Thursday, October 29, 2015 EQUATORIAL IV 8:00 A.M. Lecture Hall

Total Page:16

File Type:pdf, Size:1020Kb

Thursday, October 29, 2015 EQUATORIAL IV 8:00 A.M. Lecture Hall First Landing Site/Exploration Zone Workshop for Human Missions to the Surface of Mars (2015) sess301.pdf Thursday, October 29, 2015 EQUATORIAL IV 8:00 a.m. Lecture Hall 8:00 a.m. Michalski J. R. * Niles P. B. Sutter B. Bell M. S. McLaughlin Crater as a Candidate Landing Site for Humans on Mars [#1025] McLaughlin Crater is a deep, Noachian impact crater containing clay minerals and carbonates that likely formed an ancient lake. 8:15 a.m. Ori G. G. * Pondrelli M. Exploration Zone for Human Mission to Mars: The Area South of Firsoff Crater in Arabia Terra [#1026] We are proposing an area south of Firsoff Crater that scientifically includes: reconstruction of the stratigraphy at global scale, the identification of sedimentary environment and paleoclimatic conditions and large astrobiological potentiality. 8:30 a.m. Lynch K. L. * Wray J. J. Exploring Habitability, Hydrology, and Climate Change on Mars at Columbus Crater [#1041] Columbus crater is groundwater fed paleolake basin located in the northwest region of Terra Sirenum and is known for hosting a large diversity of aqueous deposits and therefore hosts a variety of science ROIs and potential resource ROIs. 8:45 a.m. Ackiss S. E. Wray J. J. Seelos K. D. Niles P. B. * Huygens Crater: Insights into Noachian Volcanism, Stratigraphy, and Aqueous Processes [#1032] Huygens crater is a well preserved peak ring structure in the Noachian highlands. It uplifted pre-Noachian crustal materials and experienced subsequent aqueous activity and volcanic resurfacing making it an ideal location to explore. 9:00 a.m. Lee P. * Acedillo S. Braham S. Brown A. Elphic R. Fong T. Glass B. Hoftun C. Johansen B. W. Lorber K. Mittlefehldt D. Tagaki Y. Thomas P. West M. West S. Zolensky M. Noctis Landing: A Proposed Landing Site/Exploration Zone for Human Missions to the Surface of Mars. [#1050] Noctis Landing offers a large number and wide range of ROIs for short-term and short-range Mars exploration, and is located strategically between Tharsis and Valles Marineris, which is key for longer-term and longer-range exploration. 9:15 a.m. INTEGRATING DISCUSSION 9:35 a.m. Break .
Recommended publications
  • Martian Crater Morphology
    ANALYSIS OF THE DEPTH-DIAMETER RELATIONSHIP OF MARTIAN CRATERS A Capstone Experience Thesis Presented by Jared Howenstine Completion Date: May 2006 Approved By: Professor M. Darby Dyar, Astronomy Professor Christopher Condit, Geology Professor Judith Young, Astronomy Abstract Title: Analysis of the Depth-Diameter Relationship of Martian Craters Author: Jared Howenstine, Astronomy Approved By: Judith Young, Astronomy Approved By: M. Darby Dyar, Astronomy Approved By: Christopher Condit, Geology CE Type: Departmental Honors Project Using a gridded version of maritan topography with the computer program Gridview, this project studied the depth-diameter relationship of martian impact craters. The work encompasses 361 profiles of impacts with diameters larger than 15 kilometers and is a continuation of work that was started at the Lunar and Planetary Institute in Houston, Texas under the guidance of Dr. Walter S. Keifer. Using the most ‘pristine,’ or deepest craters in the data a depth-diameter relationship was determined: d = 0.610D 0.327 , where d is the depth of the crater and D is the diameter of the crater, both in kilometers. This relationship can then be used to estimate the theoretical depth of any impact radius, and therefore can be used to estimate the pristine shape of the crater. With a depth-diameter ratio for a particular crater, the measured depth can then be compared to this theoretical value and an estimate of the amount of material within the crater, or fill, can then be calculated. The data includes 140 named impact craters, 3 basins, and 218 other impacts. The named data encompasses all named impact structures of greater than 100 kilometers in diameter.
