Study Title Bioinformatic Analysis of Proteins in Golden Rice 2 to Assess

Total Page:16

File Type:pdf, Size:1020Kb

Study Title Bioinformatic Analysis of Proteins in Golden Rice 2 to Assess Food Allergy Research and Resource Program Study No. BIO-02-2006 University of Nebraska Page 1 of 24 Study Title Bioinformatic Analysis of Proteins in Golden Rice 2 to Assess Potential Allergenic Cross- Reactivity Authors Richard E. Goodman, John Wise Study Completed On May 2, 2006 Performing Laboratory Food Allergy Research and Resource Program Food Science and Technology University of Nebraska 143 Food Science & Technology Lincoln, NE 68583-0955 Laboratory Project ID Study Number: BIO-02-2006 Food Allergy Research and Resource Program Study No. BIO-02-2006 University of Nebraska Page 2 of 24 Study Number: BIO-02-2006 Title: Bioinformatic Analysis of Proteins in Golden Rice 2 to Assess Potential Allergenic Cross-Reactivity Facility: Food Allergy Research and Resource Program Food Science and Technology University of Nebraska 143 Food Industry Complex Lincoln, NE 68583-0955 USA Authors: Richard E. Goodman, John Wise University of Nebraska Study Start Date: April 4, 2006 Study Completion Date: June 5, 2006 Records Retention: All study specific raw data and a copy of the final report will be retained at the Food Allergy Research and Resource Program, University of Nebraska. Signatures of Final Report Approval: Richard E. Goodman, Ph.D. 5 June 2006 Study Author Date Stephen L. Taylor, Ph.D. 5 June 2006 FARRP Co-Director Date Food Allergy Research and Resource Program Study No. BIO-02-2006 University of Nebraska Page 3 of 24 Table of Contents Section Page Title Page .......................................................................................................................1 Signatures of Final Report Approval.............................................................................2 Table of Contents...........................................................................................................3 Abbreviations and Definitions.......................................................................................5 1.0 Summary........................................................................................................................6 2.0 Introduction....................................................................................................................7 3.0 Purpose.........................................................................................................................10 4.0 Methods .......................................................................................................................10 4.1 Protein databases..............................................................................................10 4.1.1 AllergenOnline version 6.0 database...................................................10 4.1.2 NCBI Entrez Protein database ............................................................10 4.2 Sequence database search strategies................................................................10 4.2.1 FASTA3 overall search of AllergenOnline .........................................10 4.2.2 FASTA3 of AllergenOnline by 80 aa segments ..................................11 4.2.3 BLASTP of NCBI Entrez “allergen”...................................................12 5.0 Results and Discussion ................................................................................................13 5.1 Bioinformatics results for CTP-CRTI modified from Erwinia (GR2).............13 5.2 Bioinformatics results for PSY from maize (GR2)..........................................15 5.3 Bioinformatics results for PMI from E. coli (GR2).........................................17 5.4 Bioinformatics results for positive control Ber e 1..........................................18 6.0 Conclusions..................................................................................................................21 7.0 References....................................................................................................................22 Food Allergy Research and Resource Program Study No. BIO-02-2006 University of Nebraska Page 4 of 24 Tables Table 1. CTP-CRTI overall FASTA3 search of AllergenOnline version 6.0.............14 Table 2. CTP-CRTI BLASTP of NCBI Entrez “allergen” .........................................15 Table 3 PSY overall FASTA3 search of AllergenOnline version 6.0 .......................16 Table 4 PSY BLASTP of NCBI Entrez “allergen”....................................................16 Table 5 PMI overall FASTA3 search of AllergenOnline version 6.0 .......................17 Table 6 PMI BLASTP of NCBI Entrez “allergen”....................................................18 Table 7 Ber e 1 overall FASTA3 search of AllergenOnline version 6.0...................19 Table 8 Ber e 1 80 amino acid FASTA search of AllergenOnline version 6.0 .........20 Table 9 Ber e 1 BLASTP of NCBI Entrez “allergen” ...............................................21 Figures Figure 1. CTP-CRTI query sequence...........................................................................13 Figure 2 PSY query sequence .....................................................................................15 Figure 3. PMI query sequence......................................................................................17 Figure 4. Ber e 1 query sequence .................................................................................19 Appendices Appendix 1. AllergenOnline version 6.0 sequence database ...........................................25 Appendix 2. CTP-CRTI sequence and bioinformatics data ..............................................71 