Isopogon & Petrophile
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
PROTEACEAE – It's All About Pollination
PROTEACEAE – it’s all about pollination …….Gail Slykhuis Illustration Philippa Hesterman, images Ellinor Campbell & Marg McDonald A predominantly southern hemisphere plant family, Proteaceae is well represented in Australia, particularly in the West, but we do have our own equally special local representatives, some of which are outlined below. A characteristic feature of many genera within this plant family is the ‘pollen presenter’, which is a fascinating mechanism by which the pollen, which would otherwise be difficult to access for potential pollination vectors such as bees, birds and nectarivorous mammals, is positioned on the extended style of the flower, facilitating cross- pollination. The stigma, which is part of the style, is not mature at this time, thus avoiding self-pollination. A hand lens would enable you to clearly see pollen presenters on the following local representatives: Banksia marginata, Grevillea infecunda, Hakea spp., Isopogon ceratophyllus and Lomatia illicifolia. It is interesting to note that both Victorian Smoke-bush Conospermum mitchellii and Prickly Geebung Persoonia juniperina, also found in our district, do not have pollen presenters. Silver Banksia Banksia marginata This shrub or small tree is readily recognisable when flowering (Feb – July) by the conspicuous yellow pollen presenters, which are an obvious floral part of the banksia flower. These flowers then slowly mature into our iconic woody banksia cones. It is interesting to observe the changes in the nature of the pollen presenters as the flower develops. The white undersides of the leathery leaves provide a clue to the choice of common name with their tip being characteristically blunt or truncate. Anglesea Grevillea Grevillea infecunda One of our endemic plants, the Anglesea Grevillea was first named in 1986 and is Anglesea Grevillea found in several locations north west of Anglesea. -
Cunninghamia Date of Publication: February 2020 a Journal of Plant Ecology for Eastern Australia
Cunninghamia Date of Publication: February 2020 A journal of plant ecology for eastern Australia ISSN 0727- 9620 (print) • ISSN 2200 - 405X (Online) The Australian paintings of Marianne North, 1880–1881: landscapes ‘doomed shortly to disappear’ John Leslie Dowe Australian Tropical Herbarium, James Cook University, Smithfield, Qld 4878 AUSTRALIA. [email protected] Abstract: The 80 paintings of Australian flora, fauna and landscapes by English artist Marianne North (1830-1890), completed during her travels in 1880–1881, provide a record of the Australian environment rarely presented by artists at that time. In the words of her mentor Sir Joseph Dalton Hooker, director of Kew Gardens, North’s objective was to capture landscapes that were ‘doomed shortly to disappear before the axe and the forest fires, the plough and the flock, or the ever advancing settler or colonist’. In addition to her paintings, North wrote books recollecting her travels, in which she presented her observations and explained the relevance of her paintings, within the principles of a ‘Darwinian vision,’ and inevitable and rapid environmental change. By examining her paintings and writings together, North’s works provide a documented narrative of the state of the Australian environment in the late nineteenth- century, filtered through the themes of personal botanical discovery, colonial expansion and British imperialism. Cunninghamia (2020) 20: 001–033 doi: 10.7751/cunninghamia.2020.20.001 Cunninghamia: a journal of plant ecology for eastern Australia © 2020 Royal Botanic Gardens and Domain Trust www.rbgsyd.nsw.gov.au/science/Scientific_publications/cunninghamia 2 Cunninghamia 20: 2020 John Dowe, Australian paintings of Marianne North, 1880–1881 Introduction The Marianne North Gallery in the Royal Botanic Gardens Kew houses 832 oil paintings which Marianne North (b. -
Peter H. Griggs
