Geochemistry and Geochronology of the Amphibolite Blocks in Ophiolitic Me´Langes Along Bangong-Nujiang Suture, Central Tibet

Total Page:16

File Type:pdf, Size:1020Kb

Geochemistry and Geochronology of the Amphibolite Blocks in Ophiolitic Me´Langes Along Bangong-Nujiang Suture, Central Tibet Available online at www.sciencedirect.com Journal of Asian Earth Sciences 33 (2008) 122–138 www.elsevier.com/locate/jaes Geochemistry and geochronology of the amphibolite blocks in ophiolitic me´langes along Bangong-Nujiang suture, central Tibet Wei-Liang Wang a,*, J.C. Aitchison a, Ching-Hua Lo b, Qing-Gao Zeng c a Tibet Research Group, Department of Earth Sciences, University of Hong Kong, James Lee Building, Pokfulam Road, Hong Kong SAR, China b Department of Geosciences, National Taiwan University, 245 Choushan Road, Taipei 106, Taiwan c Geological Survey Bureau of Tibet Autonomous Region, Lhasa 851400, China Received 10 April 2007; received in revised form 18 October 2007; accepted 19 October 2007 Abstract Amphibolites occur as blocks within serpentinite-matrix me´lange at Dong Tso and Lagkor Tso in the Gertse area of central Tibet, where they are associated with the Bangong-Nujiang suture (BNS). Geochemical data shows amphibolites have similar MORB or arc- like MORB geochemical characteristics. Lagkor Tso amphibolites show greater arc affinity, whereas those from Dong Tso amphibolites are more MORB-like. These characteristics are similar to basalts from continental back-arc basin settings. Hornblendes from the amphibolites dated by the 40Ar/39Ar single-grain laser fusion technique show similar metamorphic ages 170–177 Ma, which is inter- preted to represent the timing of the main metamorphic event experienced in this region. We suggest that the western and middle sectors of the BNS contain the remnants of a short-lived back-arc basin (the Bangong-Nujiang ocean), which partly opened and closed in the Middle Jurassic. Ó 2007 Elsevier Ltd. All rights reserved. Keywords: Central Tibet; Bangong-Nujiang suture zone; Ophiolites; Amphibolites; Geochemistry; Geochronology; Back-arc basin 1. Introduction 1984; Zhou et al., 1997; Wang, 2000; Pan et al., 2006), the orientation of subduction (Cheng and Xu, 1986; Pearce The Bangong-Nujiang suture (BNS) between the Lhasa and Deng, 1988; Zhu et al., 2006), and the spatial and tem- and Qiangtang terranes is an east–west trending belt that poral relationships of ophiolitic remnants (Tang and extends >2500-km across central Tibet. It contains isolated Wang, 1984; Guo et al., 1991; Yin and Harrison, 2000; occurrences of ophiolitic rocks that represent remnants of Qiu et al., 2006). Various geophysical surveys to identify oceanic crust (Girardeau et al., 1984; Chang et al., 1986; mantle and crust structure have been conducted across Yin et al., 1988; Wang, 2000)(Fig. 1A). Although some the suture (Hirn et al., 1984; Kong et al., 1996; Zhao geological investigations have been carried out along the et al., 2001, 2004; Wittlinger et al., 2004), although they BNS, especially in recent years (Taylor et al., 2003; Shi reveal conflicting results regarding what lies beneath the et al., 2004; Zhang, 2004; Kapp et al., 2005b; Solon BNS. et al., 2005; Guynn et al., 2006; Zhu et al., 2006; Pan The Tibet Research Group (TRG) of the University of et al., 2006; Qiu et al., 2006), due to its inaccessibility Hong Kong and the Geological Survey Bureau of Tibet and physical difficulties, knowledge of this suture is limited. Autonomous Region of the People’s Republic of China Several issues regarding the tectonic evolution of the belt have undertaken mapping and geological studies in the remain controversial including: the timing of opening and Gertse area during 2002–2006. One of the studies examines closure of the Meso-Tethyan ocean (Girardeau et al., metamorphic rocks associated with ophiolitic me´lange at Dong Tso and Lagkor Tso in order to elucidate the tec- * Corresponding author. Tel.: +852 9121 0390; fax: +852 2517 6912. tonic evolution of the BNS. We describe the geochemical E-mail address: [email protected] (W.