Appendix 3. PSY sequence and bioinformatics data ........................................................79 Appendix 4. PMI sequence and bioinformatics data ........................................................88 Appendix 5. Ber e 1 sequence and bioinformatics data ....................................................98 Food Allergy Research and Resource Program Study No. BIO-02-2006 University of Nebraska Page 5 of 24 Abbreviations and Definitions aa Amino acid AO6 http://www.AllergenOnline.com/ database version 6.0 Ber e 1 An allergenic 2S albumin from Bertholletia excelsa (positive control) BLASTP Algorithm used to find local high scoring alignments between a pair of protein sequences (using databases on Entrez) CRTI Carotene desaturase I from Erwinia uredovora CTP Chloroplast transit peptide from garden pea CTP-CRTI Fused CTP-CRTI Entrez NCBI A public genetic database maintained by the National Center for Biotechnology Information (NCBI) at the National Institutes of Health, Bethesda, MD. Protein entries in the Entrez search and retrieval system are maintained by the NCBI of the National Institutes of Health (U.S.A.) FASTA3 Algorithm used to find local high scoring alignments between a pair or protein sequences (using the AllergenOnline database) GI A unique identification number assigned by NCBI to each sequence in the database GR2 Golden Rice version 2 is a genetically modified rice that includes three genes introduced through biotechnology (see http://www.goldenrice.org). PMI Phosphomannose isomerase from Escherichia coli PSY Phytoene synthase from Zea mays Food Allergy Research and Resource Program Study No. BIO-02-2006 University of Nebraska Page 6 of 24 1.0 Summary The three proteins expressed by the genes introduced into Golden Rice 2 (GR2) through genetic engineering were evaluated using bioinformatic approaches to identify any potential sequence matches to allergenic proteins that might indicate an elevated risk of allergic cross reactivity in consumers. Two sequence alignment and similarity scoring algorithms were used in these comparisons. A FASTA3 algorithm (Pearson, 2000) was used with the default scoring matrix (BLOSUM 50) to evaluate overall alignment of each query sequence compared to all sequences in AllergenOnline, looking for matches of low E score values (< 1e-7) and/or greater than 50% identity as an indication of potential cross-reactivity. FASTA3 was also used to search for any segment of 80 or more amino acids that aligned with a match of 35% identity or more compared to any sequence in AllergenOnline, as suggested as a lower limit for considering potential cross- reactivity (Codex, 2003). Finally, BLASTP was used to identify any significant similarity to any newly reported “allergen” sequences not found in AllergenOnline version 6.0, by searching the non-redundant (nr) sequences in the NCBI-Entrez Protein Database. FASTA and BLASTP algorithms perform relatively similar comparisons and although the scoring matrices and scoring penalties are slightly different. Both programs compare amino acid sequences (i.e., primary protein structure), and the alignment data may be used to infer higher order structural similarities (i.e., secondary and tertiary protein structures). Proteins that share a high degree of similarity throughout the entire length usually share secondary structure, common three-dimensional folds and functions. Because of the structural similarity, closely related homologoues may share immunological cross-reacivitity, including IgE binding. Proteins that contain two or more IgE epitopes, or proteins with single epitopes that are cross-linked may bind IgE on the surface of mast cells in sensitized (allergic) individuals. If a sufficient number of allergens are bound on a mast cell, it will degranulate, releasing immune mediators such as histamine and leukotrienes that induce the allergic reaction. Highly similar homologues are more likely to be bound by the same IgE, because of the increased likelihood that the
Recommended publications
  • Application of Plant Proteolytic Enzymes for Tenderization of Rabbit Meat
    Biotechnology in Animal Husbandry 34 (2), p 229-238 , 2018 ISSN 1450-9156 Publisher: Institute for Animal Husbandry, Belgrade-Zemun UDC 637.5.039'637.55'712 https://doi.org/10.2298/BAH1802229D APPLICATION OF PLANT PROTEOLYTIC ENZYMES FOR TENDERIZATION OF RABBIT MEAT Maria Doneva, Iliana Nacheva, Svetla Dyankova, Petya Metodieva, Daniela Miteva Institute of Cryobiology and Food Technology, Cherni Vrah 53, 1407, Sofia, Bulgaria Corresponding author: Maria Doneva, e-mail: [email protected] Original scientific paper Abstract: The purpose of this study is to assess the tenderizing effect of plant proteolytic enzymes upon raw rabbit meat. Tests are performed on rabbit meat samples treated with papain and two vegetal sources of natural proteases (extracts of kiwifruit and ginger root). Two variants of marinade solutions are prepared from each vegetable raw materials– 50% (w/w) and 100 % (w/w), with a duration of processing 2h, 24h, and 48h. Changes in the following physico- chemical characteristics of meat have been observed: pH, water-holding capacity, cooking losses and quantity of free amino acids. Differences in values of these characteristics have been observed, both between control and test samples, as well as depending of treatment duration. For meat samples marinated with papain and ginger extracts, the water-holding capacity reached to 6.74 ± 0.04 % (papain), 5.58 ± 0.09 % (variant 1) and 6.80 ± 0.11 % (variant 2) after 48 hours treatment. In rabbit meat marinated with kiwifruit extracts, a significant increase in WHC was observed at 48 hours, 3.37 ± 0.07 (variant 3) and 6.84 ± 0.11 (variant 4).