STRATIGRAPHIC SIGNIFICANCE OF FOSSIL POLLEN AND SPORES OF THE CHUCKANUT FORMATION, NORTHWEST WASHINGTON Thosis far the Degree of. M. S. MICHIGAN STATE UNIVERSI'I’Y Peter H. Griggs 1965 ~-.. 'Wfi— wwWWL ‘1. .Illilllflu‘fllllf -Jnl.| IEI‘II‘I'IIIIVFI (II 'llllll‘lll.‘ I, l {III-III! I’lII 'II (III! III, [I , . III! [III [I I'll! (III. (I ABSTRACT STRATIGRAPHIC SIGNIFICANCE OF FOSSIL POLLEN AND SPORES OF THE CHUCKANUT FORMATION, NORTHWEST WASHINGTON by Peter H. Griggs The Chuckanut Formation, a series of strongly folded, terrestrial sandstones and shales, outcrops in northwestern Washington. The rocks have been previously assigned an age of Upper Cretaceous to lower Eocene based upon plant megafossils. The microfossil flora of the standard section along the east shore of Samish Bay was examined in order to determine the relationship of the Chuckanut to the Burrard (middle Eocene) of British Columbia. A zonation and envir- onmental interpretation of the standard section was desired for further refinement of the geological history of Tertiary rocks in the Pacific Northwest. Twenty—two samples, representing 9,H8u feet of section, were examined for palynomorphs. Data were collected for both relative frequency and stratigraphic analysis. Seventy— nine palynomorphs are described. The Samish Bay section is divided into three zones. The zonation is based on changes in the relative frequency f and the stratigraphic range of the palynomorphs. These ’ '_ ‘ V'II -7 r1 ' < P812631 ALL. '.,I I» ) I— (1 0'). OT changes were brought about by changing environmental and climatic conditions during the deposition of the rocks. An age of Paleocene to lower Eocene is assigned to the Samish Bay section. -
VOLCANIC INFLUENCE OVER FLUVIAL SEDIMENTATION in the CRETACEOUS Mcdermott MEMBER, ANIMAS FORMATION, SOUTHWESTERN COLORADO
VOLCANIC INFLUENCE OVER FLUVIAL SEDIMENTATION IN THE CRETACEOUS McDERMOTT MEMBER, ANIMAS FORMATION, SOUTHWESTERN COLORADO Colleen O’Shea A Thesis Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August: 2009 Committee: James Evans, advisor Kurt Panter, co-advisor John Farver ii Abstract James Evans, advisor Volcanic processes during and after an eruption can impact adjacent fluvial systems by high influx rates of volcaniclastic sediment, drainage disruption, formation and failure of natural dams, changes in channel geometry and changes in channel pattern. Depending on the magnitude and frequency of disruptive events, the fluvial system might “recover” over a period of years or might change to some other morphology. The goal of this study is to evaluate the preservation potential of volcanic features in the fluvial environment and assess fluvial system recovery in a probable ancient analog of a fluvial-volcanic system. The McDermott Member is the lower member of the Late Cretaceous - Tertiary Animas Formation in SW Colorado. Field studies were based on a southwest-northeast transect of six measured sections near Durango, Colorado. In the field, 13 lithofacies have been identified including various types of sandstones, conglomerates, and mudrocks interbedded with lahars, mildly reworked tuff, and primary pyroclastic units. Subsequent microfacies analysis suggests the lahar lithofacies can be subdivided into three types based on clast composition and matrix color, this might indicate different volcanic sources or sequential changes in the volcanic center. In addition, microfacies analysis of the primary pyroclastic units suggests both surge and block-and-ash types are present. -
We Hold Two Meetings Each Month Day Meeting Evening
APS Foothills Inc. A0013126K WE HOLD TWO MEETINGS Combined EACH MONTH Newsletters 2020 DAY MEETING OCTOBER nd Date: 2 Tuesday of the month - except November, December and January. NOVEMBER Time: 10.30am Venue: Field Naturalists Hall, 1 Gardenia St, Blackburn. (Melway 47K10) ENQUIRIES Email: [email protected] EVENING MEETING Date: 4th Wednesday of the month, except December and January. FOOTHILLS Time: 7.45pm FACEBOOK PAGE Venue: Knox Park Primary School, Kathryn Rd, Knoxfield. www.facebook.com/apsfoothills (Melway 73 C3) VISITORS WELCOME! Growing together with Australian Native Plants 1 APS Foothills Inc. A0013126K October Newsletter 2020 DAY MEETING Hi Everyone, The spring equinox well behind us now, daylight Wilsons Promontory savings is upon us, and with the weather being a bit more summery (although still quite fickle at this time of year), hopefully everything, including the Covid-19 Geoff Lay situation, will start improving too! At our