Changes in the Arctic: Background and Issues for Congress

Total Page:16

File Type:pdf, Size:1020Kb

Changes in the Arctic: Background and Issues for Congress Changes in the Arctic: Background and Issues for Congress Updated September 23, 2021 Congressional Research Service https://crsreports.congress.gov R41153 Changes in the Arctic: Background and Issues for Congress Summary The diminishment of Arctic sea ice has led to increased human activities in the Arctic, and has heightened interest in, and concerns about, the region’s future. The United States, by virtue of Alaska, is an Arctic country and has substantial interests in the region. The seven other Arctic states are Canada, Iceland, Norway, Sweden, Finland, Denmark (by virtue of Greenland), and Russia. The Arctic Research and Policy Act (ARPA) of 1984 (Title I of P.L. 98-373 of July 31, 1984) “provide[s] for a comprehensive national policy dealing with national research needs and objectives in the Arctic.” The National Science Foundation (NSF) is the lead federal agency for implementing Arctic research policy. The Arctic Council, created in 1996, is the leading international forum for addressing issues relating to the Arctic. The United Nations Convention on the Law of the Sea (UNCLOS) sets forth a comprehensive regime of law and order in the world’s oceans, including the Arctic Ocean. The United States is not a party to UNCLOS. Record low extents of Arctic sea ice over the past decade have focused scientific and policy attention on links to global climate change and projected ice-free seasons in the Arctic within decades. These changes have potential consequences for weather in the United States, access to mineral and biological resources in the Arctic, the economies and cultures of peoples in the region, and national security. The geopolitical environment for the Arctic has been substantially affected by the renewal of great power competition. Although there continues to be significant international cooperation on Arctic issues, the Arctic is increasingly viewed as an arena for geopolitical competition among the United States, Russia, and China. The Department of Defense (DOD) and the Coast Guard are devoting increased attention to the Arctic in their planning and operations. Whether DOD and the Coast Guard are devoting sufficient resources to the Arctic and taking sufficient actions for defending U.S. interests in the region has emerged as a topic of congressional oversight. The Coast Guard has two operational polar icebreakers and has received funding for the procurement of two of at least three planned new polar icebreakers. The diminishment of Arctic ice could lead in coming years to increased commercial shipping on two trans-Arctic sea routes—the Northern Sea Route close to Russia, and the Northwest Passage close to Alaska and through the Canadian archipelago—though the rate of increase in the use of these routes might not be as great as sometimes anticipated in press accounts. International guidelines for ships operating in Arctic waters have been recently updated. Changes to the Arctic brought about by warming temperatures will likely allow more exploration for oil, gas, and minerals. Warming that causes permafrost to melt could pose challenges to onshore exploration activities. Increased oil and gas exploration and tourism (cruise ships) in the Arctic increase the risk of pollution in the region. Cleaning up oil spills in ice-covered waters will be more difficult than in other areas, primarily because effective strategies for cleaning up oil spills in ice-covered waters have yet to be developed. Large commercial fisheries exist in the Arctic. The United States is working with other countries regarding the management of Arctic fish stocks. Changes in the Arctic could affect threatened and endangered species, and could result in migration of fish stocks to new waters. Under the Endangered Species Act, the polar bear was listed as threatened on May 15, 2008. Arctic climate change is also expected to affect the economies, health, and cultures of Arctic indigenous peoples. Congressional Research Service Changes in the Arctic: Background and Issues for Congress Contents Introduction ..................................................................................................................................... 1 Background ..................................................................................................................................... 1 Definitions of Arctic .................................................................................................................. 1 Arctic Circle Definition ...................................................................................................... 1 Definition in Arctic Research and Policy Act (ARPA) of 1984 .......................................... 2 Other Definitions ................................................................................................................ 2 Population of Arctic .................................................................................................................. 3 Eight Arctic States, Including Five Arctic Coastal States ......................................................... 5 U.S. Identity as an Arctic Nation............................................................................................... 5 U.S. Arctic Research ................................................................................................................. 6 Arctic Research and Policy Act (ARPA) of 1984, As Amended ......................................... 6 FY2021 NSF Budget Request for Arctic Research ............................................................. 