    [Show full text]
  • Serine Proteases with Altered Sensitivity to Activity-Modulating
    (19) & (11) EP 2 045 321 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 08.04.2009 Bulletin 2009/15 C12N 9/00 (2006.01) C12N 15/00 (2006.01) C12Q 1/37 (2006.01) (21) Application number: 09150549.5 (22) Date of filing: 26.05.2006 (84) Designated Contracting States: • Haupts, Ulrich AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 51519 Odenthal (DE) HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI • Coco, Wayne SK TR 50737 Köln (DE) •Tebbe, Jan (30) Priority: 27.05.2005 EP 05104543 50733 Köln (DE) • Votsmeier, Christian (62) Document number(s) of the earlier application(s) in 50259 Pulheim (DE) accordance with Art. 76 EPC: • Scheidig, Andreas 06763303.2 / 1 883 696 50823 Köln (DE) (71) Applicant: Direvo Biotech AG (74) Representative: von Kreisler Selting Werner 50829 Köln (DE) Patentanwälte P.O. Box 10 22 41 (72) Inventors: 50462 Köln (DE) • Koltermann, André 82057 Icking (DE) Remarks: • Kettling, Ulrich This application was filed on 14-01-2009 as a 81477 München (DE) divisional application to the application mentioned under INID code 62. (54) Serine proteases with altered sensitivity to activity-modulating substances (57) The present invention provides variants of ser- screening of the library in the presence of one or several ine proteases of the S1 class with altered sensitivity to activity-modulating substances, selection of variants with one or more activity-modulating substances. A method altered sensitivity to one or several activity-modulating for the generation of such proteases is disclosed, com- substances and isolation of those polynucleotide se- prising the provision of a protease library encoding poly- quences that encode for the selected variants.
    [Show full text]
  • Current IUBMB Recommendations on Enzyme Nomenclature and Kinetics$
    Perspectives in Science (2014) 1,74–87 Available online at www.sciencedirect.com www.elsevier.com/locate/pisc REVIEW Current IUBMB recommendations on enzyme nomenclature and kinetics$ Athel Cornish-Bowden CNRS-BIP, 31 chemin Joseph-Aiguier, B.P. 71, 13402 Marseille Cedex 20, France Received 9 July 2013; accepted 6 November 2013; Available online 27 March 2014 KEYWORDS Abstract Enzyme kinetics; The International Union of Biochemistry (IUB, now IUBMB) prepared recommendations for Rate of reaction; describing the kinetic behaviour of enzymes in 1981. Despite the more than 30 years that have Enzyme passed since these have not subsequently been revised, though in various respects they do not nomenclature; adequately cover current needs. The IUBMB is also responsible for recommendations on the Enzyme classification naming and classification of enzymes. In contrast to the case of kinetics, these recommenda- tions are kept continuously up to date. & 2014 The Author. Published by Elsevier GmbH. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/). Contents Introduction...................................................................75 Kinetics introduction...........................................................75 Introduction to enzyme nomenclature ................................................76 Basic definitions ................................................................76 Rates of consumption and formation .................................................76 Rate of reaction .............................................................76
    [Show full text]
  • Peraturan Badan Pengawas Obat Dan Makanan Nomor 28 Tahun 2019 Tentang Bahan Penolong Dalam Pengolahan Pangan
