A Phylogenetic Analysis of the Family Pseudonocardiaceae and The
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Pseudonocardia Acaciae Sp. Nov., Isolated from Roots of Acacia Auriculiformis A
Pseudonocardia acaciae sp. nov., isolated from roots of Acacia auriculiformis A. Cunn. ex Benth. Page 1 of 2 Pseudonocardia acaciae sp. nov., isolated from roots of Acacia auriculiformis A. Cunn. ex Benth. 123 Kannika Duangmal , Arinthip Thamchaipenet , Atsuko Matsumoto and 3 Yoko Takahashi - Author Affiliations 1Department of Microbiology, Faculty of Science, Kasetsart University, Chatuchak, Bangkok 10900, Thailand 2Department of Genetics, Faculty of Science, Kasetsart University, Chatuchak, Bangkok 10900, Thailand 3Kitasato Institute for Life Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan Correspondence Kannika Duangmal [email protected] or [email protected] Abstract A novel Gram-positive-staining actinomycete designated strain GMKU095T was isolated from surface-sterilized roots of Acacia auriculiformis A. Cunn. ex Benth. (earpod wattle). The organism produced branching mycelium. The spores were non-motile and had a spiny surface. Growth of strain GMKU095T occurred at 18– 42 °C, pH 5.0–8.0 and at NaCl concentrations up to 5 %. Whole-cell hydrolysates contained arabinose and galactose as major characteristic sugars. The diagnostic diamino acid of the peptidoglycan was meso-diaminopimelic acid. The glycan moiety of the murein contained acetyl residues. The menaquinone was MK-8(H4); mycolic acids were not detected. The G+C content of the DNA was 71.6 mol%. iso- C16 : 0 was detected as the major cellular fatty acid. Comparative studies of 16S rRNA gene sequences indicated that the strain was phylogenetically related to members of the genus Pseudonocardia. The most closely related type strain is Pseudonocardia spinosispora IMSNU 50581T , which is 96.2 % similar in 16S rRNA gene sequence. -
Pseudonocardia Pini Sp. Nov., an Endophytic Actinobacterium Isolated from Roots of the Pine Tree Callitris Preissii
Pseudonocardia Pini Sp. Nov., An Endophytic Actinobacterium Isolated From Roots of the Pine Tree Callitris Preissii Onuma Kaewkla ( [email protected] ) Mahasarakham University https://orcid.org/0000-0001-7630-7074 Christopher Milton Mathew Franco Flinders University of South Australia: Flinders University Research Article Keywords: Pseudonocardia pini sp. nov., an endophytic actinobacterium Posted Date: March 16th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-274242/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Version of Record: A version of this preprint was published at Archives of Microbiology on April 23rd, 2021. See the published version at https://doi.org/10.1007/s00203-021-02309-3. Page 1/16 Abstract A Gram positive, aerobic, actinobacterial strain with rod-shaped spores, CAP47RT, which was isolated from the surface-sterilized root of a native pine tree (Callitris preissii), South Australia is described. The major cellular fatty acid of this strain was iso-H-C16:1 and major menaquinone was MK-8(H4). The diagnostic diamino acid in the cell-wall peptidoglycan was identied as meso- diaminopimelic acid. These chemotaxonomic data conrmed the aliation of strain CAP47RT to the genus Pseudonocardia. Phylogenetic evaluation based on 16S rRNA gene sequence analysis placed this strain in the family Pseudonocardiaceae, being most closely related to Pseudonocardia xishanensis JCM 17906T (98.8%), Pseudonocardia oroxyli DSM 44984T (98.7%), Pseudonocardia thailandensis CMU-NKS-70T (98.7%), and Pseudonocardia ailaonensis DSM 44979T (97.9%). The results of the polyphasic study which contain genome comparisons of ANIb, ANIm and digital DNA-DNA hybridization revealed the differentiation of strain CAP47RT from the closest species with validated names. -