    [Show full text]
  • Orbital Evidence for More Widespread Carbonate- 10.1002/2015JE004972 Bearing Rocks on Mars Key Point: James J
    PUBLICATIONS Journal of Geophysical Research: Planets RESEARCH ARTICLE Orbital evidence for more widespread carbonate- 10.1002/2015JE004972 bearing rocks on Mars Key Point: James J. Wray1, Scott L. Murchie2, Janice L. Bishop3, Bethany L. Ehlmann4, Ralph E. Milliken5, • Carbonates coexist with phyllosili- 1 2 6 cates in exhumed Noachian rocks in Mary Beth Wilhelm , Kimberly D. Seelos , and Matthew Chojnacki several regions of Mars 1School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA, 2The Johns Hopkins University/Applied Physics Laboratory, Laurel, Maryland, USA, 3SETI Institute, Mountain View, California, USA, 4Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA, 5Department of Geological Sciences, Brown Correspondence to: University, Providence, Rhode Island, USA, 6Lunar and Planetary Laboratory, University of Arizona, Tucson, Arizona, USA J. J. Wray, [email protected] Abstract Carbonates are key minerals for understanding ancient Martian environments because they Citation: are indicators of potentially habitable, neutral-to-alkaline water and may be an important reservoir for Wray, J. J., S. L. Murchie, J. L. Bishop, paleoatmospheric CO2. Previous remote sensing studies have identified mostly Mg-rich carbonates, both in B. L. Ehlmann, R. E. Milliken, M. B. Wilhelm, Martian dust and in a Late Noachian rock unit circumferential to the Isidis basin. Here we report evidence for older K. D. Seelos, and M. Chojnacki (2016), Orbital evidence for more widespread Fe- and/or Ca-rich carbonates exposed from the subsurface by impact craters and troughs. These carbonates carbonate-bearing rocks on Mars, are found in and around the Huygens basin northwest of Hellas, in western Noachis Terra between the Argyre – J.
    [Show full text]
  • Arxiv:2003.06799V2 [Astro-Ph.EP] 6 Feb 2021
    Thomas Ruedas1,2 Doris Breuer2 Electrical and seismological structure of the martian mantle and the detectability of impact-generated anomalies final version 18 September 2020 published: Icarus 358, 114176 (2021) 1Museum für Naturkunde Berlin, Germany 2Institute of Planetary Research, German Aerospace Center (DLR), Berlin, Germany arXiv:2003.06799v2 [astro-ph.EP] 6 Feb 2021 The version of record is available at http://dx.doi.org/10.1016/j.icarus.2020.114176. This author pre-print version is shared under the Creative Commons Attribution Non-Commercial No Derivatives License (CC BY-NC-ND 4.0). Electrical and seismological structure of the martian mantle and the detectability of impact-generated anomalies Thomas Ruedas∗ Museum für Naturkunde Berlin, Germany Institute of Planetary Research, German Aerospace Center (DLR), Berlin, Germany Doris Breuer Institute of Planetary Research, German Aerospace Center (DLR), Berlin, Germany Highlights • Geophysical subsurface impact signatures are detectable under favorable conditions. • A combination of several methods will be necessary for basin identification. • Electromagnetic methods are most promising for investigating water concentrations. • Signatures hold information about impact melt dynamics. Mars, interior; Impact processes Abstract We derive synthetic electrical conductivity, seismic velocity, and density distributions from the results of martian mantle convection models affected by basin-forming meteorite impacts. The electrical conductivity features an intermediate minimum in the strongly depleted topmost mantle, sandwiched between higher conductivities in the lower crust and a smooth increase toward almost constant high values at depths greater than 400 km. The bulk sound speed increases mostly smoothly throughout the mantle, with only one marked change at the appearance of β-olivine near 1100 km depth.
