Algebraic stacks Tomas L. Gomez To cite this version: Tomas L. Gomez. Algebraic stacks. 3rd cycle. Guanajuato (Mexique), 2006, pp.34. cel-00392143 HAL Id: cel-00392143 https://cel.archives-ouvertes.fr/cel-00392143 Submitted on 5 Jun 2009 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Algebraic stacks Tom´asL. G´omez Tata Institute of Fundamental Research Homi Bhabha road, Mumbai 400 005 (India)
[email protected] 26 May 2000 Abstract This is an expository article on the theory of algebraic stacks. After intro- ducing the general theory, we concentrate in the example of the moduli stack of vector bundles, giving a detailed comparison with the moduli scheme obtained via geometric invariant theory. 1 Introduction The concept of algebraic stack is a generalization of the concept of scheme, in the same sense that the concept of scheme is a generalization of the concept of projective variety. In many moduli problems, the functor that we want to study is not representable by a scheme. In other words, there is no fine moduli space. Usually this is because the objects that we want to parametrize have automorphisms.