Successful Drug Discovery Informed by Actinobacterial Systematics
Successful Drug Discovery Informed by Actinobacterial Systematics Verrucosispora HPLC-DAD analysis of culture filtrate Structures of Abyssomicins Biological activity T DAD1, 7.382 (196 mAU,Up2) of 002-0101.D V. maris AB-18-032 mAU CH3 CH3 T extract H3C H3C Antibacterial activity (MIC): S. leeuwenhoekii C34 maris AB-18-032 175 mAU DAD1 A, Sig=210,10 150 C DAD1 B, Sig=230,10 O O DAD1 C, Sig=260,20 125 7 7 500 Rt 7.4 min DAD1 D, Sig=280,20 O O O O Growth inhibition of Gram-positive bacteria DAD1 , Sig=310,20 100 Abyssomicins DAD1 F, Sig=360,40 C 75 DAD1 G, Sig=435,40 Staphylococcus aureus (MRSA) 4 µg/ml DAD1 H, Sig=500,40 50 400 O O 25 O O Staphylococcus aureus (iVRSA) 13 µg/ml 0 CH CH3 300 400 500 nm 3 DAD1, 7.446 (300 mAU,Dn1) of 002-0101.D 300 mAU Mode of action: C HO atrop-C HO 250 atrop-C CH3 CH3 CH3 CH3 200 H C H C H C inhibitior of pABA biosynthesis 200 Rt 7.5 min H3C 3 3 3 Proximicin A Proximicin 150 HO O HO O O O O O O O O O A 100 O covalent binding to Cys263 of PabB 100 N 50 O O HO O O Sea of Japan B O O N O O (4-amino-4-deoxychorismate synthase) by 0 CH CH3 CH3 CH3 3 300 400 500 nm HO HO HO HO Michael addition -289 m 0 B D G H 2 4 6 8 10 12 14 16 min Newcastle Michael Goodfellow, School of Biology, University Newcastle University, Newcastle upon Tyne Atacama Desert In This Talk I will Consider: • Actinobacteria as a key group in the search for new therapeutic drugs. -
Genomic and Phylogenomic Insights Into the Family Streptomycetaceae Lead
1 Supplementary Material 2 Genomic and phylogenomic insights into the family Streptomycetaceae lead 3 to proposal of Charcoactinosporaceae fam. nov. and 8 novel genera with 4 emended descriptions of Streptomyces calvus 5 Munusamy Madhaiyan1, †, *, Venkatakrishnan Sivaraj Saravanan2, †, Wah-Seng See-Too3, † 6 1Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, 7 Singapore 117604; 2Department of Microbiology, Indira Gandhi College of Arts and Science, 8 Kathirkamam 605009, Pondicherry, India; 3Division of Genetics and Molecular Biology, 9 Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, 10 Malaysia 1 11 Table S3. List of the core genes in the genome used for phylogenomic analysis. NCBI Protein Accession Gene WP_074993204.1 NUDIX hydrolase WP_070028582.1 YggS family pyridoxal phosphate-dependent enzyme WP_074992763.1 ParB/RepB/Spo0J family partition protein WP_070022023.1 lipoyl(octanoyl) transferase LipB WP_070025151.1 FABP family protein WP_070027039.1 heat-inducible transcriptional repressor HrcA WP_074992865.1 folate-binding protein YgfZ WP_074992658.1 recombination protein RecR WP_074991826.1 HIT domain-containing protein WP_070024163.1 adenylosuccinate synthase WP_009190566.1 anti-sigma regulatory factor WP_071828679.1 preprotein translocase subunit SecG WP_070026304.1 50S ribosomal protein L13 WP_009190144.1 30S ribosomal protein S5 WP_014674378.1 30S ribosomal protein S8 WP_070026314.1 50S ribosomal protein L5 WP_009300593.1 30S ribosomal protein S13 WP_003998809.1 -
Generalized Antifungal Activity and 454-Screening of Pseudonocardia and Amycolatopsis Bacteria in Nests of Fungus-Growing Ants