    [Show full text]
  • Ancient Fluid Escape and Related Features in Equatorial Arabia Terra (Mars)
    EPSC Abstracts Vol. 7 EPSC2012-132-3 2012 European Planetary Science Congress 2012 EEuropeaPn PlanetarSy Science CCongress c Author(s) 2012 Ancient fluid escape and related features in equatorial Arabia Terra (Mars) F. Franchi(1), A. P. Rossi(2), M. Pondrelli(3), B. Cavalazzi(1), R. Barbieri(1), Dipartimento di Scienze della Terra e Geologico Ambientali, Università di Bologna, via Zamboni 67, 40129 Bologna, Italy ([email protected]). 2Jacobs University, Bremen, Germany. 3IRSPS, Università D’Annunzio, Pescara, Italy. Abstract Noachian [1]. The ELDs are composed by light rocks showing a polygonal pattern, described elsewhere on Arabia Terra, in the equatorial region of Mars, is Mars [4], and is characterized by a high sinuosity of long-time studied area especially for the abundance the strata that locally follows a concentric trend of fluid related features. Detailed stratigraphic and informally called “pool and rim” structures (Fig. morphological study of the succession exposed in the 1A). Crommelin and Firsoff craters evidenced the occurrences of flow structures and spring deposits that endorse the presence of fluids circulation in the Late Noachian. All the morphologies in these two proto-basins occur within the Equatorial Layered Deposits (ELDs). 1. Introduction Martian layered spring deposits are of considerable interest for their supposed relationship with water and high potential of microbial signatures preservation. Their supposed fluid-related origin [1] makes the Equatorial Layered Deposits attractive targets for future missions with astrobiological purposes. In this study we report the occurrence of mounds fields and flow structures in Firsoff and Crommelin craters and summarize the result of a detailed study of the remote-sensing data sets available in this region.
    [Show full text]
  • Lick Observatory Records: Photographs UA.036.Ser.07
    http://oac.cdlib.org/findaid/ark:/13030/c81z4932 Online items available Lick Observatory Records: Photographs UA.036.Ser.07 Kate Dundon, Alix Norton, Maureen Carey, Christine Turk, Alex Moore University of California, Santa Cruz 2016 1156 High Street Santa Cruz 95064 [email protected] URL: http://guides.library.ucsc.edu/speccoll Lick Observatory Records: UA.036.Ser.07 1 Photographs UA.036.Ser.07 Contributing Institution: University of California, Santa Cruz Title: Lick Observatory Records: Photographs Creator: Lick Observatory Identifier/Call Number: UA.036.Ser.07 Physical Description: 101.62 Linear Feet127 boxes Date (inclusive): circa 1870-2002 Language of Material: English . https://n2t.net/ark:/38305/f19c6wg4 Conditions Governing Access Collection is open for research. Conditions Governing Use Property rights for this collection reside with the University of California. Literary rights, including copyright, are retained by the creators and their heirs. The publication or use of any work protected by copyright beyond that allowed by fair use for research or educational purposes requires written permission from the copyright owner. Responsibility for obtaining permissions, and for any use rests exclusively with the user. Preferred Citation Lick Observatory Records: Photographs. UA36 Ser.7. Special Collections and Archives, University Library, University of California, Santa Cruz. Alternative Format Available Images from this collection are available through UCSC Library Digital Collections. Historical note These photographs were produced or collected by Lick observatory staff and faculty, as well as UCSC Library personnel. Many of the early photographs of the major instruments and Observatory buildings were taken by Henry E. Matthews, who served as secretary to the Lick Trust during the planning and construction of the Observatory.
