Industrial Energy Management in the Cloud Information Systems And

Total Page:16

File Type:pdf, Size:1020Kb

Industrial Energy Management in the Cloud Information Systems And Industrial Energy Management in the Cloud Hugo André Gomes Sequeira Thesis to obtain the Master of Science Degree in Information Systems and Computer Engineering Supervisor: Prof. Dr. Paulo Jorge Fernandes Carreira Examination Committee Chairperson: Prof. Dr. Ernesto José Marques Morgado Supervisor: Prof. Dr. Paulo Jorge Fernandes Carreira Member of the Committee: Prof. Dr. Mário Serafim dos Santos Nunes November 2014 ii Acknowledgments Gostaria de comec¸ar por agradecer ao meu orientador, professor Dr. Paulo Carreira, pelo excelente trabalho de orientac¸ao,˜ que inspirou tudo e todos durante a elaborac¸ao˜ desta tese e de todas as outras que supervisionou ao longo deste ano. Obrigado por todo o suporte, todas as criticas, todos os elogios e por acreditar no nosso potencial. Gostaria tambem´ de agradecer ao meu supervisor, Dr. Thomas Goldschmidt, pela sabedoria, su- pervisao,˜ e pelo acompanhamento que prestou durante a minha estadia na ABB. Estarei para sempre grato por ter acreditado em mim e aceite nesta grande empresa. Caso contrario´ teria perdido muita coisa a n´ıvel pessoal e academico.´ A` minha fam´ılia, em especial aos meus pais e avos,´ por todo o carinho que sempre me deram e por todo o apoio na perseguic¸ao˜ dos meus sonhos. Ao Joao˜ Loff, Alexandre Almeida, Viteche Ashvin, Hugo Ramos, Sergio´ Isidoro, Tiago Aguiar, Edgar Santos, Nuno Teles e a todos os outros amigos e colegas que foram companheiros de corac¸ao˜ durante a minha vida escolar. Sem eles, nunca teria chegado aqui e por isso estarei eternamente grato. A todos os amigos que fiz na Holanda e na Alemanha, durante o meu percurso no estrangeiro. Em especial, ao meu amigo alemao˜ Philipp Piroth, pelo o apoio e carinho desde o primeiro dia e que se tornaram indispensaveis´ para conseguir viver na Alemanha com muita felicidade e realizar o meu tra- balho com muito sucesso. A todos aqueles que perdi, mas que sempre estiveram do meu lado e prontos para me apoiar nos maus ou nos bons momentos. Nunca me esquecerei de vos.´ A todos os colegas de trabalho que tive o prazer de conhecer na ABB e que tanto me ajudaram para conseguir realizar os meus objectivos. A todos vos´ e a todos os outros que fizeram parte da minha vida, Um MUITO OBRIGADO e a vos´ vos dedico esta tese. Hugo Sequeira iii iv Resumo Organizac¸oes˜ industriais usam sistemas de gestao˜ energetica´ (EMS) para monitorizar, controlar e op- timizar o seu consumo energetico.´ Sistemas industriais como estes sao˜ complexos e dispendiosos, devido aos seus requisitos avanc¸ados de desempenho, confiabilidade e interoperabilidade. A industria sente tambem´ algumas dificuldades na operac¸ao˜ dos actuais sistemas EMS quando pretende ter uma monitorizac¸ao˜ centralizada do consumo energetico´ e emissao˜ de CO2 nos varios´ locais de produc¸ao,˜ na integrac¸ao˜ de dados energeticos´ e de automac¸ao,˜ e quanto pretende efectuar uma analise´ comparativa da eficienciaˆ energetica´ entre as diferentes produc¸oes.˜ Para alem´ disso, a industria sente tambem´ prob- lemas de big data devido a` evoluc¸ao˜ tecnologica´ dos equipamentos de medic¸ao.˜ Estes produzem cada vez mais medic¸oes˜ com mais detalhe e com mais frequencia,ˆ resultando na gerac¸ao˜ de grandes quanti- dades de dados, que dificulta a gestao˜ de toda esta informac¸ao˜ em tempo real. Esta tese propoe˜ entao˜ uma soluc¸ao˜ EMS na cloud para resolver estas dificuldades e derivar novas e mais informac¸oes˜ em tempo real. De facto, o impacto desta tese e´ deveras extenso, com possibilidades inovadores para as organizac¸oes˜ industriais detectarem padroes˜ de ineficienciaˆ no seu consumo energetico´ e conseguirem reagir a mudanc¸as de ambiente com mais rapidez. A relevanciaˆ da soluc¸ao˜ proposta nesta tese foi con- firmada atraves´ de uma avaliac¸ao˜ a` forma como resolveu casos de uso que estao˜ em falta nestes sistemas industriais. A sua viabilidade de implementac¸ao˜ e o seu desempenho foram tambem´ avalia- dos, atraves´ da implementac¸ao˜ de um prototipo´ e da avaliac¸ao˜ do seu comportamento em diferentes testes de stress. Palavras-chave: Eficienciaˆ Energetica,´ Gestao˜ Industrial Energetica,´ Sistemas Industriais de Gestao˜ Energetica,´ Demand Response (DR), Computac¸ao˜ em Nuvem, Computac¸ao˜ em Tempo Real v vi Abstract Industrial organizations use Energy Management Systems (EMS) to monitor, control, and optimize their energy consumption. Industrial EMS are complex and expensive systems due to the unique require- ments of performance, reliability, and interoperability. Moreover, industry is facing challenges with cur- rent EMS implementations such as cross-site monitoring of energy consumption and CO2 emissions, integration between energy and production data, and meaningful