-L. Wang). and geochronological characteristics of amphibolite-facies 1367-9120/$ - see front matter Ó 2007 Elsevier Ltd. All rights reserved. doi:10.1016/j.jseaes.2007.10.022 W.-L. Wang et al. / Journal of Asian Earth Sciences 33 (2008) 122–138 123 Fig. 1. (A) Map showing major blocks of Tibet, approximate locations of intervening suture zone, and the main occurrences of the ophiolites along the Bangong-Nujiang suture zone. (B) Simplified geological map of Gertse area, central Tibet (modified after Cheng and Xu, 1986; Tapponnier et al., 2001; Pan and Ding, 2004; Kapp et al., 2005b). MFT, Main Frontal Thrust; MBT, Main Central Thrust; YTS, Yarlung Tsangpo Suture; KF, Karakoram Fault; ATF, Altyn Tagh Fault; BNS, Bangong-Nujiang Suture; CQMB, Central Qiangtang Metamorphic Belt; JS, Jinsha Suture; AKMS, Anyemagen Kunlun Muztag Suture. metamorphic rocks within ophiolitic me´lange at each local- et al., 2005; Qiu et al., 2004a,b, 2006), Lagkor Tso (Cheng ity and discuss their implications. and Xu, 1986; Aitchison et al., 2005, 2006; Pan et al., 2006), Bangong Lake (Wang et al., 1985; Guo et al., 1991; Matte 2. Geology et al., 1996; Shi et al., 2004)(Fig. 1A). Based on a summary (Table 1) of the distribution, ages 2.1. Bangong-Nujiang suture and tectonic characteristics of ophiolitic complexes along the BNS, it appears that most of the ophiolitic units formed This zone is marked by a sub-linear series of ophiolitic above a subduction zone. However, some characteristics of fragments between the Lhasa and Qiangtang terranes. It the ophiolites along the BNS are difficult to reconcile with is arbitrarily divided into three sectors from west to east, a typical or simple ophiolitic unit (Dilek and Robinson, the Bangong Lake-Gertse (western sector), the Dongqiao- 2003). For example, details of pre- and post-collision defor- Amdo (middle sector) and the Dingqing-Nujiang (eastern mation are poorly known although the ophiolitic units them- sector) (Bureau of Geology and Mineral Resources of Xiz- selves are strongly dismembered and few outcrops (Table 1) ang Autonomous Region (BGMRXAR), 1993). Well-pre- show MORB-like characteristics based on previous research served ophiolitic fragments occur scattered along the (Yang et al., 1991; Ye et al., 2004a). Published data suggested suture near Dingqing (Li, 1988; You, 1998; Wang, 2000), that the formation age of ophiolites along the BNS occurred Suo and Baxoi (Zhou, 1996), Dongqiao (Girardeau et al., between the Late Triassic to Early Jurassic and the emplace- 1984; Deng and Wang, 1987; Zhou et al., 1997), Naqu ment of oceanic crust began in the Middle Jurassic. (Pearce and Deng, 1988), Gyanco (Deng and Wang, 1987; Pearce and Deng, 1988; BGMRXAR Team 2, 2.2. Ophiolites in the Gertse area 1993), Xainza (Girardeau et al., 1985; Yang et al., 2003), Amdo (Pearce and Deng, 1988; Pearce and Mei, 1988; Two occurrences of ophiolitic rocks are present in the Lai and Liu, 2003), Dong Tso (Bao et al., 1996; Aitchison study area. The Dong Tso ophiolite crops out to the east 124 W.-L. Wang et al. / Journal of Asian Earth Sciences 33 (2008) 122–138 Table 1 Summary of the distribution, ages, and tectonic characteristics of the ophiolitic units along the Bangong-Nujiang suture Region Ophiolities Formation age (Ma) Emplacement age (Ma) Remarks Eastern Dingqing 197.3 ± 3.3 (40Ar/39Ar)1, Middle–Late Jurassic 6 Fore arc, SSZ7,8,9 Late Triassic 2,3,4,5 Suo ? ? Harzburgite, dunite, chromite 10,11,12 Baxoi Middle Dongqiao 150? (Os/Os )15, Late Triassic16,17 179 (K/Ar)13 , 180 ± 3 and 175 ± 3 SSZ14,18,19,20, back arc26, MORB24 (40Ar/39 Ar)14, Late Jurassic18,19,20,21, before Middle Jurassic22,23 Amdo Late Triassic – Early Jurassic18,27 165 (40Ar/39Ar)25 Arc-basin28, island arc26, SSZ18 Naqu Late Triassic – Early Jurassic18,21,27,26 ? Fore arc16,26 Xainza Late Triassic – Early Jurassic18 Middle Jurassic31 Fore arc 26, back arc29,30,32, SSZ31 Gyanco Before Middle Jurassic Middle Jurassic Fore arc26,32 Western Dong Tso 191 ± 2.2 (Sm/Nd)34 Before Jurassic33, 140 ± 4.07 (K/Ar) and SSZ34,35,36,37,38 152.30 ± 3.60 (K/Ar)34, 141 (K/Ar)36 Lagkor Tso Middle Jurassic38,39 166 ± 2.5 (U/Pb)39 MORB39, SSZ35 Bangong Lake Before Middle Jurassic42 Middle–Late Jurassic43,44,45 SSZ40,41,46,35, back arc43, MORB45 1You (1998); 2Wang et al. (2002a); 3Wang et al. (2002b); 4Li (1988); 5Wang (2000); 6Wang et al. (2002c); 7Zhang and Yang (1986); 8Liu et al. (2002); 9Zhang et al. (2003); 10BGMRXAR (1993); 11BGMRXAR Team 2 (1993); 12Zhou (1996); 13Cheng (1994); 14Zhou et al. (1997); 15Zhi et al. (2005); 16Schneider et al. (2004); 17Chen et al. (2004a); 18Girardeau et al. (1984); 19Marcoux et al. (1987); 20Qu et al. (2003); 21Chen et al. (2004b); 22Lu et al. (2003); 23Lu et al. (2004); 24Ye et al. (2004a); 25Guynn et al. (2003); 26Pearce and Deng (1988); 27Wang and Tang (1984); 28Lai and Liu (2003); 29Yang et al. (2003); 30Ye et al. (2004a,b); 31Girardeau et al. (1985); 32Deng and Wang (1987); 33Bao et al. (1996); 34Qiu et al. (2004a); 35Qiu et al. (2006); 36Xia (1993); 37Zeng et al. (2005); 38Aitchison et al. (2005); 39Zhang et al. (2007); 40Shi et al. (2004); 41Shi (2007); 42Shi and Yang (2005); 43Guo et al. (1991); 44Matte et al. (1996); 45Yang et al. (1991); 46Kapp et al. (2003). of Gertse north of Dong Tso; The Lagkor Tso ophiolite from gabbro collected north of Dong Tso has yielded a occurs south of Gertse on the northern shores of Lagkor Middle Jurassic age ( Aitchison, unpublished data). Bao Tso (‘Tso’ means lake in Tibetan) (Fig. 1B). Although et al. (1996) suggested that the ophiolite represents the some geological investigations have been carried out in this early stage of a Middle Jurassic ocean basin. area, few workers have concentrated on the ophiolites (Bao Metamorphic rocks, especially amphibolites, occur as et al., 1996; Aitchison et al., 2005, 2006; Qiu et al., 2004a,b, blocks in serpentinite-matrix me´lange at the base of the 2006) and no previous study has focused on the metamor- ophiolite where they are associated with ultramafic litholo- phic rocks associated with the ophiolitic units.
Recommended publications
  • Introduction to Himalayan Tectonics: a Modern Synthesis
    Downloaded from http://sp.lyellcollection.org/ at Kingston University on January 3, 2020 Introduction to Himalayan tectonics: a modern synthesis MICHAEL P. SEARLE1* & PETER J. TRELOAR2 1Department of Earth Sciences, University of Oxford, Oxford OX1 3AN, UK 2School of the Natural and Built Environment, Kingston University, Penrhyn Road, Kingston-upon-Thames, Surrey KT1 2EE, UK MPS, 0000-0001-6904-6398 *Correspondence: [email protected] The Himalaya resulted from collision of the Indian widespread migmatization and mid-crustal melting plate with Asia and are well known as the highest, during the Oligocene–Mid-Miocene. The age of the youngest and one of the best studied continental col- abundant leucogranite sills and dykes along the top lision orogenic belts. They are frequently used as the of the GHS, beneath the STD, is concomitant with type example of a continental collision orogenic belt the sillimanite-grade metamorphic event. The GHS in studies of older Phanerozoic orogenic belts. The metamorphism is all part of one continuum of crustal beauty of the Himalaya is that, on a broad scale they thickening and shortening, increasing pressure and form a relatively simple orogenic belt. The major temperature following a standard clockwise Pressure- structural divisions, the Indus–(Yarlung Tsangpo) Temperature-Time (PTt) path. Decompression suture zone, the Tethyan Himalaya sedimentary melting peaked with widespread partial melting and units, Greater Himalaya Sequence (GHS) metamor- formation of migmatites and leucogranites along the phic rocks, the Lesser Himalaya fold-and-thrust highest peaks of the Himalaya. Structural mapping belt and the Sub-Himalaya Siwalik molasse basin and timing constraints suggest the large-scale are present along the entire 2000 km length of the southward extrusion of a partially melted layer of Himalaya (Figs 1 & 2).