Generalized antifungal activity and 454-screening SEE COMMENTARY of Pseudonocardia and Amycolatopsis bacteria in nests of fungus-growing ants Ruchira Sena,1, Heather D. Ishaka, Dora Estradaa, Scot E. Dowdb, Eunki Honga, and Ulrich G. Muellera,1 aSection of Integrative Biology, University of Texas, Austin, TX 78712; and bMedical Biofilm Research Institute, 4321 Marsha Sharp Freeway, Lubbock, TX 79407 Edited by Raghavendra Gadagkar, Indian Institute of Science, Bangalore, India, and approved August 14, 2009 (received for review May 1, 2009) In many host-microbe mutualisms, hosts use beneficial metabolites origin (12–14). Many of the ant-associated Pseudonocardia species supplied by microbial symbionts. Fungus-growing (attine) ants are show antibiotic activity in vitro against Escovopsis (13–15). A thought to form such a mutualism with Pseudonocardia bacteria to diversity of actinomycete bacteria including Pseudonocardia also derive antibiotics that specifically suppress the coevolving pathogen occur in the ant gardens, in the soil surrounding attine nests, and Escovopsis, which infects the ants’ fungal gardens and reduces possibly in the substrate used by the ants for fungiculture (16, 17). growth. Here we test 4 key assumptions of this Pseudonocardia- The prevailing view of attine actinomycete-Escovopsis antago- Escovopsis coevolution model. Culture-dependent and culture- nism is a coevolutionary arms race between antibiotic-producing independent (tag-encoded 454-pyrosequencing) surveys reveal that Pseudonocardia and Escovopsis parasites (5, 18–22). Attine ants are several Pseudonocardia species and occasionally Amycolatopsis (a thought to use their integumental actinomycetes to specifically close relative of Pseudonocardia) co-occur on workers from a single combat Escovopsis parasites, which fail to evolve effective resistance nest, contradicting the assumption of a single pseudonocardiaceous against Pseudonocardia because of some unknown disadvantage strain per nest. -
Study of Actinobacteria and Their Secondary Metabolites from Various Habitats in Indonesia and Deep-Sea of the North Atlantic Ocean
Study of Actinobacteria and their Secondary Metabolites from Various Habitats in Indonesia and Deep-Sea of the North Atlantic Ocean Von der Fakultät für Lebenswissenschaften der Technischen Universität Carolo-Wilhelmina zu Braunschweig zur Erlangung des Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigte D i s s e r t a t i o n von Chandra Risdian aus Jakarta / Indonesien 1. Referent: Professor Dr. Michael Steinert 2. Referent: Privatdozent Dr. Joachim M. Wink eingereicht am: 18.12.2019 mündliche Prüfung (Disputation) am: 04.03.2020 Druckjahr 2020 ii Vorveröffentlichungen der Dissertation Teilergebnisse aus dieser Arbeit wurden mit Genehmigung der Fakultät für Lebenswissenschaften, vertreten durch den Mentor der Arbeit, in folgenden Beiträgen vorab veröffentlicht: Publikationen Risdian C, Primahana G, Mozef T, Dewi RT, Ratnakomala S, Lisdiyanti P, and Wink J. Screening of antimicrobial producing Actinobacteria from Enggano Island, Indonesia. AIP Conf Proc 2024(1):020039 (2018). Risdian C, Mozef T, and Wink J. Biosynthesis of polyketides in Streptomyces. Microorganisms 7(5):124 (2019) Posterbeiträge Risdian C, Mozef T, Dewi RT, Primahana G, Lisdiyanti P, Ratnakomala S, Sudarman E, Steinert M, and Wink J. Isolation, characterization, and screening of antibiotic producing Streptomyces spp. collected from soil of Enggano Island, Indonesia. The 7th HIPS Symposium, Saarbrücken, Germany (2017). Risdian C, Ratnakomala S, Lisdiyanti P, Mozef T, and Wink J. Multilocus sequence analysis of Streptomyces sp. SHP 1-2 and related species for phylogenetic and taxonomic studies. The HIPS Symposium, Saarbrücken, Germany (2019). iii Acknowledgements Acknowledgements First and foremost I would like to express my deep gratitude to my mentor PD Dr. -
The Degradative Capabilities of New Amycolatopsis Isolates on Polylactic Acid