    [Show full text]
  • 1 Fluids Mobilization in Arabia Terra, Mars
    Fluids mobilization in Arabia Terra, Mars: depth of pressurized reservoir from mounds self- similar clustering Riccardo Pozzobon1, Francesco Mazzarini2, Matteo Massironi1, Angelo Pio Rossi3, Monica Pondrelli4, Gabriele Cremonese5, Lucia Marinangeli6 1 Department of Geosciences, Università degli Studi di Padova, Via Gradenigo 6 - 35131, Padova, Italy 2 Istituto Nazionale di Geofisica e Vulcanologia (INGV), Via Della Faggiola, 32 - 56100 Pisa, Italy 3 Department of Physics and Earth Sciences, Jacobs University Bremen, Campus Ring 1 -28759 Bremen, Germany 4 International Research School of Planetary Sciences, Università d'Annunzio, viale Pindaro 42 – 65127, Pescara, Italy 5 INAF, Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 5 - 35122, Padova, Italy 6 Laboratorio di Telerilevamento e Planetologia, DISPUTer, Universita' G. d'Annunzio, Via Vestini 31 - 66013 Chieti, Italy Abstract Arabia Terra is a region of Mars where signs of past-water occurrence are recorded in several landforms. Broad and local scale geomorphological, compositional and hydrological analyses point towards pervasive fluid circulation through time. In this work we focus on mound fields located in the interior of three casters larger than 40 km (Firsoff, Kotido and unnamed crater 20 km to the east) and showing strong morphological and textural resemblance to terrestrial mud volcanoes and spring-related features. We infer that these landforms likely testify the presence of a pressurized fluid reservoir at depth and past fluid upwelling. We have performed morphometric analyses to characterize the mound morphologies and consequently retrieve an accurate automated mapping of the mounds within the craters for spatial distribution and fractal clustering analysis. The outcome of the fractal clustering yields information about the possible extent of the percolating fracture network at depth below the craters.
    [Show full text]
  • Large Impact Crater Histories of Mars: the Effect of Different Model Crater Age Techniques ⇑ Stuart J
    Icarus 225 (2013) 173–184 Contents lists available at SciVerse ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus Large impact crater histories of Mars: The effect of different model crater age techniques ⇑ Stuart J. Robbins a, , Brian M. Hynek a,b, Robert J. Lillis c, William F. Bottke d a Laboratory for Atmospheric and Space Physics, 3665 Discovery Drive, University of Colorado, Boulder, CO 80309, United States b Department of Geological Sciences, 3665 Discovery Drive, University of Colorado, Boulder, CO 80309, United States c UC Berkeley Space Sciences Laboratory, 7 Gauss Way, Berkeley, CA 94720, United States d Southwest Research Institute and NASA Lunar Science Institute, 1050 Walnut Street, Suite 300, Boulder, CO 80302, United States article info abstract Article history: Impact events that produce large craters primarily occurred early in the Solar System’s history because Received 25 June 2012 the largest bolides were remnants from planet ary formation .Determi ning when large impacts occurred Revised 6 February 2013 on a planetary surface such as Mars can yield clues to the flux of material in the early inner Solar System Accepted 25 March 2013 which, in turn, can constrain other planet ary processes such as the timing and magnitude of resur facing Available online 3 April 2013 and the history of the martian core dynamo. We have used a large, global planetary databas ein conjunc- tion with geomorpholog icmapping to identify craters superposed on the rims of 78 larger craters with Keywords: diameters D P 150 km on Mars, 78% of which have not been previously dated in this manner.
    [Show full text]
  • Mineralogic Mapping of Huygens Crater, Mars: a Transect of the Highlands Crust and Hellas Basin Rim
    Eighth International Conference on Mars (2014) 1038.pdf MINERALOGIC MAPPING OF HUYGENS CRATER, MARS: A TRANSECT OF THE HIGHLANDS CRUST AND HELLAS BASIN RIM. S. E. Ackiss, K. D. Seelos, and D. L. Buczkowski, Johns Hopkins Universi- ty Applied Physics Laboratory, Laurel, MD 20723 ([email protected]). Introduction: Huygens crater is a well preserved bearing minerals, and hydrated minerals like sulfates peak ring structure on Mars centered at 13.5°S, 55.5°E and phyllosilicates. Twelve CRISM multispectral map in the Noachian highlands between Terras Tyrrhena tiles (~230 m/pix and corrected to Lambert Albedo) and Sabaea (Fig. 1). With a diameter of ~450 km, it were used to understand regional mineralogic trends uplifted and exhumed Noachian crustal materials from and define unit contacts. Summary parameters [9] depths greater than 30 km, likely including Hellas rim showing spectral absorptions associated with the mafic material. minerals olivine (OLINDEX), low-calcium pyroxene In neighboring terrains, numerous small outcrops of (LCP, LCPINDEX), and high-calcium pyroxene (HCP, aqueously altered minerals, such as phyllosilicates, HCPINDEX) were examined. Summary parameters have been identified [1-2] as well as frequent expanses that highlight the presence of hydrated minerals were of mafic-bearing plains [3-6]. By mapping the distribu- also utilized. Specifically, the D2300 parameter aided tion of these different mineral types in and around in the identification of Fe/Mg phyllosilicate-bearing Huygens, we offer unique insight into the emplacement materials while the BD1900 parameter showed the and alteration history of the highlands crust. presence of other hydrated minerals. Contacts were drawn where data is present and believable (spatially coherent, or inconsistent with noise) at 1:250K scale and in some cases inferred by morphology across gaps in CRISM coverage.