    [Show full text]
  • Mid-Cretaceous Thick Carbonate Accumulation in Northern Lhasa (Tibet): Eustatic Vs
    Mid-Cretaceous thick carbonate accumulation in Northern Lhasa (Tibet): eustatic vs. tectonic control? Yiwei Xu1, Xiumian Hu1,†, Eduardo Garzanti2, Marcelle BouDagher-Fadel3, Gaoyuan Sun4, Wen Lai1, and Shijie Zhang5 1 State Key Laboratory of Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China 2 Department of Earth and Environmental Sciences, Università di Milano-Bicocca, Milano 20126, Italy 3 Department of Earth Sciences, University College London, Gower Street, London, WC1E 6BT, UK 4 College of Oceanography, Hohai University, Nanjing 210098, China 5 School of Tourism, Henan Normal University, Xinxiang 453007, China ABSTRACT INTRODUCTION Moreover, their thickness does not exceed a few hundreds of meters, because carbonate Widespread accumulation of thick car- The Lhasa terrane, lying between the In- production is hampered in orogenic settings bonates is not typical of orogenic settings. dus–Yarlung suture to the south and the Ban- where tectonic uplift and erosion produce During the mid-Cretaceous, near the Ban- gong suture to the north (Fig. 1A), is the latest abundant terrigenous detritus (Wilson, 1975; gong suture in the northern Lhasa terrane, microcontinent accreted to Asia before colli- Dorobek, 1995). However, in a few cases (e.g., the shallow-marine carbonates of the Lang- sion between the Indian and Asian continental the Papua–New Guinea foreland basin) car- shan Formation, reaching a thickness up to margins. The timing of collision between the bonate thickness may reach 1.2 km (Sinclair, ∼1 km, accumulated in an epicontinental Qiangtang and Lhasa terranes along the Ban- 1997). Finally, carbonates generally occur only seaway over a modern area of 132 × 103 km2, gong suture (Fig.
    [Show full text]
  • Variation of Moho Depth Across Bangong-Nujiang Suture in Central Tibet—Results from Deep Seismic Reflection Data
    International Journal of Geosciences, 2015, 6, 821-830 Published Online August 2015 in SciRes. http://www.scirp.org/journal/ijg http://dx.doi.org/10.4236/ijg.2015.68066 Variation of Moho Depth across Bangong-Nujiang Suture in Central Tibet—Results from Deep Seismic Reflection Data Zhanwu Lu1,2,3*, Rui Gao1,2,3, Hongqiang Li1,2,3, Wenhui Li1,2,3, Xiaosong Xiong1,2,3 1Key Laboratory of Earthprobe and Geodynamics, Ministry of Land and Resources of PRC, Beijing, China 2State Key Laboratory of Continental Tectonics and Dynamics, Beijing, China 3Institute of Geology, Chinese Academy of Geological Science, Beijing, China Email: *[email protected] Received 10 June 2015; accepted 4 August 2015; published 7 August 2015 Copyright © 2015 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ Abstract There is a long-term dispute at Moho depth across the Bangong-Nujiang suture (BNS). Due to the complicated and changeable seismic geological condition, it is not easy to acquire images of the reflective Moho in central Tibet. In the support of the SinoProbe project, a series of deep seismic reflection profiles were conducted to image Moho structure across the BNS and the Qiangtang ter- rane. These profiles extend from the northern Lhasa terrane to the Qiangtang terrane crossing the BNS. Both shot gathers and migration data show clear Moho images beneath the BNS. The Moho depth varies from 75.1 km (~24 s TWT) beneath the northmost Lhasa terrane to 68.9 km (~22 s TWT) beneath southmost Qiangtang terrane, and rises smoothly to 62.6 km (~20 s TWT ) at ~28 km north of the BNS beneath the Qiangtang terrane.