microorganisms Article The Degradative Capabilities of New Amycolatopsis Isolates on Polylactic Acid Francesca Decorosi 1,2, Maria Luna Exana 1,2, Francesco Pini 1,2, Alessandra Adessi 1 , Anna Messini 1, Luciana Giovannetti 1,2 and Carlo Viti 1,2,* 1 Department of Agriculture, Food, Environment and Forestry (DAGRI)—University of Florence, Piazzale delle Cascine 18, I50144 Florence, Italy; francesca.decorosi@unifi.it (F.D.); [email protected] (M.L.E.); francesco.pini@unifi.it (F.P.); alessandra.adessi@unifi.it (A.A.); anna.messini@unifi.it (A.M.); luciana.giovannetti@unifi.it (L.G.) 2 Genexpress Laboratory, Department of Agriculture, Food, Environment and Forestry (DAGRI)—University of Florence, Via della Lastruccia 14, I50019 Sesto Fiorentino, Italy * Correspondence: carlo.viti@unifi.it; Tel.: +39-05-5457-3224 Received: 15 October 2019; Accepted: 18 November 2019; Published: 20 November 2019 Abstract: Polylactic acid (PLA), a bioplastic synthesized from lactic acid, has a broad range of applications owing to its excellent proprieties such as a high melting point, good mechanical strength, transparency, and ease of fabrication. However, the safe disposal of PLA is an emerging environmental problem: it resists microbial attack in environmental conditions, and the frequency of PLA-degrading microorganisms in soil is very low. To date, a limited number of PLA-degrading bacteria have been isolated, and most are actinomycetes. In this work, a method for the selection of rare actinomycetes with extracellular proteolytic activity was established, and the technique was used to isolate four mesophilic actinomycetes with the ability to degrade emulsified PLA in agar plates. All four strains—designated SO1.1, SO1.2, SNC, and SST—belong to the genus Amycolatopsis. -
Pseudonocardia Parietis Sp. Nov., from the Indoor Environment
This is an author manuscript that has been accepted for publication in International Journal of Systematic and Evolutionary Microbiology, copyright Society for General Microbiology, but has not been copy-edited, formatted or proofed. Cite this article as appearing in International Journal of Systematic and Evolutionary Microbiology. This version of the manuscript may not be duplicated or reproduced, other than for personal use or within the rule of ‘Fair Use of Copyrighted Materials’ (section 17, Title 17, US Code), without permission from the copyright owner, Society for General Microbiology. The Society for General Microbiology disclaims any responsibility or liability for errors or omissions in this version of the manuscript or in any version derived from it by any other parties. The final copy-edited, published article, which is the version of record, can be found at http://ijs.sgmjournals.org, and is freely available without a subscription 24 months after publication. First published in: Int J Syst Evol Microbiol, 2009. 59(10) 2449-52. doi:10.1099/ijs.0.009993-0 Pseudonocardia parietis sp. nov., from the indoor environment J. Scha¨fer,1 H.-J. Busse2 and P. Ka¨mpfer1 Correspondence 1Institut fu¨r Angewandte Mikrobiologie, Justus-Liebig-Universita¨t Giessen, D-35392 Giessen, P. Ka¨mpfer Germany [email protected] 2Institut fu¨r Bakteriologie, Mykologie und Hygiene, Veterina¨rmedizinische Universita¨t, A-1210 Wien, giessen.de Austria A Gram-positive, rod-shaped, non-endospore-forming, mycelium-forming actinobacterium (04- St-002T) was isolated from the wall of an indoor environment colonized with moulds. On the basis of 16S rRNA gene sequence similarity studies, strain 04-St-002T was shown to belong to the family Pseudonocardiaceae, and to be most closely related to Pseudonocardia antarctica (99.2 %) and Pseudonocardia alni (99.1 %). -
Saccharopolyspora Flava Sp. Nov. and Saccharopolyspora Thermophila Sp