    BADAN PENGAWAS OBAT DAN MAKANAN REPUBLIK INDONESIA PERATURAN BADAN PENGAWAS OBAT DAN MAKANAN NOMOR 28 TAHUN 2019 TENTANG BAHAN PENOLONG DALAM PENGOLAHAN PANGAN DENGAN RAHMAT TUHAN YANG MAHA ESA KEPALA BADAN PENGAWAS OBAT DAN MAKANAN, Menimbang : a. bahwa masyarakat perlu dilindungi dari penggunaan bahan penolong yang tidak memenuhi persyaratan kesehatan; b. bahwa pengaturan terhadap Bahan Penolong dalam Peraturan Kepala Badan Pengawas Obat dan Makanan Nomor 10 Tahun 2016 tentang Penggunaan Bahan Penolong Golongan Enzim dan Golongan Penjerap Enzim dalam Pengolahan Pangan dan Peraturan Kepala Badan Pengawas Obat dan Makanan Nomor 7 Tahun 2015 tentang Penggunaan Amonium Sulfat sebagai Bahan Penolong dalam Proses Pengolahan Nata de Coco sudah tidak sesuai dengan kebutuhan hukum serta perkembangan ilmu pengetahuan dan teknologi sehingga perlu diganti; c. bahwa berdasarkan pertimbangan sebagaimana dimaksud dalam huruf a dan huruf b, perlu menetapkan Peraturan Badan Pengawas Obat dan Makanan tentang Bahan Penolong dalam Pengolahan Pangan; -2- Mengingat : 1. Undang-Undang Nomor 18 Tahun 2012 tentang Pangan (Lembaran Negara Republik Indonesia Tahun 2012 Nomor 227, Tambahan Lembaran Negara Republik Indonesia Nomor 5360); 2. Peraturan Pemerintah Nomor 28 Tahun 2004 tentang Keamanan, Mutu dan Gizi Pangan (Lembaran Negara Republik Indonesia Tahun 2004 Nomor 107, Tambahan Lembaran Negara Republik Indonesia Nomor 4424); 3. Peraturan Presiden Nomor 80 Tahun 2017 tentang Badan Pengawas Obat dan Makanan (Lembaran Negara Republik Indonesia Tahun 2017 Nomor 180); 4. Peraturan Badan Pengawas Obat dan Makanan Nomor 12 Tahun 2018 tentang Organisasi dan Tata Kerja Unit Pelaksana Teknis di Lingkungan Badan Pengawas Obat dan Makanan (Berita Negara Republik Indonesia Tahun 2018 Nomor 784); MEMUTUSKAN: Menetapkan : PERATURAN BADAN PENGAWAS OBAT DAN MAKANAN TENTANG BAHAN PENOLONG DALAM PENGOLAHAN PANGAN.
    [Show full text]
  • I the UNIVERSITY of NOTTINGHAM SCHOOL of BIOLOGY
    THE UNIVERSITY OF NOTTINGHAM SCHOOL OF BIOLOGY INVESTIGATIONS INTO THE EFFECTS OF PLANT DERIVED CYSTEINE PROTEINASES ON TAPEWORMS (CESTODA) by FADLUL AZIM FAUZI BIN MANSUR B.Sc M.D. M.Sc Thesis submitted to the University of Nottingham for the degree of Doctor of Philosophy November 2012 i Dedication: This thesis is affectionately dedicated to my father, my mother, my wife and my children; Emil and Emily. ii ABSTRACT Gastrointestinal (GI) helminths pose a significant threat to the livestock industry and are a recognized cause of global morbidity in humans. Control relies principally on chemotherapy but in the case of nematodes is rapidly losing efficacy through widespread development and spread of resistance to conventional anthelmintics and hence the urgent need for novel classes of anthelmintics. Cysteine proteinases (CPs) from papaya latex have been shown to be effective against three murine nematodes Heligmosomoides bakeri, Protospirura muricola and Trichuris muris in vitro and in vivo and against the economically important nematode parasite of sheep Haemonchus contortus. Preliminary evidence suggests an even broader spectrum of activity with efficacy against the canine hookworm Ancylostoma ceylanicum, juvenile stages of parasitic plant nematodes of the genera Meloidogyne and Globodera and a murine cestode Hymenolepis microstoma in vitro. This project focused on tapeworms. Using 2 different rodent cestodes Hymenolepis diminuta and Hymenolepis microstoma and 1 equine cestode Anoplocephala perfoliata I have been able to show that CPs do indeed affect cestodes whether young newly hatched scoleces in vitro (by causing a significant reduction in motility leading to death of the worms) or mature adult worms in vitro (by causing a significant reduction in motility leading to death of the worms) and in vivo (resulting in a significant, but relatively small, reduction in worm burden and biomass), despite no effects on worm fecundity.