    [Show full text]
  • Crustal–Lithospheric Structure and Continental Extrusion of Tibet
    Journal of the Geological Society, London, Vol. 168, 2011, pp. 633–672. doi: 10.1144/0016-76492010-139. Crustal–lithospheric structure and continental extrusion of Tibet M. P. SEARLE1*, J. R. ELLIOTT1,R.J.PHILLIPS2 & S.-L. CHUNG3 1Department of Earth Sciences, Oxford University, South Parks Road, Oxford OX1 3AN, UK 2Institute of Geophysics and Tectonics, School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK 3Department of Geosciences, National Taiwan University, Taipei 106, Taiwan *Corresponding author (e-mail: [email protected]) Abstract: Crustal shortening and thickening to c. 70–85 km in the Tibetan Plateau occurred both before and mainly after the c. 50 Ma India–Asia collision. Potassic–ultrapotassic shoshonitic and adakitic lavas erupted across the Qiangtang (c. 50–29 Ma) and Lhasa blocks (c. 30–10 Ma) indicate a hot mantle, thick crust and eclogitic root during that period. The progressive northward underthrusting of cold, Indian mantle lithosphere since collision shut off the source in the Lhasa block at c. 10 Ma. Late Miocene–Pleistocene shoshonitic volcanic rocks in northern Tibet require hot mantle. We review the major tectonic processes proposed for Tibet including ‘rigid-block’, continuum and crustal flow as well as the geological history of the major strike- slip faults. We examine controversies concerning the cumulative geological offsets and the discrepancies between geological, Quaternary and geodetic slip rates. Low present-day slip rates measured from global positioning system and InSAR along the Karakoram and Altyn Tagh Faults in addition to slow long-term geological rates can only account for limited eastward extrusion of Tibet since Mid-Miocene time.
    [Show full text]
  • Late Jurassic Sodium-Rich Adakitic Intrusive Rocks in the Southern Qiangtang Terrane, Central Tibet, and Their Implications for the Bangong–Nujiang Ocean Subduction
    Lithos 245 (2016) 34–46 Contents lists available at ScienceDirect Lithos journal homepage: www.elsevier.com/locate/lithos Late Jurassic sodium-rich adakitic intrusive rocks in the southern Qiangtang terrane, central Tibet, and their implications for the Bangong–Nujiang Ocean subduction Yalin Li a,⁎,JuanHea,b, Zhongpeng Han a, Chengshan Wang a, Pengfei Ma a,AorigeleZhoua, Sheng-Ao Liu a,MingXua a State Key Laboratory of Biogeology and Environmental Geology, School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China b Chengdu Institute of Geology and Mineral Resources, Chengdu 610082, China article info abstract Article history: The lack of magmatic records with high-quality geochronological and geochemical data in the central segment of Received 31 March 2015 the southern Qiangtang subterrane in central Tibet inhibits a complete understanding of the subduction polarity Accepted 22 October 2015 of the Bangong–Nujiang Ocean lithosphere during the Mesozoic. In this study, we present the zircon U–Pb age as Available online 10 November 2015 well as geochemical and Sr–Nd–Pb isotopic data for the Late Jurassic pluton from the Kangqiong area in the cen- tral segment of the southern Qiangtang subterrane. The Kangqiong pluton primarily consists of granodiorites Keywords: (SiO =62.87–65.17 wt.%) and was emplaced in the Late Jurassic (147.6 ± 2.4–149.9 ± 2.1 Ma). The granodio- Adakitic granodiorites 2 – – Late Jurassic rites display high Na2O numbers (Na2O/K2O = 1.75 2.24) as well as high MgO (2.21 3.14 wt.%) and Mg- Bangong–Nujiang Ocean numbers (53–58), are characterized by a low abundance of heavy rare earth elements (e.g., Yb = Northward subduction 1.05–1.92 ppm) and Y (12.63–17.52 ppm), and high Sr/Y (29–61) and La/Yb (14–18) ratios, which are compara- Central Tibet ble in composition to those of slab-derived adakitic rocks.