energy efficiency benchmarking. Ad- ditionally, big data has emerged because of recent advances in field instrumentation that led to the generation of large quantities of machine data, with much more detail and higher sampling rates. This created a challenge for real-time analytics. To address these needs and challenges, this thesis proposes a cloud-native industrial EMS solution with cloud computing capabilities to enable the extraction of ac- tionable knowledge from large amounts of real-time data. Indeed, the impact of this work is far reaching as it enables organizations to detect hidden patterns of inefficient energy use and to react to changes of events in real-time. The feasibility of our proposal was verified with the implementation of a proof of concept and its usability and performance validated by respectively evaluating its approaches to solve important use cases that the industry is lacking of and how it handles different amounts of workloads. Keywords: Energy Efficiency (EE), Industrial Energy Management, Energy Management Sys- tems (EMS), Demand Response (DR), Cloud Computing, Real-time Computing vii viii Contents Acknowledgments........................................... iii Resumo.................................................v Abstract................................................. vii List of Tables.............................................. xiii List of Figures............................................. xvi List of Acronyms............................................ xvii 1 Introduction 1 1.1 Motivation.............................................2 1.2 Problem statement and objectives...............................3 1.3 Research methodology and contributions...........................3 1.4 Document organization.....................................5 2 Research Background 7 2.1 Energy Demand Management.................................7 2.1.1 Smart Grids........................................7 2.1.2 Liberalised Electricity Markets..............................7 2.1.3 Demand-Side Management...............................9 2.1.4 Energy Efficiency..................................... 10 2.1.5 Energy Management................................... 11 2.1.6 Energy Management Systems............................. 11 2.1.7 Industrial Energy Management Systems........................ 12 2.2 Demand Response........................................ 18 2.2.1 Demand Response Programs.............................. 19 2.2.2 Demand Response Standards............................. 20 2.2.3 Survey on Energy Management Systems....................... 21 2.3 Industrial Automation Systems................................. 24 2.3.1 Industrial Manufacturing................................. 25 2.3.2 Industrial Control Systems............................... 25 2.3.3 Industrial Networks.................................... 27 2.3.4 Cyber-Physical Systems................................. 27 ix 2.3.5 Internet of Things.................................... 28 2.3.6 Industry 4.0........................................ 28 2.4 Cloud Computing......................................... 30 2.4.1 Cloud Computing Concepts............................... 30 2.4.2 Cloud Computing Service Models........................... 31 2.4.3 Cloud Computing Deployment Methods........................ 32 2.4.4 Benefits of Cloud Computing.............................. 33 2.4.5 Risks and Concerns of Cloud Computing....................... 34 2.4.6 Service-Level Agreements............................... 35 2.4.7 Big Data and Real-Time Analytics........................... 35 3 Solution 39 3.1 Scope Analysis.......................................... 39 3.2 Requirement Analysis...................................... 40 3.2.1 Big Data Requirements................................. 40 3.2.2 Real-Time Requirements................................ 40 3.2.3 Functionalities...................................... 40 3.2.4 Quality Attributes..................................... 41 3.2.5 Use Case Diagrams................................... 42 3.3 Conceptualization........................................ 45 3.3.1 Energy Monitoring (Real-time computing)....................... 45 3.3.2 Energy Analytics (Batch processing).......................... 45 3.4 Energy Cloud........................................... 46 3.4.1 Dashboards........................................ 47 3.4.2 Analytics API....................................... 47 3.4.3 Message-oriented Middleware (MOM)......................... 49 3.5 Energy Monitoring........................................ 49 3.5.1 Storm Topologies..................................... 50 3.5.2 Storm Architecture.................................... 50 3.5.3 Storm Clusters...................................... 51 3.5.4 Energy Storm....................................... 52 3.5.5 Real-Time Messaging Servers............................