International Journal of Systematic and Evolutionary Microbiology (2001), 51, 319–325 Printed in Great Britain Saccharopolyspora flava sp. nov. and Saccharopolyspora thermophila sp. nov., novel actinomycetes from soil Zhitang Lu,1† Zhiheng Liu,1 Liming Wang,1 Yamei Zhang,1 Weihong Qi1 and Michael Goodfellow2 Author for correspondence: Zhiheng Liu. Tel: j86 10 6255 3628. Fax: j86 10 6256 0912. e-mail: zhliu!sun.im.ac.cn 1 Institute of Microbiology, The generic position of two aerobic, Gram-positive, non-acid–alcohol-fast Chinese Academy of actinomycetes was established following the isolation of their PCR-amplified Sciences, Beijing 100080, People’s Republic of China 16S rRNA genes and alignment of the resultant sequences with the corresponding sequences from representatives of the families 2 Department of Agricultural and Actinosynnemataceae and Pseudonocardiaceae. The assignment of the Environmental Science, organisms to the genus Saccharopolyspora was strongly supported by University of Newcastle, chemotaxonomic and morphological data. The strains were distinguished both Newcastle upon Tyne NE1 7RU, UK from one another and from representatives of validly described Saccharopolyspora species on the basis of a number of phenotypic properties. It is proposed that the organisms, strains 07T (l AS4.1520T l IFO 16345T l JCM 10665T) and 216T (l AS4.1511T l IFO 16346T l JCM 10664T), be classified in the genus Saccharopolyspora as Saccharopolyspora flava sp. nov. and Saccharopolyspora thermophila sp. nov., respectively. Keywords: Saccharopolyspora flava sp. nov., Saccharopolyspora thermophila sp. nov., polyphasic taxonomy INTRODUCTION these taxa were excluded from the family by Warwick et al. (1994), who considered that they might form a The application of the polyphasic taxonomic approach ‘sister’ group to the Pseudonocardiaceae clade. -
Transition from Unclassified Ktedonobacterales to Actinobacteria During Amorphous Silica Precipitation in a Quartzite Cave Envir
www.nature.com/scientificreports OPEN Transition from unclassifed Ktedonobacterales to Actinobacteria during amorphous silica precipitation in a quartzite cave environment D. Ghezzi1,2, F. Sauro3,4,5, A. Columbu3, C. Carbone6, P.‑Y. Hong7, F. Vergara4,5, J. De Waele3 & M. Cappelletti1* The orthoquartzite Imawarì Yeuta cave hosts exceptional silica speleothems and represents a unique model system to study the geomicrobiology associated to silica amorphization processes under aphotic and stable physical–chemical conditions. In this study, three consecutive evolution steps in the formation of a peculiar blackish coralloid silica speleothem were studied using a combination of morphological, mineralogical/elemental and microbiological analyses. Microbial communities were characterized using Illumina sequencing of 16S rRNA gene and clone library analysis of carbon monoxide dehydrogenase (coxL) and hydrogenase (hypD) genes involved in atmospheric trace gases utilization. The frst stage of the silica amorphization process was dominated by members of a still undescribed microbial lineage belonging to the Ktedonobacterales order, probably involved in the pioneering colonization of quartzitic environments. Actinobacteria of the Pseudonocardiaceae and Acidothermaceae families dominated the intermediate amorphous silica speleothem and the fnal coralloid silica speleothem, respectively. The atmospheric trace gases oxidizers mostly corresponded to the main bacterial taxa present in each speleothem stage. These results provide novel understanding of the microbial community structure accompanying amorphization processes and of coxL and hypD gene expression possibly driving atmospheric trace gases metabolism in dark oligotrophic caves. Silicon is one of the most abundant elements in the Earth’s crust and can be broadly found in the form of silicates, aluminosilicates and silicon dioxide (e.g., quartz, amorphous silica). -
Amycolatopsis Kentuckyensis Sp. Nov., Amycolatopsis Lexingtonensis Sp