    [Show full text]
  • Preliminary Investigation of the Geometry and Kinematics of The
    Louisiana State University LSU Digital Commons LSU Master's Theses Graduate School 2014 Preliminary Investigation of the Geometry and Kinematics of the Bangong-Nujiang Suture at the Basu Metamorphic Massif, SE Tibet Chase Michael Billeaudeau Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses Part of the Earth Sciences Commons Recommended Citation Billeaudeau, Chase Michael, "Preliminary Investigation of the Geometry and Kinematics of the Bangong-Nujiang Suture at the Basu Metamorphic Massif, SE Tibet" (2014). LSU Master's Theses. 4249. https://digitalcommons.lsu.edu/gradschool_theses/4249 This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Master's Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact [email protected]. PRELIMINARY INVESTIGATION OF THE GEOMETRY AND KINEMATICS OF THE BANGONG-NUJIANG SUTURE AT THE BASU METAMORPHIC MASSIF, SE TIBET A Thesis Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Master of Geology in The Department of Geology and Geophysics by Chase Michael Billeaudeau B.S., Louisiana State University, 2012 December 2014 ACKNOWLEDGEMENTS I am grateful to all the wonderful people who have contributed to the completion of this project. I would like to give special thanks to Dr. Alexander Webb for his valuable advice and project guidance. My committee members, Dr. Peter Clift and Dr.
    [Show full text]
  • How and When Did the Tibetan Plateau Grow?
    Russian Geology and Geophysics © 2019, V.S. Sobolev IGM, Siberian Branch of the RAS Vol. 60, No. 9, pp. 957–977, 2019 DOI:10.15372/RGG2019126 Geologiya i Geofizika How and When Did the Tibetan Plateau Grow? S. Guillot a, F. Goussin a, L. Airaghi a,b, A. Replumaz a, J. de Sigoyer a, C. Cordier a a University Grenoble Alpes, University Savoie Mont Blanc, CNRS, IRD, IFSTTAR, ISTerre, 38000 Grenoble, France b Sorbonne Université, ISTeP, 4 place Jussieu, 75005 Paris, France Received 11 February 2019; accepted 22 May 2019 Abstract—Due to its size and high altitude, the growth of the Tibetan Plateau remains an enigma. Based on a synthesis of anterior collisions, paleoaltimetric data, geochemistry of ultrapotassic lava and their rare mantle enclaves, combined with a reinterpretation of tomographic data, we suppose that Tibet’s growth took take place in two main stages. Initially, the accretion of Gondwana terranes to the margin of South Asia, especially during the Early Triassic–Cretaceous period, resulted in the first episode of plateau growth, which affected an area of about 2/3 of the current plateau. We suppose that during the Late Cretaceous, the Tibetan crust reached a thickness of about 50–55 km, which is equivalent to an altitude of about 2500 to 3000 m, with local landforms that could have exceeded 4000 m. Another important consequence of these successive accretions was a strong metasomatism and a softening of the upper part of the Tibetan cover. The P wave low-velocity anomaly currently observed under the central part of Tibet would correspond not to a temperature anomaly but to a composition anomaly.
    [Show full text]
  • Topographic Growth of the Jishi Shan and Its Impact on Basin and Hydrology Evolution,NE Tibetan Plateau Joel E
    EAGE Basin Research (2017) 1–20, doi: 10.1111/bre.12264 Topographic growth of the Jishi Shan and its impact on basin and hydrology evolution,NE Tibetan Plateau Joel E. Saylor,* Jessica C. Jordan,†,1 Kurt E. Sundell,* Xiaoming Wang,‡ Shiqi Wang§,¶ and Tao Deng§ *Department of Earth and Atmospheric Sciences, University of Houston, Houston, TX, USA †School of Earth Sciences and Environmental Sustainability, Northern Arizona University, Flagstaff, AZ, USA ‡Department of Vertebrate Paleontology, Natural History Museum of Los Angeles County, Los Angeles, CA, USA §Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing,China ¶Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing, China ABSTRACT Previous research demonstrates that large basins on the periphery of the northern edge of the Tibe- tan Plateau were partitioned during development of intrabasin mountain ranges. These topographic barriers segregated basins with respect to surface flow and atmospheric circulation, ponded sedi- ments, and formed rain shadows. However, complex mixing between airmasses and nonsystematic isotope-elevation lapse rates have hampered application of quantitative paleoaltimetry to determine the timing of development of critical topographic barriers. We address the timing and drivers for changes in surface connectivity and atmospheric circulation in the Linxia and Xunhua basins using a multidisciplinary approach incorporating detrital zircon geochronology, Monte Carlo inverse flexu- ral modelling, and published stable isotope data. Disruption of surface flow between the two basins during exhumation of the Jishi Shan preceded development of topography sufficient to intercept moisture-bearing airmasses. Detrital zircon data point to disruption of an eastward-flowing axial flu- vial network between 14.7 and 13.1 Ma, coincident with the onset of exhumation in the Jishi Shan.
