoski et al., 2009). However, angular unconformities comprehensive interpretation and correlation of long seismic pro- with underlying deformed strata are usually generated by tectonic files across the basin. This study may serve as a foundation for fur- events or uplifting (e.g., Coakley et al., 1991; Paola and Domenico, ther research on the dynamic evolution of the basin and the 1995; Mindszenty et al., 1995; Yu and Chou, 2001; Rafini et al., prediction of reservoir distribution within it. 2002; Li et al., 2004; Ghiglione and Ramos, 2005). In the Tarim Ba- sin, many previous works have identified a number of major angu- lar unconformities with tectonic origin within the Paleozoic (e.g., 2. Geologic setting and tectonostratigraphy He, 1995; Zhang et al., 1996,; Jia, 1997; Chen et al., 2007; Lin et al., 2008; Liu et al., 2008 2007). Erosional amounts of some ma- The Tarim Basin lies between the Chinese Tianshan Mountains jor unconformities in parts of the basin were estimated through to the north and the western Kunlun Mountains to the south, strata correlation or quantitative modeling (Zhang et al., 2000,; and is confined by the Altyn Fault Belt to the southeast. The basin Zhou et al., 2006; Wang et al., 2010, 2007). In particular, there have is diamond shaped in plane view, and covers an area of about been many investigations concerning the significance of the 560,000 km2, with an east–west length of more than 1000 km unconformities in petroleum accumulation in the uplift belts in and a south–north length of over 800 km. The Tarim basin can be the basin (e.g., He, 2002; Deng et al., 2008; Xiao et al., 2009). How- tectonically divided into several units, including the Kuqa depres- ever, most of these studies focused on parts of the basin based on sion, the Tabei uplift belt, the North depression belt (the Manjiaer local data and less attention has been paid to the variation and dis- and the Awati depressions), the Central uplift belt, the Southeast- tribution of the unconformities and their erosion in basin scale. ern uplift belt, and the Taxinan marginal depression (Fig. 1, modi- Generally the formation of the angular unconformities is regarded fied from Jia (1997)). as the product of tectonism, but their genetic relation to the devel- The basement of the Tarim Basin consists of Pre-Sinian conti- opment of uplifts and the evolution of geodynamic setting of the nental crust (Jia, 2002). The continent was formed in a subduction basin, particularly the evolution of the surrounding paleo-oceanic setting during the Early Neoproterozoic (Nakajima et al., 1990; plates or orogenesis have been less studied. There are also many Wang et al., 1990; Xiao et al., 1992; Che et al., 1994; Chen et al., investigations concerning the reconstruction of the paleogeogra- 2000), which is suggested to be the result of the collision between phy of the Tarim Basin (Feng et al., 2006; Wang et al., 2006; Zhao the North and South Tarim Blocks (Wu et al., 2010). The breakup of Fig. 1. Schematic tectonic map of the Tarim Basin, showing the distribution of tectonic units within the basin (modified after Lin et al. (2009)). C. Lin et al. / Journal of Asian Earth Sciences 46 (2012) 1–19 3 the continent might have taken place in the Nanhua period during rienced a compressive inversion during the Late Paleozoic. The the separation from the Rodinia supercontinent (Gao et al., 2009; Tadong uplift that flanks the present northeastern margin of the Wu et al., 2010).