    [Show full text]
  • Program Lists the Abstracts for All Submissions for GREAT Day(S) 2021
    the 15th annual virtual monday april 26, 2021 - friday april 30, 2021 geneseo recognizing excellence, achievement, and talent th 2021 Geneseo Recognizing Excellence Achievement and Talent Day • 15 Annual Welcome to SUNY Geneseo’s Fifteenth Annual GREAT Day(s)! Geneseo Recognizing Excellence, Achievement & Talent Day is a college-wide symposium celebrating the creative and scholarly endeavors of our students. In addition to recognizing the achievements of our students, the purpose of GREAT Day is to help foster academic excellence, encourage professional development, and build connections within the community. http://www.geneseo.edu/great_day This program lists the abstracts for all submissions for GREAT Day(s) 2021. Due to the COVID-19 pandemic, GREAT Day(s) 2021 is happening virtually and will be held during the week of April 26th – April 30th. The keynote address by Dr. Adam Frank will be held synchronously on Wednesday, April 28th at 2:30 PM. Scholarly and creative projects in a variety of formats will be available for viewing beginning April 26th. To view presentations, check the Virtual Program on the GREAT Day webpage at: http://www.geneseo.edu/great_day GREAT Day often falls on or near Earth Day, which is held on April 22nd each year. In recognition of this, presentations that have been self- identified by students as promoting sustainability are designated by a leaf symbol - - in this program. Throughout the day, when you post about GREAT Day(s) on social media use #WeAreGREAT to be featured on GREAT Day social media! GreatDayGeneseo @GeneseoGREATDay geneseo.edu/great_day 2 2021 Geneseo Recognizing Excellence Achievement and Talent Day • 15th Annual Honors TABLE OF CONTENTS Program reflects updates as of April 25, 2021 GREAT Day Honors ...................................................................................................................
    [Show full text]
  • Distribution, Morphology, and Morphometry of Circular Mounds in the Elongated Basin of Northern Terra Sirenum, Mars Ryodo Hemmi and Hideaki Miyamoto*
    Hemmi and Miyamoto Progress in Earth and Planetary Science (2017) 4:26 Progress in Earth and DOI 10.1186/s40645-017-0141-x Planetary Science RESEARCH ARTICLE Open Access Distribution, morphology, and morphometry of circular mounds in the elongated basin of northern Terra Sirenum, Mars Ryodo Hemmi and Hideaki Miyamoto* Abstract An elongated, flat-floored basin, located in the northern part of Terra Sirenum on Mars, holds numerous enigmatic mounds (100 m wide) on the surface of its floor. We investigated their geological context, spatial distribution, morphological characteristics, and morphometric parameters by analyzing a variety of current remote sensing data sets of Mars. Over 700 mounds are identified; mapping of the mounds shows the spatial density of about 21 per 100 km2 and appearances of several clusters, coalescence, and/or alignment. Most of the mounds have smoother surface textures in contrast to the rugged surrounding terrain. Some of the mounds display depressions on their summits, meter-sized boulders on their flanks, and distinct lobate features. We also perform high-resolution topographic analysis on 50 isolated mounds, which reveals that their heights range from 6 to 43 m with a mean of 18 m and average flank slopes of most mounds are below 10°. These characteristics are consistent with the deposition and extension of mud slurries with mud breccia and gases extruded from subsurface, almost equivalent to terrestrial mud volcanism. If so, both abundance of groundwater and abrupt increase in pore fluid pressure are necessary for triggering mud eruption. Absolute crater retention ages suggest that the floor of the basin located among middle Noachian-aged highland terrains has been resurfaced during the Late Hesperian Epoch.