6 Major U.S. Policy Documents Relating to Arctic ..................................................................... 7 Overview ............................................................................................................................. 7 Specific Documents ............................................................................................................ 7 U.S. Coordinator for Arctic Region .......................................................................................... 9 Arctic Council ........................................................................................................................... 9 Arctic and U.N. Convention on Law of the Sea (UNCLOS) .................................................. 10 House and Senate Arctic Member Organizations ..................................................................... 11 Issues for Congress ........................................................................................................................ 12 Climate Change and Loss of Arctic Sea Ice ............................................................................ 12 Geopolitical Environment ....................................................................................................... 15 Renewed Great Power Competition .................................................................................. 15 Arctic Governance ............................................................................................................ 18 Relative Priority of Arctic in U.S. Policymaking .............................................................. 20 U.S., Canadian, and Nordic Relations with Russia in the Arctic ...................................... 21 NATO and European Union in the Arctic ......................................................................... 25 China in the Arctic ............................................................................................................ 28 Extended Continental Shelf Submissions, Territorial Disputes, Sovereignty Issues ........ 37 U.S. Military Forces and Operations ....................................................................................... 37 Overview ........................................................................................................................... 37 Navy and Coast Guard ...................................................................................................... 47 Polar Icebreaking .................................................................................................................... 49 Polar Icebreaker Operations and Current Polar Icebreaker Fleet ...................................... 49 Polar Security Cutter (PSC) Program ............................................................................... 50 Search and Rescue (SAR) ....................................................................................................... 51 Overview ........................................................................................................................... 51 May 2011 Arctic Council Agreement on Arctic SAR ....................................................... 53 Commercial Sea Transportation .............................................................................................. 55 Background ....................................................................................................................... 55 Destination Traffic, Not Trans-Arctic Traffic ................................................................... 56 Unpredictable Ice Conditions Hinder Trans-Arctic Shipping ........................................... 57 Basic Navigation Infrastructure Is Lacking ...................................................................... 58 Regulation of Arctic Shipping .......................................................................................... 59 New Arctic Polar Code ....................................................................................................
Recommended publications
  • Recent Declines in Warming and Vegetation Greening Trends Over Pan-Arctic Tundra
    Remote Sens. 2013, 5, 4229-4254; doi:10.3390/rs5094229 OPEN ACCESS Remote Sensing ISSN 2072-4292 www.mdpi.com/journal/remotesensing Article Recent Declines in Warming and Vegetation Greening Trends over Pan-Arctic Tundra Uma S. Bhatt 1,*, Donald A. Walker 2, Martha K. Raynolds 2, Peter A. Bieniek 1,3, Howard E. Epstein 4, Josefino C. Comiso 5, Jorge E. Pinzon 6, Compton J. Tucker 6 and Igor V. Polyakov 3 1 Geophysical Institute, Department of Atmospheric Sciences, College of Natural Science and Mathematics, University of Alaska Fairbanks, 903 Koyukuk Dr., Fairbanks, AK 99775, USA; E-Mail: [email protected] 2 Institute of Arctic Biology, Department of Biology and Wildlife, College of Natural Science and Mathematics, University of Alaska, Fairbanks, P.O. Box 757000, Fairbanks, AK 99775, USA; E-Mails: [email protected] (D.A.W.); [email protected] (M.K.R.) 3 International Arctic Research Center, Department of Atmospheric Sciences, College of Natural Science and Mathematics, 930 Koyukuk Dr., Fairbanks, AK 99775, USA; E-Mail: [email protected] 4 Department of Environmental Sciences, University of Virginia, 291 McCormick Rd., Charlottesville, VA 22904, USA; E-Mail: [email protected] 5 Cryospheric Sciences Branch, NASA Goddard Space Flight Center, Code 614.1, Greenbelt, MD 20771, USA; E-Mail: [email protected] 6 Biospheric Science Branch, NASA Goddard Space Flight Center, Code 614.1, Greenbelt, MD 20771, USA; E-Mails: [email protected] (J.E.P.); [email protected] (C.J.T.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-907-474-2662; Fax: +1-907-474-2473.