Recommended publications
  • Secondary Carbonate Accumulations in Soils of the Baikal Region: Formation Processes and Significance for Paleosoil Investigations
    Вестник Томского государственного университета. Биология. 2017. № 39. С. 6–28 АГРОХИМИЯ И ПОЧВОВЕДЕНИЕ УДК 631.48 (571.5) doi: 10.17223/19988591/39/1 В.А. Голубцов Институт географии им. В.Б. Сочавы СО РАН, г. Иркутск, Россия Карбонатные новообразования в почвах Байкальского региона: процессы формирования и значение для палеопочвенных исследований Работа выполнена при поддержке РФФИ (проект № 17-04-00092). На данный момент вопросы, касающиеся строения, хронологии и специфики формирования педогенных карбонатов в резкоконтинентальных областях юга Восточной Сибири, остаются практически незатронутыми. Выполнено обобщение сформировавшихся за последние годы представлений о механизмах формирования карбонатных новообразований почв, а также их связи с условиями среды и процессами почвообразования. Оценены пути поступления карбонатов и основные факторы их аккумуляции в профиле почв. Описаны особенности вещественного и изотопного состава карбонатных новообразований в почвах, формирующихся в различных климатических условиях. На основании собственных исследований приводятся данные о разнообразии карбонатных аккумуляций в почвах Байкальского региона, их вещественном составе и роли в качестве палеогеографических индикаторов. Детально рассмотрены следующие формы карбонатных новообразований: ризолиты, игольчатый кальцит, гипокутаны, белоглазка, нодули, кутаны, лессовые куколки. Ключевые слова: карбонаты; педогенные карбонатные новообразования; стабильные изотопы; почвы; палеореконструкции. Введение Первостепенное значение при изучении эволюции почв имеет
    [Show full text]
  • Lithium Enrichment in the No. 21 Coal of the Hebi No. 6 Mine, Anhe Coalfield, Henan Province, China
    minerals Article Lithium Enrichment in the No. 21 Coal of the Hebi No. 6 Mine, Anhe Coalfield, Henan Province, China Yingchun Wei 1,* , Wenbo He 1, Guohong Qin 2, Maohong Fan 3,4 and Daiyong Cao 1 1 State Key Laboratory of Coal Resources and Safe Mining, College of Geoscience and Surveying Engineering, China University of Mining and Technology, Beijing 100083, China; [email protected] (W.H.); [email protected] (D.C.) 2 College of Resources and Environmental Science, Hebei Normal University, Shijiazhuang 050024, China; [email protected] 3 Departments of Chemical and Petroleum Engineering, and School of Energy Resources, University of Wyoming, Laramie, WY 82071, USA; [email protected] 4 School of Civil and Environmental Engineering, Georgia Institute of Technology, Mason Building, 790 Atlantic Drive, Atlanta, GA 30332, USA * Correspondence: [email protected] Received: 18 May 2020; Accepted: 3 June 2020; Published: 5 June 2020 Abstract: Lithium (Li) is an important strategic resource, and with the increasing demand for Li, there are some limitations in the exploitation and utilization of conventional deposits such as the pegmatite-type and brine-type Li deposits. Therefore, it has become imperative to search for Li from other sources. Li in coal is thought to be one of the candidates. In this study, the petrology, mineralogy, and geochemistry of No. 21 coal from the Hebi No. 6 mine, Anhe Coalfield, China, was reported, with an emphasis on the distribution, modes of occurrence, and origin of Li. The results show that Li is enriched in the No. 21 coal, and its concentration coefficient (CC) value is 6.6 on average in comparison with common world coals.
    [Show full text]
  • Tectonostratigraphic Evolution of the North China Craton and the Qilian
    RESEARCH ARTICLE Punctuated Orogeny During the Assembly of Asia: 10.1029/2020TC006503 Tectonostratigraphic Evolution of the North China Key Points: Craton and the Qilian Shan From the Paleoproterozoic to • The western North China craton records at least three orogenies from Early Paleozoic the Paleoproterozoic to the early Paleozoic Chen Wu1 , Andrew V. Zuza2 , An Yin3 , Xuanhua Chen4, Peter J. Haproff5 , Jie Li6, • Mesoproterozoic strata in North Bing Li2,4 , and Lin Ding1,7 China, Tarim, and the Qilian Shan are similar, suggesting continuity 1Key Laboratory of Continental Collision and Plateau Uplift, Institute of Tibetan Plateau Research, and Center for among these continents 2 • Gondwana was not affixed to the Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing, China, Nevada Bureau of Mines 3 western margin of North China in and Geology, University of Nevada, Reno, NV, USA, Department of Earth, Planetary and Space Sciences, University of the Neoproterozoic-early Paleozoic California, Los Angeles, CA, USA, 4Chinese Academy of Geological Sciences, Beijing, China, 5Department of Earth and Ocean Sciences, University of North Carolina, Wilmington, NC, USA, 6School of Earth Sciences and Resources, China 7 Supporting Information: University of Geosciences (Beijing), Beijing, China, University of Chinese Academy of Sciences, Beijing, China • Supporting Information S1 Abstract The Proterozoic-Phanerozoic evolution of the Tarim and North China cratons is integral to Correspondence to: the construction of the Eurasian continent. Throughout the Paleozoic, these continents were bound by C. Wu and A. V. Zuza, the Paleo-Asian and Tethyan Oceans to the north and south, respectively, and, thus, their paleogeography [email protected]; [email protected]; is critical to reconstructions of the oceanic domains.