Recommended publications
  • AIT Presentation
    Distributed Sensors & Connectivity as the answer to future grid requirements Karl-Heinz Mayer Director Engineering Innovation & Program Management AIT Industry Day – September 11th, 2015 © 2015 Eaton Corporation. All rights reserved. Power business – status quo • Electricity is still the backbone and driver of mankind‘s productivity – this seems not to be changed soon 2 © 2015 Eaton Corporation. All rights reserved. 2 Power business – status quo • Electricity is still the backbone and driver of mankind‘s productivity – this seems not to be changed soon • Climate changes are requesting less CO2 emission despite the worldwide increase of power demand Green Energy; programs for ISO 50001, LEED,…certifications 3 © 2015 Eaton Corporation. All rights reserved. 3 Power business – status quo • Electricity is still the backbone and driver of mankind‘s productivity – this seems not to be changed soon • Climate changes are requesting less CO2 emission despite the worldwide increase of power demand Green Energy; programs for ISO 50001, LEED,…certifications • Consumer – Prosumer transformation requests new system approaches Virtual power plants 4 © 2015 Eaton Corporation. All rights reserved. 4 Technology trends are lowering the hurdles to develop and connect more intelligent devices • Semiconductor component costs continue to decline • Functionality and power management performance improving • Pervasiveness of communications increasing • Cloud services and development tools are being used more and more…and their costs are dropping dramatically with scale 5 © 2015 Eaton Corporation. All rights reserved. 5 Future challenges 1. Growing Electricity 2. Electricity Peak 3. Increasing Variable 4. Increasing Demand & Ageing Management Energy Generation Integration of Electric Infrastruture Vehicle World Energy Consumption by fuel type, 1990-2040 - Source : EIA (2013) 6 © 2015 Eaton Corporation.
    [Show full text]
  • A New Approach for Motion Control Actuators
    DIGITAL SERVOVALVES The smart approach to electrohydraulic motion control 3rd Workshop on Innovative Engineering for Fluid Power 1 Digital Servovalves AGENDA − Introduction - MOOG − Electrohydraulic motion control − Modern Automation − Digital Servovalve − Applications Abstract The integration of powerfull microprocessor based electronics in the servovalves is allowing new and flexible motion control architectures. Smart “automation nodes” coupled with high speed communication are revolucionizing the concept of motion control automation. In this presentation we are going to explore the history and reasons behind the digital valve development, the technology’s state-of-the-art and application examples. 2 Digital Servovalves AGENDA − Introduction - MOOG − Electrohydraulic motion control − Modern Automation − Digital Servovalve − Applications 3 Digital Servovalves COMPANY PROFILE • Established in 1951, by Bill Moog • Focus in high performance motion control solutions for industrial, military and aerospace applications. • Sales (FY16) = US$ 2,6 Billions • 10.700 employees • Headquarter: Buffalo, NY 4 Digital Servovalves MOOG HEADQUARTERS (Buffalo-NY) HR c Aircraft Industrial Corporate Offices Space & Defense 5 5 Digital Servovalves GLOBAL PRESENCE Asia Pacific Japan Philippines China India Korea Australia Singapore Americas USA Canada Europe Brazil Germany Italy Luxembourg Russia United Kingdom Spain France Turkey The Netherlands South Africa Ireland 6 Digital Servovalves 4 GROUPS MOOG INC. US$ 2.6 BILLIONS FY16 SPACE AND AIRCRAFT INDUSTRIAL