    [Show full text]
  • AMAP Update on Selected Climate Issues of Concern: Observations, Short-Lived Climate Forcers, Arctic Carbon Cycle, and Predictive Capability
    DRAFT: FOR RESTRICTED CIRCULATION FOR REVIEW PURPOSES ONLY. DO NO CITE, COPY OR DISTRIBUTE Version approved by AMAP WG, 14 January 2009 AMAP Update on Selected Climate Issues of Concern: Observations, Short-lived Climate Forcers, Arctic Carbon Cycle, and Predictive Capability EXECUTIVE SUMMARY C1. The Arctic Climate Impact Assessment and the Intergovernmental Panel on Climate Change have established the importance of climate change in the Arctic both regionally and globally. Following those reports, emphasis has been placed on continued observations, a new assessment of the Arctic carbon cycle, the role of short lived climate forcers in the Arctic, and the need for improved predictive capacity at the regional level in the Arctic. C2. The Arctic continues to warm. Since publication of the Arctic Climate Impact Assessment in 2005, several indicators show further and extensive climate change at rates faster than previously anticipated. Air temperatures are increasing in the Arctic. Sea ice extent has decreased sharply, with a record low in 2007 and ice-free conditions in both the Northeast and Northwest sea passages for first time in recorded history in 2008. As ice that persists for several years (multi- year ice) is replaced by newly formed (first-year) ice, the Arctic sea-ice is becoming increasingly vulnerable to melting. Surface waters in the Arctic Ocean are warming. Permafrost is warming and, at its margins, thawing. Snow cover in the Northern Hemisphere is decreasing by 1-2% per year. Glaciers are shrinking and the melt area of the Greenland Ice Cap is increasing. The treeline is moving northwards in some areas up to 3-10 meters per year, and there is increased shrub growth north of the treeline.
    [Show full text]
  • Changes in the Arctic: Background and Issues for Congress
    Changes in the Arctic: Background and Issues for Congress Updated May 22, 2020 Congressional Research Service https://crsreports.congress.gov R41153 Changes in the Arctic: Background and Issues for Congress Summary The diminishment of Arctic sea ice has led to increased human activities in the Arctic, and has heightened interest in, and concerns about, the region’s future. The United States, by virtue of Alaska, is an Arctic country and has substantial interests in the region. The seven other Arctic states are Canada, Iceland, Norway, Sweden, Finland, Denmark (by virtue of Greenland), and Russia. The Arctic Research and Policy Act (ARPA) of 1984 (Title I of P.L. 98-373 of July 31, 1984) “provide[s] for a comprehensive national policy dealing with national research needs and objectives in the Arctic.” The National Science Foundation (NSF) is the lead federal agency for implementing Arctic research policy. Key U.S. policy documents relating to the Arctic include National Security Presidential Directive 66/Homeland Security Presidential Directive 25 (NSPD 66/HSPD 25) of January 9, 2009; the National Strategy for the Arctic Region of May 10, 2013; the January 30, 2014, implementation plan for the 2013 national strategy; and Executive Order 13689 of January 21, 2015, on enhancing coordination of national efforts in the Arctic. The office of the U.S. Special Representative for the Arctic has been vacant since January 20, 2017. The Arctic Council, created in 1996, is the leading international forum for addressing issues relating to the Arctic. The United Nations Convention on the Law of the Sea (UNCLOS) sets forth a comprehensive regime of law and order in the world’s oceans, including the Arctic Ocean.