    [Show full text]
  • Anthelmintic Action of Plant Cysteine Proteinases Against the Rodent Stomach Nematode, Protospirura Muricola, in Vitro and in Vivo
    103 Anthelmintic action of plant cysteine proteinases against the rodent stomach nematode, Protospirura muricola, in vitro and in vivo G. STEPEK1$,A.E.LOWE1,D.J.BUTTLE2, I. R. DUCE1 and J. M. BEHNKE1* 1 School of Biology, University of Nottingham NG7 2RD, UK 2 Division of Genomic Medicine, University of Sheffield S10 2RX, UK (Received 4 July 2006; revised 27 July 2006; accepted 28 July 2006; first published online 11 October 2006) SUMMARY Cysteine proteinases from the fruit and latex of plants, including papaya, pineapple and fig, were previously shown to have a rapid detrimental effect, in vitro, against the rodent gastrointestinal nematodes, Heligmosomoides polygyrus (which is found in the anterior small intestine) and Trichuris muris (which resides in the caecum). Proteinases in the crude latex of papaya also showed anthelmintic efficacy against both nematodes in vivo. In this paper, we describe the in vitro and in vivo effects of these plant extracts against the rodent nematode, Protospirura muricola, which is found in the stomach. As in earlier work, all the plant cysteine proteinases examined, with the exception of actinidain from the juice of kiwi fruit, caused rapid loss of motility and digestion of the cuticle, leading to death of the nematode in vitro. In vivo, in contrast to the efficacy against H. polygyrus and T. muris, papaya latex only showed efficacy against P. muricola adult female worms when the stomach acidity had been neutralized prior to administration of papaya latex. Therefore, collectively, our studies have demonstrated that, with the appropriate formulation, plant cysteine proteinases have efficacy against nematodes residing throughout the rodent gastrointestinal tract.
    [Show full text]
  • Actinidin Treatment and Sous Vide Cooking: Effects on Tenderness and in Vitro Protein Digestibility of Beef Brisket
    Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author. Actinidin Treatment and Sous Vide Cooking: Effects on Tenderness and In Vitro Protein Digestibility of Beef Brisket A thesis presented in partial fulfilment of the requirements for the degree of Master of Food Technology at Massey University, Manawatū , New Zealand Xiaojie Zhu 2017 i ii Abstract Actinidin from kiwifruit can tenderise meat and help to add value to low-value meat cuts. Compared with other traditional tenderisers (e.g. papain and bromelain) it is a promising way, due to its less intensive tenderisation effects on meat. But, as with other plant proteases, over-tenderisation of meat may occur if the reaction is not controlled. Therefore, the objectives of this study were (1) finding a suitable process to control the enzyme activity after desired meat tenderisation has been achieved; (2) optimising the dual processing conditions- actinidin pre-treatment followed by sous vide cooking to achieve the desired tenderisation in shorter processing times. The first part of the study focused on the thermal inactivation of actinidin in freshly-prepared kiwifruit extract (KE) or a commercially available green kiwifruit enzyme extract (CEE). The second part evaluated the effects of actinidin pre-treatment on texture and in vitro protein digestibility of sous vide cooked beef brisket steaks. The results showed that actinidin in KE and CEE was inactivated at moderate temperatures (60 and 65 °C) in less than 5 min.