    [Show full text]
  • TCP/IP Device
    The Mystery of PACs January 25, 2011 Samuel M. Herb, PE owner ISA—International Society of Automation • The confusion over PAC Monster………. • The Acronym Monster….. • The Configuration Monster……………… • The Network Monster…. • The Fieldbus Monster………………………. What System to Select? PAC? What’s That? Build me a wonderful control room… …all on a tight budget! What are the Issues? ? ! ? No Project is Simple Real Goal for Plant Control System PRODUCTIVITY!!! ! Buying Decision Factors for Process Products 4%-Delivery 11%-Operational Safety 32%-Operational Efficiency 13%-Spares Availability 18%-Price 22%-Ease of Maintenance Control System Issues • Problems of open standards • Impact of fieldbuses • Configuration made easy • Significance to batching functions • Inclusion of safety systems • Challenge of advanced control methods • Wireless capabilities with security • Complexity of cyber security • Confusion of system names • Tie-in with plant business systems • Coordinate with other plants Process vs. Discrete Industries Process Discrete Products Fluids Devices, objects Operations Continuous, Batch Job Shop, Batch, Repetitive Product Design Done in Labs Done with CAD/CAE Equipment Uses Processes Uses Machines Equipment Cost Very High\ Medium to High Labor Cost Low High Sensors Numerous Analog & Discrete Mostly Discrete Control Products DCSs, PLCs, SLCs, PCs PLCs, CNCs, Robotics, PCs Supervisory Process Optimization. Cell Control, Scheduling Control Scheduling Business Mgmt. In-house, MRP II, MES, ERP MRP II, MES, ERP Implementation Bottom up Top
    [Show full text]
  • Protocol Selection Table
    Protocol Selection Table Bender offers signal line protection devices for many different communication and signal protocols. Use the table below to know which protectors must be used for a good surge protection. Selection table Protocol Signal Bender Surge protector I/O ± 5 VDC, < 250kHz NSL7v5-G NSLT1-7v5 I/O ± 12 VDC, < 250kHz NSL18-G NSLT1-18 I/O ± 24 VDC, < 250kHz NSL36-G NSLT1-36 I/O 0-20mA / 4-20mA NSL420-G NSLT1-36 I/O RS-232 NSL-DH I/O RS-422 NSL485-EC90 (x2) I/O RS-452 NSL485-EC90 (x2) I/O RS-485 NSL485-EC90 I/O 1-Wire NSL485-EC90 Protocol Signal Bender Surge protector 10/100/1000BaseT Ethernet NTP-RJ45-xCAT6 AS-i 32 VDC 1-pair NSL36-G NSLT1-36 BACnet ARCNET / Ethernet / BACnet/IP NTP-RJ45-xCAT6 BACnet RS-232 NSL-DH BACnet RS-485 NSL485-EC90 BitBus RS-485 NSL485-EC90 CAN Bus (Signal) 5 VDC 1-Pair NSL485-EC90 C-Bus 36 VDC 1-pair NSSP6A-38 CC-Link/LT/Safety RS-485 NSL485-EC90 CC-Link IE Field Ethernet NTP-RJ45-xCAT6 CCTV Power over Ethernet NTP-RJ45-xPoE DALI Digital Serial Interface NSL36-G NSLT1-36 Data Highway/Plus RS-485 NSL485-EC90 DeviceNet (Signal) 5 VDC 1-Pair NSL7v5-G NSLT1-7v5 DF1 RS-232 NSL-DH DirectNET RS-232 NSL-DH DirectNET RS-485 NSL485-EC90 Dupline (Signal) 5 VDC 1-Pair NSL7v5-G NSLT1-7v5 Dynalite DyNet NTP-RJ45-xCAT6 EtherCAT Ethernet NTP-RJ45-xCAT6 Ethernet Global Data Ethernet NTP-RJ45-xCAT6 Ethernet Powerlink Ethernet NTP-RJ45-xCAT6 Protocol Signal Bender Surge protector FIP Bus RS-485 NSL485-EC90 FINS Ethernet NTP-RJ45-xCAT6 FINS RS-232 NSL-DH FINS DeviceNet (Signal) NSL7v5-G NSLT1-7v5 FOUNDATION Fieldbus H1