    [Show full text]
  • This Is a Digital Document from the Collections of the Wyoming Water Resources Data System (WRDS) Library
    This is a digital document from the collections of the Wyoming Water Resources Data System (WRDS) Library. For additional information about this document and the document conversion process, please contact WRDS at [email protected] and include the phrase “Digital Documents” in your subject heading. To view other documents please visit the WRDS Library online at: http://library.wrds.uwyo.edu Mailing Address: Water Resources Data System University of Wyoming, Dept 3943 1000 E University Avenue Laramie, WY 82071 Physical Address: Wyoming Hall, Room 249 University of Wyoming Laramie, WY 82071 Phone: (307) 766-6651 Fax: (307) 766-3785 Funding for WRDS and the creation of this electronic document was provided by the Wyoming Water Development Commission (http://wwdc.state.wy.us) VOLUME 11-A OCCURRENCE AND CHARACTERISTICS OF GROUND WATER IN THE BIGHORN BASIN, WYOMING Robert Libra, Dale Doremus , Craig Goodwin Project Manager Craig Eisen Water Resources Research Institute University of Wyoming Report to U.S. Environmental Protection Agency Contract Number G 008269-791 Project Officer Paul Osborne June, 1981 INTRODUCTION This report is the second of a series of hydrogeologic basin reports that define the occurrence and chemical quality of ground water within Wyoming. Information presented in this report has been obtained from several sources including available U.S. Geological Survey publications, the Wyoming State Engineer's Office, the Wyoming Geological Survey, and the Wyoming Oil and Gas Conservation Commission. The purpose of this report is to provide background information for implementation of the Underground Injection Control Program (UIC). The UIC program, authorized by the Safe Drinking Water Act (P.L.
    [Show full text]
  • South Fork and Heart Mountain Faults: Examples of Catastrophic, Gravity-Driven “Overthrusts,” Northwest Wyoming, Usa
    Proceedings of the Seventh International Conference on Creationism. Pittsburgh, PA: Creation Science Fellowship SOUTH FORK AND HEART MOUNTAIN FAULTS: EXAMPLES OF CATASTROPHIC, GRAVITY-DRIVEN “OVERTHRUSTS,” NORTHWEST WYOMING, USA Timothy L. Clarey, PhD, MS, MS, BS, 2878 Oaklawn Park, Saginaw, MI, 48603, KEYWORDS: break-away fault, denudation, detachment, gravity slide, gypsum dehydration, overthrust ABSTRACT Overthrust faults have been a source of debate and discussion in creation literature for many years. Their interpretation demands a better explanation in a Flood context. Two fault systems are examined as analogies for an “overthrust” model. The South Fork Fault System (SFFS) and the Heart Mountain Fault System (HMFS) exhibit folding and faulting consistent with thin- skinned overthrust systems. Both systems moved catastrophically under the influence of gravity. The South Fork Fault system (SFFS, southwest of Cody, Wyoming, exhibits tear faults, tight folds, a triangle zone, and flat-ramp geometries along the leading edge of the system. Transport was southeast, down a gentle slope during early to middle Eocene time (Late Flood), approximately coeval with the Heart Mountain Fault system (HMFS). The SFFS detaches in lower Jurassic strata, rich in gypsum-anhydrite, overlain by about 1250 m of Jurassic through Tertiary sedimentary and volcanic rocks. Movement between 5 km and 10 km to the southeast spread the allochthonous mass over an area exceeding 1400 km2. A break-away fault and an area of tectonic denudation mark the upper northwest part of the system. The exposed denuded surface was buried by additional Eocene-age volcanic rocks soon after slip. Catastrophic rear- loading during emplacement of HMFS may have initiated subsequent movement on the SFFS, with dehydration processes trapping water in a near frictionless anhydrite-water slurry.