    [Show full text]
  • Biochemical Investigation of the Ubiquitin Carboxyl-Terminal Hydrolase Family" (2015)
    Purdue University Purdue e-Pubs Open Access Dissertations Theses and Dissertations Spring 2015 Biochemical investigation of the ubiquitin carboxyl- terminal hydrolase family Joseph Rashon Chaney Purdue University Follow this and additional works at: https://docs.lib.purdue.edu/open_access_dissertations Part of the Biochemistry Commons, Biophysics Commons, and the Molecular Biology Commons Recommended Citation Chaney, Joseph Rashon, "Biochemical investigation of the ubiquitin carboxyl-terminal hydrolase family" (2015). Open Access Dissertations. 430. https://docs.lib.purdue.edu/open_access_dissertations/430 This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact [email protected] for additional information. *UDGXDWH6FKRRO)RUP 8SGDWHG PURDUE UNIVERSITY GRADUATE SCHOOL Thesis/Dissertation Acceptance 7KLVLVWRFHUWLI\WKDWWKHWKHVLVGLVVHUWDWLRQSUHSDUHG %\ Joseph Rashon Chaney (QWLWOHG BIOCHEMICAL INVESTIGATION OF THE UBIQUITIN CARBOXYL-TERMINAL HYDROLASE FAMILY Doctor of Philosophy )RUWKHGHJUHHRI ,VDSSURYHGE\WKHILQDOH[DPLQLQJFRPPLWWHH Chittaranjan Das Angeline Lyon Christine A. Hrycyna George M. Bodner To the best of my knowledge and as understood by the student in the Thesis/Dissertation Agreement, Publication Delay, and Certification/Disclaimer (Graduate School Form 32), this thesis/dissertation adheres to the provisions of Purdue University’s “Policy on Integrity in Research” and the use of copyrighted material. Chittaranjan Das $SSURYHGE\0DMRU3URIHVVRU V BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB $SSURYHGE\R. E. Wild 04/24/2015 +HDGRIWKH'HSDUWPHQW*UDGXDWH3URJUDP 'DWH BIOCHEMICAL INVESTIGATION OF THE UBIQUITIN CARBOXYL-TERMINAL HYDROLASE FAMILY Dissertation Submitted to the Faculty of Purdue University by Joseph Rashon Chaney In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy May 2015 Purdue University West Lafayette, Indiana ii All of this I dedicate wife, Millicent, to my faithful and beautiful children, Josh and Caleb.
    [Show full text]
  • Families and Clans of Cysteine Peptidases
    Families and clans of eysteine peptidases Alan J. Barrett* and Neil D. Rawlings Peptidase Laboratory. Department of Immunology, The Babraham Institute, Cambridge CB2 4AT,, UK. Summary The known cysteine peptidases have been classified into 35 sequence families. We argue that these have arisen from at least five separate evolutionary origins, each of which is represented by a set of one or more modern-day families, termed a clan. Clan CA is the largest, containing the papain family, C1, and others with the Cys/His catalytic dyad. Clan CB (His/Cys dyad) contains enzymes from RNA viruses that are distantly related to chymotrypsin. The peptidases of clan CC are also from RNA viruses, but have papain-like Cys/His catalytic sites. Clans CD and CE contain only one family each, those of interleukin-ll3-converting enz3wne and adenovirus L3 proteinase, respectively. A few families cannot yet be assigned to clans. In view of the number of separate origins of enzymes of this type, one should be cautious in generalising about the catalytic mechanisms and other properties of cysteine peptidases as a whole. In contrast, it may be safer to gener- alise for enzymes within a single family or clan. Introduction Peptidases in which the thiol group of a cysteine residue serves as the nucleophile in catalysis are defined as cysteine peptidases. In all the cysteine peptidases discovered so far, the activity depends upon a catalytic dyad, the second member of which is a histidine residue acting as a general base. The majority of cysteine peptidases are endopeptidases, but some act additionally or exclusively as exopeptidases.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9,345,245 B2 Cutler Et Al
    USOO9345245B2 (12) United States Patent (10) Patent No.: US 9,345,245 B2 Cutler et al. (45) Date of Patent: May 24, 2016 (54) SYNTHETIC COMPOUNDS FOR Cutler et al., “Abscisic Acid. Emergence of a Core Signaling Net VEGETATIVE ABA RESPONSES work”. Annual Review of Plant Biology, vol. 61, pp. 651-679 (2010). Iyer et al., "Adaptations of the helix-grip fold for ligand binding and (71) Applicant: THE REGENTS OF THE catalysis in the START domain superfamily”. Protens: Structure, UNIVERSITY OF CALIFORNLA, Function, and Bioinformaticis, vol.43, No. 2, pp. 134-144 (2001). Oakland, CA (US) Melcher et al., “Thirsty plants and beyond: structural mechanisms of abscisic acid perception and signaling'. Current Opinion in Struc (72) Inventors: Sean R. Cutler, Riverside, CA (US); tural Biology, vol. 20, No. 6, pp. 722-729 (2010). Masanori Okamoto, Riverside, CA Notman, “Organic compound comes to the aid of thirsty plants'. (US) Royal Society of Chemistry (May 1, 2009) http://www.rsc.org/ chemistry world/News/2009/May/01050901.asp (downloaded on (73) Assignee: THE REGENTS OF THE Jun. 29, 2015). UNIVERSITY OF CALIFORNLA, Parket al., Abscisic Acid Inhibits Type 2C Protein Phosphatases via Oakland, CA (US) the PYR/PYL Family of START Proteins, Science, vol. 324, No. 5930, pp. 1068-1071 (2009). (*) Notice: Subject to any disclaimer, the term of this Ponting etal. “START: a lipid-binding domain in StAR, HD-ZIP and patent is extended or adjusted under 35 signalling proteins”. Trends Biochem, vol. 24. No. 4, pp. 130-132 U.S.C. 154(b) by 0 days. (1999). Radauer, “The Bet v 1 fold: an ancient, versatile scaffold for binding (21) Appl.