    [Show full text]
  • Signalling Protocols
    Signalling Protocols Table 1 outlines some of the most common signalling protocols along with the Novaris surge protection product best suited to your application. For other signalling protocols please contact Novaris to discuss your protection requirements. Protocol Signal Type Novaris Product I/O ± 5 VDC, < 250kHz SL7v5-G SLT1-7v5 I/O ± 12 VDC, < 250kHz SL18-G SLT1-18 I/O ± 24 VDC, < 250kHz SL36-G SLT1-36 I/O ± 48 VDC, < 250kHz SL68-G SLT1-68 I/O 0-20mA / 4-20mA SL420-G SLT1-36 I/O RS-232 DB9-RS232 DB25-RS232 SL-DH I/O RS-422 SL485-EC90 (x2) DB9-RS485 I/O RS-452 SL485-EC90 (x2) DB9-RS485 I/O RS-485 SL485-EC90 DB9-RS485 I/O 1-Wire SL485-EC90 DB9-RS485 10/100/1000BaseT Ethernet RJ45-xCAT6 AS-i 32 VDC 1-pair SL36-G SLT1-36 BACnet ARCNET / Ethernet / BACnet/IP RJ45-xCAT6 BACnet RS-232 DB9-RS232 DB25-RS232 SL-DH BACnet RS-485 SL485-EC90 DB9-RS485 BitBus RS-485 SL485-EC90 DB9-RS485 CAN Bus (Signal) 5 VDC 1-Pair SL-DH DB9-RS232 C-Bus 36 VDC 1-pair SSP6A-38 CC-Link/LT/Safety RS-485 SL485-EC90 DB9-RS485 CC-Link IE Field Ethernet RJ45-xCAT6 CCTV Coaxial CLB-MF-10 CCTV Power over Ethernet RJ45-xPoE ControlNet Coaxial CLB-MF-10 DALI Digital Serial Interface SL36-G SLT1-36 Data Highway/Plus RS-485 SL485-EC90 DB9-RS485 DeviceNet (Signal) 5 VDC 1-Pair SL7v5-G SLT1-7v5 DF1 RS-232 DB9-RS232 DB25-RS232 SL-DH DirectNET RS-232 DB9-RS232 DB25-RS232 SL-DH DirectNET RS-485 SL485-EC90 DB9-RS485 Dupline (Signal) 5 VDC 1-Pair SL7v5-G SLT1-7v5 Dynalite DyNet RJ45-xPoE EtherCAT Ethernet RJ45-xCAT6 Ethernet Global Data Ethernet RJ45-xCAT6 Ethernet Powerlink Ethernet
    [Show full text]
  • Overview of Building Automation Protocols
    Considerations and challenges when integrating systems to achieve smart(er) buildings Lance Rütimann / SupDet 2015 / 04 March 2015 Unrestricted © Siemens AG 2015 All rights reserved. Integrating systems is not new … The technological development has advanced the dimension of integrations, both in quantitative and qualitative terms: . relay contacts . parallel data . serial data Cumulating events on one central point had its weaknesses. Unrestricted © Siemens AG 2015 All rights reserved. 04 March 2015 SupDet 2015 2 … but it has become more complex. And we continue to learn. Numbers of Protocols A protocol is a defined set of rules and regulations that determine how data is . 20+ Building Automation protocols transmitted in telecommunications . 35+ Process Automation protocols and computer networking . 4 Industrial Control System protocols . 4 Power System automation Source: http://en.wikipedia.org/wiki/List_of_automation_protocols Source: http://www.drillingcontractor.org/from-islands-to-clouds-the-data-evolution-10675 Distributed systems = increased redundancy Unrestricted © Siemens AG 2015 All rights reserved. 04 March 2015 SupDet 2015 3 Overview of Building Automation protocols 1. 1-Wire 14.Modbus (RTU or ASCII or TCP) 2. BACnet 15.oBIX 3. C-Bus 16.ONVIF 4. CC-Link Industrial Networks 17.VSCP 5. DALI 18.xAP 6. DSI 19.X10 7. Dynet 20.Z-Wave 8. EnOcean 21.ZigBee 9. HDL-Bus 10.INSTEON 11.IP500 12.KNX (previously AHB/EIB) 13.LonTalk Unrestricted © Siemens AG 2015 All rights reserved. 04 March 2015 SupDet 2015 4 Overview of Process Automation Protocols 1. AS-i 14.FINS 27.PieP 2. BSAP 15.FOUNDATION 28.Profibus 3. CC 16.HART 29.PROFINET IO 4.