    [Show full text]
  • Global Climate Influencer – Arctic Oscillation
    ARCTIC OSCILLATION GLOBAL CLIMATE INFLUENCER by James Rohman | February 2014 Figure 1. A satellite image of the jet stream. Figure 2. How the jet stream/Arctic Oscillation might affect weather distribution in the Northern Hemisphere. Arctic Oscillation Introduction (%2#4)#)3(/-%4/!3%-)0%2-!.%.4,/702%3352%#)2#5,!4)/. (%2%!2%!.5-"%2/&2%#522).'#,)-!4%%6%.434(!4)-0!#44(%',/"!, +./7.!34(%0/,!26/24%8(!46/24%8)3).#/.34!.4/00/3)4)/.4/!.$ $)342)"54)/./&7%!4(%20!44%2.3.%/&4(%-/2%3)'.)&)#!.4#,)-!4%).$%8%3&/2 4(%2%&/2%2%02%3%.43/00/3).'02%3352%4/4(%7%!4(%20!44%2.3/&4(% 4(%/24(%2.%-)30(%2%)34(%2#4)#3#),,!4)/. ./24(%2.-)$$,%,!4)45$%3)%./24(%2./24(-%2)#!52/0%!.$3)! ).$)#!4%34(%$)&&%2%.#%).3%!,%6%,02%3352%"%47%%.4(% (%2#4)#3#),,!4)/.-%!352%34(%6!2)!4)/.).4(% /24(/,%!.$4(%./24(%2.-)$,!4)45$%34)-0!#437%!4(%2 342%.'4().4%.3)49!.$3):%/&4(%*%4342%!-!3)4%80!.$3 0!44%2.3).4(%/24(%2.%-)30(%2%4(2/5'(4(%0/3)4)6%!.$.%'!4)6% #/.42!#43!.$!,4%23)433(!0%4)3-%!352%$"93%!02%3352% 0(!3%3/&4(%#9#,% !./-!,)%3%)4(%20/3)4)6%/2.%'!4)6%!.$"9/00/3).'!./-!,)%3.%'!4)6% / / /20/3)4)6%).,!4)45$%3(%,03$%&).%4(% %842% -%3/&4(%%##%.42)#)4)%3).4(%*%4 342%!- (%.4(%2%)3!342/.'.%'!4)6%0(!3%4(%*%4342%!-3,/73 52).'4(%;.%'!4)6%0(!3%</&3%!,%6%,02%3352%)3()'().4(% $/7.!.$4!+%3,!2'%-%!.$%2).',//0352).'0/3)4)6%0(!3%34(%*%4 2#4)#7(),%,/73%!,%6%,02%3352%$%6%,/03).4(%./24(%2.
    [Show full text]
  • Bridging Perspectives from Remote Sensing and Inuit Communities on Changing Sea-Ice Cover in the Baffin Bay Region
    Annals of Glaciology 44 2006 433 Bridging perspectives from remote sensing and Inuit communities on changing sea-ice cover in the Baffin Bay region Walter N. MEIER,1 Julienne STROEVE,1 Shari GEARHEARD2 1National Snow and Ice Data Center/World Data Center for Glaciology, CIRES, University of Colorado, Boulder, CO 80309-0449, USA E-mail: [email protected] 2Department of Geography, University of Western Ontario, London, Ontario N6A 5C2, Canada ABSTRACT. Passive microwave imagery indicates a decreasing trend in Arctic summer sea-ice extent since 1979. The summers of 2002–05 have exhibited particularly reduced extent and have reinforced the downward trend. Even the winter periods have now shown decreasing trends. At the local level, Arctic residents are also noticing changes in sea ice. In particular, indigenous elders and hunters report changes such as earlier break-up, later freeze-up and thinner ice. The changing conditions have profound implications for Arctic-wide climate, but there is also regional variability in the extent trends. These can have important ramifications for wildlife and indigenous communities in the affected regions. Here we bring together observations from remote sensing with observations and knowledge of Inuit who live in the Baffin Bay region. Weaving the complementary perspectives of science and Inuit knowledge, we investigate the processes driving changes in Baffin Bay sea-ice extent and discuss the present and potential future effects of changing sea ice on local activities. INTRODUCTION with the Inuit observations to obtain a more complete picture Sea ice in the Arctic plays an important role in climate by of the changes in Baffin Bay and to understand the impacts of reflecting incoming solar radiation and acting as a barrier to the observed changes on the indigenous populations.