    [Show full text]
  • South-East Asia Second Edition CHARLES S
    Geological Evolution of South-East Asia Second Edition CHARLES S. HUTCHISON Geological Society of Malaysia 2007 Geological Evolution of South-east Asia Second edition CHARLES S. HUTCHISON Professor emeritus, Department of geology University of Malaya Geological Society of Malaysia 2007 Geological Society of Malaysia Department of Geology University of Malaya 50603 Kuala Lumpur Malaysia All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior permission of the Geological Society of Malaysia ©Charles S. Hutchison 1989 First published by Oxford University Press 1989 This edition published with the permission of Oxford University Press 1996 ISBN 978-983-99102-5-4 Printed in Malaysia by Art Printing Works Sdn. Bhd. This book is dedicated to the former professors at the University of Malaya. It is my privilege to have collabo­ rated with Professors C. S. Pichamuthu, T. H. F. Klompe, N. S. Haile, K. F. G. Hosking and P. H. Stauffer. Their teaching and publications laid the foundations for our present understanding of the geology of this complex region. I also salute D. ]. Gobbett for having the foresight to establish the Geological Society of Malaysia and Professor Robert Hall for his ongoing fascination with this region. Preface to this edition The original edition of this book was published by known throughout the region of South-east Asia. Oxford University Press in 1989 as number 13 of the Unfortunately the stock has become depleted in 2007. Oxford monographs on geology and geophysics.
    [Show full text]
  • A Preliminary Assessment of Paleontological Resources at Bighorn Canyon National Recreation Area, Montana and Wyoming
    A PRELIMINARY ASSESSMENT OF PALEONTOLOGICAL RESOURCES AT BIGHORN CANYON NATIONAL RECREATION AREA, MONTANA AND WYOMING Vincent L. Santucci1, David Hays2, James Staebler2 And Michael Milstein3 1National Park Service, P.O. Box 592, Kemmerer, WY 83101 2Bighorn Canyon National Recreation Area, P.O. Box 7458, Fort Smith, MT 59035 3P.O. Box 821, Cody, WY 82414 ____________________ ABSTRACT - Paleontological resources occur throughout the Paleozoic and Mesozoic formations exposed in Bighorn Canyon National Recreation Area. Isolated research on specific geologic units within Bighorn Canyon has yielded data on a wide diversity of fossil forms. A comprehensive paleonotological survey has not been previously undertaken at Bighorn Canyon. Preliminary paleontologic resource data is presented in this report as an effort to establish baseline data. ____________________ INTRODUCTION ighorn Canyon National Recreation Area (BICA) consists of approximately 120,000 acres within the Bighorn Mountains of north-central Wyoming and south-central Montana B (Figure 1). The northwestern trending Bighorn Mountains consist of over 9,000 feet of sedimentary rock. The predominantly marine and near shore sedimentary units range from the Cambrian through the Lower Cretaceous. Many of these formations are extremely fossiliferous. The Bighorn Mountains were uplifted during the Laramide Orogeny beginning approximately 70 million years ago. Large volumes of sediments, rich in early Tertiary paleontological resources, were deposited in the adjoining basins. This report provides a preliminary assessment of paleontological resources identified at Bighorn Canyon National Recreation Area. STRATIGRAPHY The stratigraphic record at Bighorn Canyon National Recreation Area extends from the Cambrian through the Cretaceous (Figure 2). The only time period during this interval that is not represented is the Silurian.