    [Show full text]
  • Catalytic Site Cysteines of Thiol Enzyme: Sulfurtransferases
    SAGE-Hindawi Access to Research Journal of Amino Acids Volume 2011, Article ID 709404, 7 pages doi:10.4061/2011/709404 Review Article Catalytic Site Cysteines of Thiol Enzyme: Sulfurtransferases Noriyuki Nagahara Department of Environmental Medicine, Nippon Medical School, 1-1-5 Sendagi Bunkyo-ku, Tokyo 113-8602, Japan Correspondence should be addressed to Noriyuki Nagahara, [email protected] Received 23 September 2010; Accepted 9 November 2010 Academic Editor: Shandar Ahmad Copyright © 2011 Noriyuki Nagahara. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Thiol enzymes have single- or double-catalytic site cysteine residues and are redox active. Oxidoreductases and isomerases contain double-catalytic site cysteine residues, which are oxidized to a disulfide via a sulfenyl intermediate and reduced to a thiol or a thiolate. The redox changes of these enzymes are involved in their catalytic processes. On the other hand, transferases, and also some phosphatases and hydrolases, have a single-catalytic site cysteine residue. The cysteines are redox active, but their sulfenyl forms, which are inactive, are not well explained biologically. In particular, oxidized forms of sulfurtransferases, such as mercaptopyruvate sulfurtransferase and thiosulfate sulfurtransferase, are not reduced by reduced glutathione but by reduced thioredoxin. This paper focuses on why the catalytic site cysteine of sulfurtransferase is redox active. 1. Introduction Thus, sulfination of cysteine residues is a reversible oxidative process under the conditions that cysteine sulfinic acid Cysteine residues in proteins maintain the protein confor- reductase can access the catalytic site cysteine of an enzyme.
    [Show full text]
  • Coffee and Tomato Share Common Gene Repertoires As Revealed by Deep Sequencing of Seed and Cherry Transcripts
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by PubMed Central Theor Appl Genet (2005) 112: 114–130 DOI 10.1007/s00122-005-0112-2 ORIGINAL PAPER Chenwei Lin Æ Lukas A. Mueller Æ James Mc Carthy Dominique Crouzillat Æ Vincent Pe´tiard Steven D. Tanksley Coffee and tomato share common gene repertoires as revealed by deep sequencing of seed and cherry transcripts Received: 23 June 2005 / Accepted: 10 September 2005 / Published online: 5 November 2005 Ó Springer-Verlag 2005 Abstract An EST database has been generated for coffee Keywords Coffea canephora Æ Rubiaceae Æ based on sequences from approximately 47,000 cDNA Solanaceae Æ Seed development Æ Comparative genomics clones derived from five different stages/tissues, with a special focus on developing seeds. When computation- ally assembled, these sequences correspond to 13,175 Introduction unigenes, which were analyzed with respect to functional annotation, expression profile and evolution. Compared Coffee is an important international commodity, rank- with Arabidopsis, the coffee unigenes encode a higher ing among the five most valuable agricultural exports proportion of proteins related to protein modification/ from developing countries (Food and Agriculture turnover and metabolism—an observation that may Organization, http://apps.fao.org). Moreover, produc- explain the high diversity of metabolites found in coffee tion and processing of coffee employs more than 25 and related species. Several gene families were found to million people worldwide (O’Brien and Kinnaird 2003). be either expanded or unique to coffee when compared Despite its economic importance, coffee has received with Arabidopsis.
    [Show full text]