    [Show full text]
  • Industrie 4.0 – an Overview
    Virtual Engineering Industrie 4.0 – an Overview Dr. Markus Damm, Fraunhofer Institute IESE [email protected] 1 © Fraunhofer IESE Industrie 4.0 – where does it come from? § The term „Industrie 4.0“ was coined in 2011 § Key concept in the German government’s high-tech strategy § Basically synonymous to “Industrial Internet (of Things)” § Short for “4th industrial revolution” Late 18th century Late 19th century 1970s/1980s Early 21st century water- and steam- electrification, mass Programmable Internet of Things, cyber- powered machines production Logic Controllers physical systems 2 © Fraunhofer IESE Industrie 4.0 – what does it mean? § Industrie 4.0 is typically associated to… § …higher infusion of IT and Big Data in automation § …open, highly interconnected automation systems § …networks spanning from factory floor to headquarters § …flexible, reconfigurable production (lot size 1) § …embedded à cyber-physical § It‘s not so much about new technologies… § …but about the smart combination of existing technologies! 3 © Fraunhofer IESE Industrie 4.0 – the expected general benefits § Flexibility – production lines can be reconfigured easily Þ Better adoption to market needs § Networked Production – factories of one company can be connected to each other, and to suppliers Þ Optimized utilization of capacities, less need for storage § Big Data – in a highly interconnected automation system, a lot of data can be collected Þ Enables applications like predictive maintenance § Smart Products – the products produced are cyber-physical
    [Show full text]
  • (Steven Hsu) Product Marketing Director Adaptive Cybersecurity Solutions for OT Shop Floor Protection Industry WHO WE ARE Adaptive Solution
    (Steven Hsu) Product Marketing Director Adaptive Cybersecurity Solutions for OT Shop Floor Protection Industry WHO WE ARE Adaptive Solution A joint venture company of and 30 years+ Cybersecurity Threat Intelligence + Threat 30 years OT Network Expertise Defense OT-Focused Expertise Technology Keep the Operation Running ICS Threat Overview OT is under a significant cyber attack in 2020 The 10 industries most targeted by ransomware attacks in 2020 Trend Micro 2020 Annual Cybersecurity Report 31,906 Government 22,082 Banking 17,071 Manufacturing 15,701 Healthcare 4,917 Finance 4,578 Education 4,216 Technology 3,702 Food and beverage 2,281 Oil and gas 2,002 Insurance Typical ICS Attack Method Control Center Network Backbone Network Control System Network Field Bus EWS Insiders Threat Unmanaged notebook PLC Contaminated USB HMI Historian EWS MES PLC Firewall OPC Client HMI Server EWS Bot PLC Advanced Presistent Threat HMI Ransomware Level 3 Level 1,2 Level 0 ICS Cybersecurity Weakness – How and Why The nature of ICS - Variance, Volume, Vastitude Networks Endpoints • ICS Proprietary Protocols • Diversity of OS • Existing architecture is not • Mixture of legacy and designed for the security- modernize devices centric purpose • Seldom to update Top operating systems in the manufacturing industry 60.2% Windows 7 28.9% Windows 10 5.% Windows 8.1 4.4% Windows XP 0.5% Windows XP 64 0.4% Windows 8 0.2% Windows Vista 0.1% Windows 2000 EOL Source: Trend Micro Securing Smart Factories Threats to Manufacturing Environments in the Era of Industry 4.0
    [Show full text]
  • The Future of Copper Cabling Hang On… Agenda