last Zoom evening meeting we held our AGM A Zoom Meeting and Quiz. You’ll find the minutes of the meeting, including the annual and financial reports, attached On Tuesday 13 October 2020 to this newsletter, and if you were unable to join us, you’ll find the Quiz questions (and answers) further 10.30am on in the newsletter. The committee for 2020-2021 was also elected at the AGM. We had two members step down from the committee and I’d like to thank Liz Triggs who very ably filled the role as our Deputy Leader, for all her EVENING MEETING hard work and support over the past few years. Liz put a lot of effort into publicity for Foothills, setting up and maintaining our Facebook page, and Dry Weather Gardening getting our name out there on social media by publishing interesting posts and increasing our Kerry Davis profile further by also running a couple of photo competitions. -
Adenanthos Pungens Subsp. Effusus)
SPRAWLING SPIKY ADENANTHOS (ADENANTHOS PUNGENS SUBSP. EFFUSUS) RECOVERY PLAN Department of Environment and Conservation Kensington Recovery Plan for Adenanthos pungens subsp. effusus FOREWORD Interim Recovery Plans (IRPs) are developed within the framework laid down in WA Department of Conservation and Land Management (CALM), now Department of Environment and Conservation (DEC) Policy Statements Nos. 44 and 50. Note: the Department of CALM formally became the Department of Environment and Conservation (DEC) in July 2006. DEC will continue to adhere to these Policy Statements until they are revised and reissued. IRPs outline the recovery actions that are required to urgently address those threatening processes most affecting the ongoing survival of threatened taxa or ecological communities, and begin the recovery process. DEC is committed to ensuring that Threatened taxa are conserved through the preparation and implementation of Recovery Plans (RPs) or IRPs, and by ensuring that conservation action commences as soon as possible and, in the case of Critically Endangered (CR) taxa, always within one year of endorsement of that rank by the Minister. This IRP results from a review of, and replaces, IRP No. 78 Adenanthos pungens subsp. effusus (Evans, Stack, Loudon, Graham and Brown 2000). This Interim Recovery Plan will operate from May 2006 to April 2011 but will remain in force until withdrawn or replaced. It is intended that, if the taxon is still ranked as Critically Endangered (WA), this IRP will be reviewed after five years and the need for a full Recovery Plan will be assessed. This IRP was given regional approval on 13 February, 2006 and was approved by the Director of Nature Conservation on 22 February, 2006. -
BULLETINS of AMERICAN PALEONTOLOGY and PALAEONTOGRAPHICA AMERICANA
8'oL HARVARD UNIVERSITY |v 1 ^J^y^ MUS. COMP. BULLETINSZOoL ^ LIBRARY OF MAR 4 *97^ HAi UNJVERi^-AMERICAN PALEONTOLOGY VOL. LXIV 1973-74 Paleontological Research Institution Ithaca, New York 14850 U. S. A. In Memoriam Orville L. Bandy 1916-1973 CONTENTS OF VOLUME LXIV Bulletin No. Pages Plates 278. Palynology of the ASmond Formation (Upper Cretaceous) Rock Springs Uplift, Wyoming. By J. Fred Stone 1-136 1-20 279. Tabulate Corals and Echinoderms from the Pennsylvanian Winterset Limestone, Hog- shooter Formation, Northeastern Oklahoma. By H. L. Strimple and J. M. Cooke 137-168 21 280. Stratigraphy and Genera of Calcareous Foraminifera cf the Fraileys Fades (Missis- sippian) of Central Kentucky. By R. G. Browne and E. R. Pohl 169-244 22-31 281. Crinoid Studies. Part I. Some Pennsylvanian Crinoids from Nebraska. Part. II. Some Permian Crinoids from Nebraska, Kansas, and Oklahoma. By R. K. Pabian and H. L. Strimple 245-338 32-41 INDEX volume. Each number is No separate index is included in the listed in the begin- indexed separately. Contents of the volume are ning of the volume. BULLETINS MUS. COMP. 200U LIBRARY OF OCT 16 19^ AMERICAN t^S«?fALEONTOLOGY (Founded 1895) Vol. 64 No. 278 PALYNOLOGY OF THE ALMOND FORMATION (UPPER CRETACEOUS), ROCK SPRINGS UPLIFT, WYOMING By J. Fred Stone 1973 Paleontological Research Institution Ithaca, New York 14850, U.S.A. PALEONTOLOGIGAL RESEARCH INSTITUTION 1972 - 73 President Daniel B. Sass Vice-President Merrill W. Haas Secretary Philip C. Wakeley Assistant Secretary Rebecca S. Harris Director, Treasurer Katherine V. W. Palmer Counsel Armand L. Adams Representative AAAS Council John Pojeta, Jr. -