    [Show full text]
  • Pre‐Oxfordian (>163 Ma) Ophiolite Obduction in Central Tibet
    RESEARCH LETTER Pre‐Oxfordian (>163 Ma) Ophiolite 10.1029/2019GL086650 Obduction in Central Tibet Key Points: Anlin Ma1, Xiumian Hu1 , Paul Kapp2 , Marcelle BouDagher‐Fadel3, and Wen Lai1 • The Dongqiao Formation was deposited on top of ophiolite in 1State Key Laboratory of Mineral Deposit Research, School of Earth Sciences and Engineering, Nanjing University, subaerial to shallow marine 2 3 environments during Oxfordian to Nanjing, China, Department of Geosciences, University of Arizona, Tucson, Arizona, USA, Department of Earth Kimmeridgian time Sciences, University College London, London, UK • The Dongqiao Formation includes detritus from the underlying Dongqiao ophiolite and The timing of Bangong‐Nujiang suture ophiolite obduction between the Lhasa and Qiangtang ‐ fi Abstract Lhasa af nity continental crust ‐ • The Dongqiao ophiolite was terranes in central Tibet is important for understanding the closure history of the Meso Tethys but obducted onto Lhasa‐affinity remains poorly constrained. We investigated subaerial to shallow marine strata of the Dongqiao Formation continental crust by 163 Ma that sit unconformably on Bangong‐Nujiang suture ophiolites that crystallized in a supra‐subduction zone setting at 189–181 Ma. Based on foraminiferal and coral studies, the depositional age of the Dongqiao Supporting Information: • Supporting Information S1 Formation is constrained to be Oxfordian and Kimmeridgian (Late Jurassic). Provenance analyses including • Data Set S1 detrital modes, geochemistry of detrital chromian spinels, and U‐Pb age populations of detrital zircons suggest the Dongqiao Formation was sourced from uplifted Bangong‐Nujiang suture ophiolites and sedimentary and metamorphic rocks of Lhasa terrane affinity to the south. We conclude that Correspondence to: Bangong‐Nujiang suture ophiolites were obducted soon after crystallization (prior to Oxfordian time; X.
    [Show full text]
  • Geological Records of the Lhasa-Qiangtang and Indo-Asian Collisions in the Nima Area of Central Tibet
    Geological records of the Lhasa-Qiangtang and Indo-Asian collisions in the Nima area of central Tibet Paul Kapp† Peter G. DeCelles George E. Gehrels Department of Geosciences, University of Arizona, Tucson, Arizona 85721-0077, USA Matthew Heizler New Mexico Geochronological Research Laboratory, New Mexico Institute of Mining and Technology, Socorro, New Mexico 87801, USA Lin Ding Institutes of Tibetan Plateau Research and Geology and Geophysics, Chinese Academy of Sciences, Beijing 100085, People’s Republic of China ABSTRACT respectively. Tertiary syncontractional basin Biffi , 2000, 2001; Jolivet et al., 2001; Robinson development in the Nima area was coeval et al., 2003), the Lhasa and Qiangtang terranes A geological and geochronologic investi- with that along the Bangong suture in west- in Tibet (Fig. 1B) (Murphy et al., 1997; Yin and gation of the Nima area along the Jurassic– ernmost Tibet and the Indus-Yarlung suture Harrison, 2000; Ding and Lai, 2003; Kapp et al., Early Cretaceous Bangong suture of central in southern Tibet, suggesting simultaneous, 2003, 2005; Guynn et al., 2006), and the Long- Tibet (~32°N, ~87°E) provides well-dated renewed contraction along these sutures dur- men Shan along the eastern plateau margin (e.g., records of contractional deformation and ing the Oligocene-Miocene. This suture-zone Arne et al., 1997; Wallis et al., 2003). sedimentation during mid-Cretaceous and reactivation immediately predated major Another common assumption is that the mid-Tertiary time. Jurassic to Lower Creta- displacement within the Himalayan Main Tibetan Plateau interior was formed by mech- ceous (≤125 Ma) marine sedimentary rocks Central thrust system shear zone, raising the anisms that are proposed to be acting along were transposed, intruded by granitoids, possibility that Tertiary shortening in Tibet the actively growing margins of the plateau and uplifted above sea level by ca.