    The Future of Copper Cabling Hang on… Agenda... • Cabling History • The unwanted kid on the block • Next generation cabling • The growth of the converged market Agenda... • Cabling History • The unwanted kid on the block • Next generation cabling • The growth of the converged market Modern Cabling History... Copper Cat 5 1995: Ratification of 100Base-T 1994 Modern Cabling History... Copper Cat 5e 1998 Cat 5 1995: Ratification of 100Base-T 1994 1999: Ratification of 1000Base-T Modern Cabling History... Copper Cat 7 1999 Cat 6 Cat 5e 1998 1998 Cat 5 1995: Ratification of 100Base-T 1994 1999: Ratification of 1000Base-T 2002: Category 6 & 7 Standard Modern Cabling History... Copper Cat 7A 2008 Cat 6A 2008 Cat 7 1999 Cat 6 Cat 5e 1998 1998 Cat 5 1995: Ratification of 100Base-T 1994 1999: Ratification of 1000Base-T 2002: Category 6 & 7 Standard 2006: Ratification of 10GBase-T 2008: Category 6A & Cat 7A Standard Modern Cabling History... Copper Cat 7A 2008 Cat 6A 2008 Cat 7 1999 Cat 6 Cat 5e 1998 1998 Cat 5 1994 ISO 24764, EN 50173-5 and the new draft of ANSI/TIA 942 all state that Cat 6A shall be installed as the minimum copper solution for the data centre OM3 for fibre Agenda... • Cabling history • The Unwanted Kid On The Block • Next generation cabling • The growth of the converged market Unwanted Kid on the Block... Copper Coated Aluminum CCA Cables are appearing onto the global market, many being released as own brands but some as counterfeit solutions to market originals. • Fail basic transmission performance tests during commissioning acceptance tests • Exhibit poor flexibility leading to failed connections during both installation and operation • Produce higher than expected temperature rises when used to provide power using applications such as Power over Ethernet (PoE and PoE+ • Exhibit oxidation of exposed aluminium at points of connection which may reduce lifetime of those connections, particularly when they are subject to vibration or other movement.
    [Show full text]
  • Introduzione File
    BUS DI CAMPO (FIELDBUS) UN’INTRODUZIONE AI BUS DI CAMPO FONTI: • Alessandro De Luca, presentazione «CIM: Computer Integrated Manufacturing», Università la Sapienza Roma • https://en.wikipedia.org/wiki/List_of_automation_protocols INDICE: • Definizione di bus di campo (fieldbus) • Elenco dei bus di campo più diffusi TIPOLOGIE DI RETE PER LO SCAMBIO DI INFORMAZIONI SUPERVISIONE Ethernet CONTROLLO Ethernet Fieldbus CAMPO Ethernetindustriale ASI DIFFUSIONE DEI BUS DI CAMPO DEFINIZIONE Bus di campo (fieldbus) è il termine fissato in ambito IEC (International Electrotechnical Commission) per indicare in un processo automatizzato lo standard di comunicazione “seriale” tra i diversi dispositivi (nodi) costituenti il processo, quali: • dispositivi di campo (sensori, attuatori, ecc.) • dispositivi di controllo (PLC, microcontrollori ecc.) • La comunicazione tra i nodi è gestita secondo un protocollo che è caratteristico di ogni tipo di bus di campo • il modello ISO/OSI è il riferimento per i protocolli • non sono necessariamente utilizzati tutti i livelli ISO/OSI MODELLO ISO/OSI Messaggio Livelli che fanno riferimento Messaggio all’applicazione Messaggio Livello di isolamento tra rete e Messaggio applicazione Pacchetto Livelli che fanno riferimento alla Frame gestione della rete Bit TIPOLOGIE DI BUS DI CAMPO • Non esiste una sola tipologia di bus di campo, ma diverse a seconda del tipo di applicazione • Le specifiche nascono da consorzi di produttori che si associano per garantire l’interoperabilità dei loro dispositivi • Alcune di queste specifiche
    [Show full text]