    [Show full text]
  • Maps Showing Thermal Maturity of Upper Cretaceous Marine Shales in the Bighorn Basin, Wyoming and Montana
    Maps Showing Thermal Maturity of Upper Cretaceous Marine Shales in the Bighorn Basin, Wyoming and Montana Scientific Investigations Map 3285 U.S. Department of the Interior U.S. Geological Survey Cover photograph: Upper part of Cody Shale near Greybull, Wyoming, east flank of the Bighorn Basin. Photograph by R.C. Johnson, 1994. Maps Showing Thermal Maturity of Upper Cretaceous Marine Shales in the Bighorn Basin, Wyoming and Montana By Thomas M. Finn and Mark J. Pawlewicz Scientific Investigations Map 3285 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior SALLY JEWELL, Secretary U.S. Geological Survey Suzette M. Kimball, Acting Director U.S. Geological Survey, Reston, Virginia: 2014 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment, visit http://www.usgs.gov or call 1–888–ASK–USGS. For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod To order this and other USGS information products, visit http://store.usgs.gov Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this information product, for the most part, is in the public domain, it also may contain copyrighted materials as noted in the text. Permission to reproduce copyrighted items must be secured from the copyright owner. Suggested citation: Finn, T.M., and Pawlewicz, M.J., 2014, Maps showing thermal maturity of Upper Cretaceous marine shales in the Bighorn Basin, Wyoming and Montana: U.S.
    [Show full text]
  • A Perspective on Chinese Petroleum Geology by Charles D. Masters, Oswald W. Girard, Jr., and Maurice J. Terman Presented At
    UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY A perspective on Chinese petroleum geology by Charles D. Masters, Oswald W. Girard, Jr., and Maurice J. Terman Presented at the 20th^Annual Institute on Petroleum Exploration and Economics March 5-6, 1980 Dallas, Texas Open-File Report 80-609 1980 This report has not been edited or reviewed for conformity with U.S. Geological Survey standards or nomenclature. CONTENTS Page Introduction ......................... 1 General geology and petroleum exploration history ...... 6 Eastern area ...................... 8 Western area ...................... 10 Petroleum exploration history .............. 11 Characteristics of nonmarine lacustrine basins ........ 14 Some petroleum-producing areas of China ........... 15 Bohai area ....................... 15 Northeastern China ................... 17 Central China ...................... 18 South China ....................... 19 Offshore China ..................... 19 Reserves and resources .................... 20 ILLUSTRATIONS Page Figure 1. Map showing sedimentary basins of China and Mongolia .................... 3 2. Tectonic map of China and Mongolia ........ 7 3. Diagrammatic cross sections through basins in eastern China .................. 9 4. Diagrammatic cross sections through basins in western China .................. 12 5. Diagram of source-rock distribution in the Sung- Liao Basin illustrating the geochemical technique used in Chinese oil exploration ......... 16 Introduction This paper represents the first attempt on the part of the
    [Show full text]
  • Magnetostratigraphy and Tectonosedimentology Qilian Shan
    Downloaded from http://sp.lyellcollection.org/ by guest on November 19, 2013 Geological Society, London, Special Publications Oligocene slow and Miocene−Quaternary rapid deformation and uplift of the Yumu Shan and North Qilian Shan: evidence from high-resolution magnetostratigraphy and tectonosedimentology Xiaomin Fang, Dongliang Liu, Chunhui Song, Shuang Dai and Qingquan Meng Geological Society, London, Special Publications 2013, v.373; p149-171. doi: 10.1144/SP373.5 Email alerting click here to receive free e-mail alerts when service new articles cite this article Permission click here to seek permission to re-use all or request part of this article Subscribe click here to subscribe to Geological Society, London, Special Publications or the Lyell Collection Notes © The Geological Society of London 2013 Downloaded from http://sp.lyellcollection.org/ by guest on November 19, 2013 Oligocene slow and Miocene–Quaternary rapid deformation and uplift of the Yumu Shan and North Qilian Shan: evidence from high-resolution magnetostratigraphy and tectonosedimentology XIAOMIN FANG1,2*, DONGLIANG LIU1,3, CHUNHUI SONG2, SHUANG DAI2 & QINGQUAN MENG2 1Key Laboratory of Continental Collision and Plateau Uplift & Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Shuangqing Road 18, Beijing 100085, China 2Key Laboratory of Western China’s Environmental Systems (Ministry of Education of China) and College of Resources and Environment, Lanzhou University, Gansu 730000, China 3Key Laboratory of Continental Dynamics of the Ministry of Land and Resources, Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China *Corresponding author (e-mail: [email protected]) Abstract: Most existing tectonic models suggest Pliocene–Quaternary deformation and uplift of the NE Tibetan Plateau in response to the collision of India with Asia.