    [Show full text]
  • A Tectonic Model Reconciling Evidence for the Collisions Between India, Eurasia and Intra- Oceanic Arcs of the Central-Eastern Tethys
    See discussions, stats, and author profiles for this publication at: http://www.researchgate.net/publication/272183308 A tectonic model reconciling evidence for the collisions between India, Eurasia and intra- oceanic arcs of the central-eastern Tethys ARTICLE in GONDWANA RESEARCH · JANUARY 2015 Impact Factor: 8.24 · DOI: 10.1016/j.gr.2015.01.001 CITATION READS 1 294 5 AUTHORS, INCLUDING: Sabin Zahirovic Dietmar Müller University of Sydney University of Sydney 16 PUBLICATIONS 247 CITATIONS 295 PUBLICATIONS 7,049 CITATIONS SEE PROFILE SEE PROFILE Joanne M Whittaker Yatheesh Vadakkeyakath University of Tasmania National Institute of Oceanography 64 PUBLICATIONS 452 CITATIONS 27 PUBLICATIONS 116 CITATIONS SEE PROFILE SEE PROFILE Available from: Dietmar Müller Retrieved on: 07 October 2015 Gondwana Research 28 (2015) 451–492 Contents lists available at ScienceDirect Gondwana Research journal homepage: www.elsevier.com/locate/gr GR Focus Review A tectonic model reconciling evidence for the collisions between India, Eurasia and intra-oceanic arcs of the central-eastern Tethys A.D. Gibbons a,⁎,1,S.Zahirovica,R.D.Müllera, J.M. Whittaker b, V. Yatheesh c a School of Geosciences, University of Sydney, NSW 2006, Australia b Institute for Marine and Antarctic Studies, 20 Castray Esplanade, Hobart, Tasmania, Australia c CSIR-National Institute of Oceanography, Dona Paula, Goa 403 004, India article info abstract Article history: Despite several decades of investigations, inferences on the timing and nature of collisions along the Mesozoic– Received
    [Show full text]
  • Mesozoic and Cenozoic Tectonic Evolution of the Shiquanhe Area of Western Tibet
    TECTONICS, VOL. 22, NO. 4, 1029, doi:10.1029/2001TC001332, 2003 Mesozoic and Cenozoic tectonic evolution of the Shiquanhe area of western Tibet Paul Kapp,1 Michael A. Murphy,2 An Yin, and T. Mark Harrison3 Department of Earth and Space Sciences and Institute of Geophysics and Planetary Physics, University of California, Los Angeles, California, USA Lin Ding and Jinghu Guo Institute of Geology and Geophysics, Lithosphere Tectonic Evolution Laboratory, Chinese Academy of Sciences, Beijing, People’s Republic of China Received 1 October 2001; revised 26 July 2002; accepted 31 January 2003; published 9 July 2003. [1] In the Shiquanhe area of far-western Tibet, mid- underthrusting and duplexing of Lhasa terrane rocks Cretaceous strata lie unconformable on ophiolitic beneath the obducted ophiolitic melange and the melange and Jurassic flysch associated with the Qiangtang terrane to the north. INDEX TERMS: 8015 Bangong-Nujiang suture zone. On the basis of our Structural Geology: Local crustal structure; 8102 Tectonophysics: mapping and geochronologic studies, we suggest that Continental contractional orogenic belts; 9320 Information Related these Cretaceous strata were shortened by >57% over a to Geographic Region: Asia; 1035 Geochemistry: Geochronology; north south distance of 50 km during Late Cretaceous- 9604 Information Related to Geologic Time: Cenozoic; early Tertiary time. The Late Cretaceous Narangjiapo KEYWORDS: Tibet, Bangong suture, melange, obduction, thrust placed Permian strata >20 km over ophiolitic underthrusting, plateau formation. Citation: Kapp, P., M. A. Murphy, A. Yin, T. M. Harrison, L. Ding, and J. Guo, Mesozoic melange and Cretaceous strata. North of the and Cenozoic tectonic evolution of the Shiquanhe area of western Narangjiapo thrust, >40 km of shortening was Tibet, Tectonics, 22(4), 1029, doi:10.1029/2001TC001332, 2003.
    [Show full text]