    [Show full text]
  • The Need for Fast Near-Term Climate Mitigation to Slow Feedbacks and Tipping Points
    The Need for Fast Near-Term Climate Mitigation to Slow Feedbacks and Tipping Points Critical Role of Short-lived Super Climate Pollutants in the Climate Emergency Background Note DRAFT: 27 September 2021 Institute for Governance Center for Human Rights and & Sustainable Development (IGSD) Environment (CHRE/CEDHA) Lead authors Durwood Zaelke, Romina Picolotti, Kristin Campbell, & Gabrielle Dreyfus Contributing authors Trina Thorbjornsen, Laura Bloomer, Blake Hite, Kiran Ghosh, & Daniel Taillant Acknowledgements We thank readers for comments that have allowed us to continue to update and improve this note. About the Institute for Governance & About the Center for Human Rights and Sustainable Development (IGSD) Environment (CHRE/CEDHA) IGSD’s mission is to promote just and Originally founded in 1999 in Argentina, the sustainable societies and to protect the Center for Human Rights and Environment environment by advancing the understanding, (CHRE or CEDHA by its Spanish acronym) development, and implementation of effective aims to build a more harmonious relationship and accountable systems of governance for between the environment and people. Its work sustainable development. centers on promoting greater access to justice and to guarantee human rights for victims of As part of its work, IGSD is pursuing “fast- environmental degradation, or due to the non- action” climate mitigation strategies that will sustainable management of natural resources, result in significant reductions of climate and to prevent future violations. To this end, emissions to limit temperature increase and other CHRE fosters the creation of public policy that climate impacts in the near-term. The focus is on promotes inclusive socially and environmentally strategies to reduce non-CO2 climate pollutants, sustainable development, through community protect sinks, and enhance urban albedo with participation, public interest litigation, smart surfaces, as a complement to cuts in CO2.
    [Show full text]
  • FI IIR 2021 Part4 IPPU
    FINLAND’s INFORMATIVE INVENTORY REPORT 2021 Air Pollutant Emissions 1980-2019 under the UNECE CLRTAP and the EU NECD Part 4 – IPPU March 2021 FINNISH ENVIRONMENT INSTITUTE Centre for Sustainable Consumption and Production Environmental Management in Industry – Air Emissions Team 1 Photo on the cover page: Ari Andersin (2008), Valkeakoski, ympäristöhallinnon kuvapankki 2 PART 4 IPPU 4 INDUSTRIAL PROCESSES and PRODUCT USE (NFR 2) 4.1 Overview of the sector 4.2 Mineral Products (NFR 2.A) Overview of the NFR category Cement production Lime production Glass production . Quarrying and mining of minerals other than coal Construction and demolition Storage, handling and transport of mineral products Other Mineral products 4.3 Chemical Industry (NFR 2.B) Overview of the NFR category Ammonia production Nitric acid production Adipic acid production Carbide production Titanium dioxide production Soda ash production and use Other chemical industry Storage, handling and transport of chemical products 4.4 Metal Industry (NFR 2C) Overview of the NFR category Iron and steel production Ferroalloys production Aluminium production Lead production Zinc production Copper production Nickel production Other metal production Storage, handling and transport of metal products Domestic solvent use including fungicides Road paving with asphalt Asphalt roofing 4.5 Solvent and Other Product Use (NFR 2D) Coating applications Degreasing Dry cleaning Chemical products Printing Other solvent (2D3i) and product (2G) use 4.6 Other industry (NFR 2H) Pulp and paper Food and
    [Show full text]
  • Different Relationships Between Arctic Oscillation and Ozone in the Stratosphere Over the Arctic in January and February
    atmosphere Article Different Relationships between Arctic Oscillation and Ozone in the Stratosphere over the Arctic in January and February Meichen Liu and Dingzhu Hu * Key Laboratory of Meteorological Disasters of China Ministry of Education (KLME), Joint International Research Laboratory of Climate and Environment Change (ILCEC), Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science &Technology, Nanjing 210044, China; [email protected] * Correspondence: [email protected] Abstract: We compare the relationship between the Arctic Oscillation (AO) and ozone concentration in the lower stratosphere over the Arctic during 1980–1994 (P1) and 2007–2019 (P2) in January and February using reanalysis datasets. The out-of-phase relationship between the AO and ozone in the lower stratosphere is significant in January during P1 and February during P2, but it is insignificant in January during P2 and February during P1. The variable links between the AO and ozone in the lower stratosphere over the Arctic in January and February are not caused by changes in the spatial pattern of AO but are related to the anomalies in the planetary wave propagation between the troposphere and stratosphere. The upward propagation of the planetary wave in the stratosphere related to the positive phase of AO significantly weakens in January during P1 and in February during P2, which may be related to negative buoyancy frequency anomalies over the Arctic. When the AO is in the positive phase, the anomalies of planetary wave further contribute to the negative ozone anomalies via weakening the Brewer–Dobson circulation and decreasing the temperature in the lower stratosphere over the Arctic in January during P1 and in February during P2.