    [Show full text]
  • Trails and Aboriginal Land Use in the Northern Bighorn Mountains, Wyoming
    University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 1992 Trails and Aboriginal land use in the northern Bighorn Mountains, Wyoming Steve Platt The University of Montana Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Platt, Steve, "Trails and Aboriginal land use in the northern Bighorn Mountains, Wyoming" (1992). Graduate Student Theses, Dissertations, & Professional Papers. 3933. https://scholarworks.umt.edu/etd/3933 This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. Maureen and Mike MANSFIELD LIBRARY Copying allowed as provided under provisions of the Fair Use Section of the U.S. COPYRIGHT LAW, 1976. Any copying for commercial purposes or financial giain may be undertaken only with the author's written consent. MontanaUniversity of TRAILS AND ABORIGINAL LAND USE IN THE NORTHERN BIGHORN MOUNTAINS, WYOMING By Steve Piatt B.A. University of Vermont, 1987 Presented in partial fulfillment of the requirements for the degree of Master of Arts University of Montana 19-92 Approved by 4— Chair, Board of Examiners Death, Graduate £>c3Tooi 7 is. rtqz Date UMI Number: EP36285 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted.
    [Show full text]
  • Geology of the Chaidamu Basin, Qinghai Province, Northwest China
    UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY Geology of the Chaidamu Basin, Qinghai Province, Northwest China By K. Y. Lee Open-File Report 84-413 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards and stratigraphic nomenclature, 1984 CONTENTS Page Abstract 1 Introduction 2 General statement 2 Regional setting 2 Purpose, scope, and method of the report 2 S trat igraphy 8 Pre-Triassic basement 8 Precambrian 8 Lower Paleozoic 10 Upper Paleozoic 10 Mesozoic 11 Triassic 11 Jurassic 11 Cretaceous 14 Cenozoic 14 Tertiary 14 Quaternary 18 Geotectonics and evolution of the basin 21 Energy mineral deposits 24 Petroleum 24 Source rocks 24 Reservoir rocks 25 Coal 3 5 Summary 37 References Cited 38 Appendix ILLUSTRATIONS Figure 1. Index map of China showing the location of Chaidamu basin 3 2. Generalized map showing depth fractures and tectonic domains of China 4 3. Generalized tectonic map of China 5 4. Geologic map of the Chaidamu basin, Qinghai Province, Northwest China 7 5. Isopachs of the Mesozoic deposits in the Chaidamu basin - . ___ ___ 12 6. Isopachs of the Oligocene Xiaganchaigou Formation in the Chaidamu basin 15 6a. Isopachs of the Oligocene-Miocene and source rock distribution in the Chaidamu basin 16 7. Isopachs of the Pliocene strata and source rock distribution in the Chaidamu basin 19 8. Isopachs of the Quaternary strata and distribution of the gas source rocks in the Chaidamu basin 20 ILLUSTRATIONS (continued) Page Figure 9. Sketch map of the Chaidamu basin showing principal structural elements, cross-section (B-B f ), and development stages (figs.
    [Show full text]