International Journal of Systematic and Evolutionary Microbiology (2003), 53, 1601–1605 DOI 10.1099/ijs.0.02691-0 Amycolatopsis kentuckyensis sp. nov., Amycolatopsis lexingtonensis sp. nov. and Amycolatopsis pretoriensis sp. nov., isolated from equine placentas D. P. Labeda,1 J. M. Donahue,2 N. M. Williams,2 S. F. Sells2 and M. M. Henton3 Correspondence 1Microbial Genomics and Bioprocessing Research Unit, National Center for Agricultural D. P. Labeda Utilization Research, USDA Agricultural Research Service, 1815 North University Street, [email protected] Peoria, IL 61604, USA 2Livestock Disease Diagnostic Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40511, USA 3Golden Vetlab, PO 1537, Alberton, South Africa Actinomycete strains isolated from lesions on equine placentas from two horses in Kentucky and one in South Africa were subjected to a polyphasic taxonomic study. Chemotaxonomic and morphological characteristics indicated that the isolates are members of the genus Amycolatopsis. On the basis of phylogenetic analysis of 16S rDNA sequences, the isolates are related most closely to Amycolatopsis mediterranei. Physiological characteristics of these strains indicated that they do not belong to A. mediterranei and DNA relatedness determinations confirmed that these strains represent three novel species of the genus Amycolatopsis, for which the names Amycolatopsis kentuckyensis (type strain, NRRL B-24129T=LDDC 9447-99T=DSM 44652T), Amycolatopsis lexingtonensis (type strain, NRRL B-24131T=LDDC 12275-99T=DSM 44653T) and Amycolatopsis pretoriensis (type strain, NRRL B-24133T=ARC OV1 0181T=DSM 44654T) are proposed. INTRODUCTION been associated with nocardioform placentitis. Most of the severe infections were caused by the recently described Over the past decade, actinomycetes have been reported to actinomycete Crossiella equi (Donahue et al., 2002). -
Exploring the Potential of Antibiotic Production from Rare Actinobacteria by Whole-Genome Sequencing and Guided MS/MS Analysis
fmicb-11-01540 July 27, 2020 Time: 14:51 # 1 ORIGINAL RESEARCH published: 15 July 2020 doi: 10.3389/fmicb.2020.01540 Exploring the Potential of Antibiotic Production From Rare Actinobacteria by Whole-Genome Sequencing and Guided MS/MS Analysis Dini Hu1,2, Chenghang Sun3, Tao Jin4, Guangyi Fan4, Kai Meng Mok2, Kai Li1* and Simon Ming-Yuen Lee5* 1 School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China, 2 Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau, China, 3 Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China, 4 Beijing Genomics Institute, Shenzhen, China, 5 State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China Actinobacteria are well recognized for their production of structurally diverse bioactive Edited by: secondary metabolites, but the rare actinobacterial genera have been underexploited Sukhwan Yoon, for such potential. To search for new sources of active compounds, an experiment Korea Advanced Institute of Science combining genomic analysis and tandem mass spectrometry (MS/MS) screening and Technology, South Korea was designed to isolate and characterize actinobacterial strains from a mangrove Reviewed by: Hui Li, environment in Macau. Fourteen actinobacterial strains were isolated from the collected Jinan University, China samples. Partial 16S sequences indicated that they were from six genera, including Baogang Zhang, China University of Geosciences, Brevibacterium, Curtobacterium, Kineococcus, Micromonospora, Mycobacterium, and China Streptomyces. The isolate sp.01 showing 99.28% sequence similarity with a reference *Correspondence: rare actinobacterial species Micromonospora aurantiaca ATCC 27029T was selected for Kai Li whole genome sequencing.