    [Show full text]
  • Arctic Oscillation and Antarctic Oscillation in Internal Atmospheric Variability with an Ensemble AGCM Simulation
    ADVANCES IN ATMOSPHERIC SCIENCES, VOL. 24, NO. 1, 2007, 152–162 Arctic Oscillation and Antarctic Oscillation in Internal Atmospheric Variability with an Ensemble AGCM Simulation ∗1 1,2 3 Ó Ä LU Riyu (ö ), LI Ying ( ), and Buwen DONG 1State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG) and Center for Monsoon System Research (CMSR), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029 2Graduate University of the Chinese Academy of Sciences, Beijing 100039 3National Centre for Atmospheric Science-Climate (NCAS) Centre for Global Atmospheric Modelling, Department of Meteorology, University of Reading, Reading, United Kingdom (Received 5 January 2006; revised 3 July 2006) ABSTRACT In this study, we investigated the features of Arctic Oscillation (AO) and Antarctic Oscillation (AAO), that is, the annular modes in the extratropics, in the internal atmospheric variability attained through an en- semble of integrations by an atmospheric general circulation model (AGCM) forced with the global observed SSTs. We focused on the interannual variability of AO/AAO, which is dominated by internal atmospheric variability. In comparison with previous observed results, the AO/AAO in internal atmospheric variability bear some similar characteristics, but exhibit a much clearer spatial structure: significant correlation be- tween the North Pacific and North Atlantic centers of action, much stronger and more significant associated precipitation anomalies, and the meridional displacement of upper-tropospheric westerly jet streams in the Northern/Southern Hemisphere. In addition, we examined the relationship between the North Atlantic Oscillation (NAO)/AO and East Asian winter monsoon (EAWM). It has been shown that in the internal atmospheric variability, the EAWM variation is significantly related to the NAO through upper-tropospheric atmospheric teleconnection patterns.
    [Show full text]
  • Arctic Report Card 2018 Effects of Persistent Arctic Warming Continue to Mount
    Arctic Report Card 2018 Effects of persistent Arctic warming continue to mount 2018 Headlines 2018 Headlines Video Executive Summary Effects of persistent Arctic warming continue Contacts to mount Vital Signs Surface Air Temperature Continued warming of the Arctic atmosphere Terrestrial Snow Cover and ocean are driving broad change in the Greenland Ice Sheet environmental system in predicted and, also, Sea Ice unexpected ways. New emerging threats Sea Surface Temperature are taking form and highlighting the level of Arctic Ocean Primary uncertainty in the breadth of environmental Productivity change that is to come. Tundra Greenness Other Indicators River Discharge Highlights Lake Ice • Surface air temperatures in the Arctic continued to warm at twice the rate relative to the rest of the globe. Arc- Migratory Tundra Caribou tic air temperatures for the past five years (2014-18) have exceeded all previous records since 1900. and Wild Reindeer • In the terrestrial system, atmospheric warming continued to drive broad, long-term trends in declining Frostbites terrestrial snow cover, melting of theGreenland Ice Sheet and lake ice, increasing summertime Arcticriver discharge, and the expansion and greening of Arctic tundravegetation . Clarity and Clouds • Despite increase of vegetation available for grazing, herd populations of caribou and wild reindeer across the Harmful Algal Blooms in the Arctic tundra have declined by nearly 50% over the last two decades. Arctic • In 2018 Arcticsea ice remained younger, thinner, and covered less area than in the past. The 12 lowest extents in Microplastics in the Marine the satellite record have occurred in the last 12 years. Realms of the Arctic • Pan-Arctic observations suggest a long-term decline in coastal landfast sea ice since measurements began in the Landfast Sea Ice in a 1970s, affecting this important platform for hunting, traveling, and coastal protection for local communities.