    [Show full text]
  • Index to JRASC Volumes 61-90 (PDF)
    THE ROYAL ASTRONOMICAL SOCIETY OF CANADA GENERAL INDEX to the JOURNAL 1967–1996 Volumes 61 to 90 inclusive (including the NATIONAL NEWSLETTER, NATIONAL NEWSLETTER/BULLETIN, and BULLETIN) Compiled by Beverly Miskolczi and David Turner* * Editor of the Journal 1994–2000 Layout and Production by David Lane Published by and Copyright 2002 by The Royal Astronomical Society of Canada 136 Dupont Street Toronto, Ontario, M5R 1V2 Canada www.rasc.ca — [email protected] Table of Contents Preface ....................................................................................2 Volume Number Reference ...................................................3 Subject Index Reference ........................................................4 Subject Index ..........................................................................7 Author Index ..................................................................... 121 Abstracts of Papers Presented at Annual Meetings of the National Committee for Canada of the I.A.U. (1967–1970) and Canadian Astronomical Society (1971–1996) .......................................................................168 Abstracts of Papers Presented at the Annual General Assembly of the Royal Astronomical Society of Canada (1969–1996) ...........................................................207 JRASC Index (1967-1996) Page 1 PREFACE The last cumulative Index to the Journal, published in 1971, was compiled by Ruth J. Northcott and assembled for publication by Helen Sawyer Hogg. It included all articles published in the Journal during the interval 1932–1966, Volumes 26–60. In the intervening years the Journal has undergone a variety of changes. In 1970 the National Newsletter was published along with the Journal, being bound with the regular pages of the Journal. In 1978 the National Newsletter was physically separated but still included with the Journal, and in 1989 it became simply the Newsletter/Bulletin and in 1991 the Bulletin. That continued until the eventual merger of the two publications into the new Journal in 1997.
    [Show full text]
  • Orbital Evidence for Iron Or Calcium Carbonates on Mars
    EPSC Abstracts Vol. 6, EPSC-DPS2011-1719, 2011 EPSC-DPS Joint Meeting 2011 c Author(s) 2011 Orbital evidence for iron or calcium carbonates on Mars J. J. Wray (1), S. L. Murchie (2), B. L. Ehlmann (3), R. E. Milliken (4), J. L. Bishop (5), K. D. Seelos (2), E. Z. Noe Dobrea (6), J. F. Mustard (7), and S. W. Squyres (1) (1) Cornell University, NY, USA ([email protected]), (2) JHU/APL, MD, USA, (3) IAS/Univ. Paris, France, (4) Univ. Notre Dame, IN, USA, (5) SETI Institute, CA, USA, (6) Planetary Science Institute, AZ, USA, (7) Brown Univ., RI, USA Abstract centered at 2.33 and 2.53 µm, consistent with Fe- and/or Ca-carbonate. Other hydrous minerals also Carbonates are key minerals for understanding absorb near 2.3 and/or 2.5 µm, but no linear mixture ancient Martian environments. Previous remote of non-carbonate phases in our spectral libraries sensing has identified Mg-rich carbonates in Martian matches the CRISM absorptions as closely in dust and in a Late Noachian rock unit bordering the position and shape. Features at 3.5 and 3.9 µm are Isidis basin. Here we report evidence for potentially also consistent with Fe/Ca-carbonates. By contrast, in older Fe- and/or Ca-rich carbonates exposed from the Mg-rich carbonates (even dolomite) all these spectral subsurface by impact craters and troughs. features occur at shorter wavelengths (Fig. 1). Mg- phyllosilicates co-occur with the putative Huygens carbonates, and a weak feature at 2.25 µm may 1.
    [Show full text]