    [Show full text]
  • The Stigma of Feminism: Disclosures and Silences Regarding Female Disadvantage in the Video Game Industry in US and Finnish Media Stories
    This is a self-archived version of an original article. This version may differ from the original in pagination and typographic details. Author(s): Kivijärvi, Marke; Sintonen, Teppo Title: The stigma of feminism : disclosures and silences regarding female disadvantage in the video game industry in US and Finnish media stories Year: 2021 Version: Published version Copyright: © 2021 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group Rights: CC BY-NC-ND 4.0 Rights url: https://creativecommons.org/licenses/by-nc-nd/4.0/ Please cite the original version: Kivijärvi, M., & Sintonen, T. (2021). The stigma of feminism : disclosures and silences regarding female disadvantage in the video game industry in US and Finnish media stories. Feminist Media Studies, Early online. https://doi.org/10.1080/14680777.2021.1878546 Feminist Media Studies ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/rfms20 The stigma of feminism: disclosures and silences regarding female disadvantage in the video game industry in US and Finnish media stories Marke Kivijärvi & Teppo Sintonen To cite this article: Marke Kivijärvi & Teppo Sintonen (2021): The stigma of feminism: disclosures and silences regarding female disadvantage in the video game industry in US and Finnish media stories, Feminist Media Studies, DOI: 10.1080/14680777.2021.1878546 To link to this article: https://doi.org/10.1080/14680777.2021.1878546 © 2021 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. Published online:
    [Show full text]
  • A Look at the Date of Snowmelt and Correlations with the Arctic Oscillation
    Annals of Glaciology 54(62) 2013 doi: 10.3189/201362A090 1 A look at the date of snowmelt and correlations with the Arctic Oscillation J.L. FOSTER,1 J. COHEN,2 D.A. ROBINSON,3 T.W. ESTILOW3 1Laboratory for Hydrospheric and Biospheric Sciences, NASA Goddard Space Flight Center, Greenbelt, MD, USA E-mail: [email protected] 2Atmospheric and Environmental Research, Lexington, MA, USA 3Department of Geography, Rutgers University, Piscataway, NJ, USA ABSTRACT. Spring snow cover across Arctic lands has, on average, retreated 5 days earlier since the late 1980s compared to the previous 20 years. However, it appears that since about the late 1980s the date the snowline first retreats north during the spring has changed only slightly: in the last 20 years snow has not been disappearing significantly earlier. Snowmelt changes observed since the late 1980s have been step-like, unlike the more continuous downward trend seen in Arctic sea-ice extent. At 708 N, several longitudinal segments (of 108) show significant (negative) trends, while only two longitudinal segments at 608 N show significant trends, one positive and one negative. These variations appear to be related to variations in the Arctic Oscillation (AO). When the springtime AO is strongly positive, snow melts earlier. When it is strongly negative, snow disappears later in the spring. The winter AO is less straightforward. At higher latitudes (708 N), a positive AO during the winter months is correlated with later snowmelt, but at lower latitudes (508 N and 608 N) a positive wintertime AO is correlated with earlier snowmelt. If the AO during the winter months is negative, the reverse is true.
    [Show full text]