Petrophile Shirleyae (Proteaceae): Peter M
A U S T R AL I A N N A T I V E P L A N T S S O C I E T Y ( A U S T R A L I A ) Isopogon & Petrophile Study Group Newsletter No. 25 November 2019 ISSN 1445-9493 Website http://anpsa.org.au/iso-petSG/ STUDY GROUP LEADERS/NEWSLETTER EDITORS Catriona Bate & Phil Trickett Email: [email protected] Ph: 0409 789 567 Isopogon ‘Coaldale Cracker’ in cultivation, Little Forest NSW. See our articles in this issue. Back issues of the Isopogon & Petrophile Study Group Newsletter are available at http://anpsa.org.au/iso-petSG/IPSG-news.html Isopogon & Petrophile Study Group Newsletter 25, November 2019 1 In this issue Editorial From our members Exchanging cuttings and seed Isopogon uncinatus makes Top 100 Update on current threats to isopogons and petrophiles Petrophile latericola stamp sows the seeds of conservation Introducing a new hybrid Finding ‘Coaldale Cracker’ Isopogons through insect eyes Northern exposure Isopogon profile – Isopogon linearis Petrophile profile – Petrophile axillaris Species that mound – Dryandras, Petrophile filifolia and Isopogon villosus: Margaret Pieroni Species named for people On the Etymology of Petrophile shirleyae (Proteaceae): Peter M. Olde Petrophile shirleyae (conesticks): Allan Carr Interstock grafting WA spring report 2019 Turning heads in the bush In the press Financial report Hi fellow Isophiles, Firstly, we wish to thank everyone for their generous feedback on THE PETROPHILE ISSUE, focusing on the poor relation of I & Ps, the petrophiles. We feel they are very under-appreciated and that once we learn to propagate and successfully grow some of the many spectacular species, that will all change. -
Low Flammability Local Native Species (Complete List)
Indicative List of Low Flammability Plants – All local native species – Shire of Serpentine Jarrahdale – May 2010 Low flammability local native species (complete list) Location key – preferred soil types for local native species Location Soil type Comments P Pinjarra Plain Beermullah, Guildford and Serpentine River soils Alluvial soils, fertile clays and loams; usually flat deposits carried down from the scarp Natural vegetation is typical of wetlands, with sheoaks and paperbarks, or marri and flooded gum woodlands, or shrublands, herblands or sedgelands B Bassendean Dunes Bassendean sands, Southern River and Bassendean swamps Pale grey-yellow sand, infertile, often acidic, lacking in organic matter Natural vegetation is banksia woodland with woollybush, or woodlands of paperbarks, flooded gum, marri and banksia in swamps F Foothills Forrestfield soils (Ridge Hill Shelf) Sand and gravel Natural vegetation is woodland of jarrah and marri on gravel, with banksias, sheoaks and woody pear on sand S Darling Scarp Clay-gravels, compacted hard in summer, moist in winter, prone to erosion on steep slopes Natural vegetation on shallow soils is shrublands, on deeper soils is woodland of jarrah, marri, wandoo and flooded gum D Darling Plateau Clay-gravels, compacted hard in summer, moist in winter Natural vegetation on laterite (gravel) is woodland or forest of jarrah and marri with banksia and snottygobble, on granite outcrops is woodland, shrubland or herbs, in valleys is forests of jarrah, marri, yarri and flooded gum with banksia Flammability -
No. 119 JUNE 2004 Price: $5.00 Australian Systematic Botany Society Newsletter 119 (June 2004)
No. 119 JUNE 2004 Price: $5.00 Australian Systematic Botany Society Newsletter 119 (June 2004) AUSTRALIAN SYSTEMATIC BOTANY SOCIETY INCORPORATED Council President Vice President Stephen Hopper John Clarkson School of Plant Biology Centre for Tropical Agriculture University of Western Australia PO Box 1054 CRAWLEY WA 6009 MAREEBA, Queensland 4880 tel: (08) 6488 1647 tel: (07) 4048 4745 email: [email protected] email: [email protected] Secretary Treasurer Brendan Lepschi Anthony Whalen Centre for Plant Biodiversity Research Centre for Plant Biodiversity Research Australian National Herbarium Australian National Herbarium GPO Box 1600 GPO Box 1600 CANBERRA ACT 2601 CANBERRA ACT 2601 tel: (02) 6246 5167 tel: (02) 6246 5175 email: [email protected] email: [email protected] Councillor Councillor Darren Crayn Marco Duretto Royal Botanic Gardens Sydney Tasmanian Herbarium Mrs Macquaries Road Tasmanian Museum and Art Gallery SYDNEY NSW 2000 Private Bag 4 tel: (02) 9231 8111 HOBART , Tasmania 7001 email: [email protected] tel.: (03) 6226 1806 ema il: [email protected] Other Constitutional Bodies Public Officer Hansjörg Eichler Research Committee Kirsten Cowley Barbara Briggs Centre for Plant Biodiversity Research Rod Henderson Australian National Herbarium Betsy Jackes GPO Box 1600, CANBERRA ACT 2601 Tom May tel: (02) 6246 5024 Chris Quinn email: [email protected] Chair: Vice President (ex officio) Affiliate Society Papua New Guinea Botanical Society ASBS Web site www.anbg.gov.au/asbs Webmaster: Murray Fagg Centre for Plant Biodiversity Research Australian National Herbarium Email: [email protected] Loose-leaf inclusions with this issue · CSIRO Publishing publications pamphlet Publication dates of previous issue Austral.Syst.Bot.Soc.Nsltr 118 (March 2004 issue) Hardcopy: 28th April 2004; ASBS Web site: 4th May 2004 Australian Systematic Botany Society Newsletter 119 (June 2004) ASBS Inc. -
Isopogon & Petrophile
A U S T R AL I A N N A T I V E P L A N T S A S S O C I A T I O N ( A U S T ) Isopogon & Petrophile Study Group Newsletter No. 24 April 2019 ISSN 1445-9493 Website http://anpsa.org.au/iso-petSG/ T H E P E T R O P H I L E I S S U E THE TOP THREE: What are they? And which was our members’ Number One? See our article. Photos: Royce Raleigh, Fiona Johnson, Catriona Bate Back issues of the Isopogon and Petrophile Study Group Newsletter are available at http://anpsa.org.au/iso-petSG/IPSG-news.html Isopogon & Petrophile Study Group Newsletter April 2019 1 STUDY GROUP LEADERS/NEWSLETTER EDITORS Catriona Bate & Phil Trickett Email: [email protected] Ph: 0409 789 567 T H E P E T R O P H I L E I S S U E Editorial How do you say it?? Distribution Characteristics History of the genus Petrophile naming Petrophile and Abbé Michel Gandoger – Peter Olde Solving the mystery of eastern petrophiles How to grow petrophiles How to propagate petrophiles Aulax trials A splash of red Natural hybrids Fire ecology Conservation issues The top petrophiles Where to buy petrophiles In the press Financial report Hello to all our members It’s a sad fact that there is barely a nursery in Australia you can walk into and find a petrophile plant to buy. And the common eastern species are particularly hard to acquire. Yet you can walk into Bunnings and buy a plant of Aulax, a genus no one has ever heard of and native to South Africa. -
Vegetation of Basket Swamp National Park, Northern Tablelands, New South Wales
Cunninghamia 8(4): 2004 Hunter, Vegetation of Basket Swamp National Park 453 Vegetation of Basket Swamp National Park, Northern Tablelands, New South Wales John T. Hunter School of Human & Environmental Studies, University of New England NSW 2351, AUSTRALIA Email: [email protected] Abstract: The vegetation of Basket Swamp National Park (2820 ha), 30 km north east of Tenterfield (28°54’S, 152°09’E) in the Tenterfield Shire, in the Northern Tablelands Bioregion NSW, is described. Seven vegetation communities are mapped based on survey of plots, subsequent ground-truthing, air photo interpretation and substrate. Communities described are: (1) Eucalyptus campanulata (Blackbutt) – Eucalyptus cameronii (Diehard Stringybark) Open Forests, (2) Eucalyptus campanulata (Blackbutt) – Eucalyptus cameronii (Diehard Stringybark) Grassy Open Forests, (3) Leptospermum trinervium (Tea-tree) – Leptospermum polygalifolium subsp. transmontanum (Creek Tea-tree) Riparian Scrub, (4) Leptospermum trinervium (Tea-tree) – Kunzea obovata (Pink Kunzea) – Leptospermum novae-angliae (New England Tea-tree) Heaths & Shrublands, (5) Ceratopetalum apetalum (Coachwood) – Lophostemon confertus (Brush Box) Closed Forest, (6) Eucalyptus obliqua (Messmate) – Eucalyptus campanulata (Blackbutt) Tall Open Forests, and (7) Baeckea omissa (Baeckea) – Baloskion stenocoleum (Sedge) Heathy Sedgelands. All but two communities (3 & 7) were considered adequately reserved locally, no listed endangered or vulnerable commu- nities were found. Thirty-six taxa were considered to be of conservation significance of which two are listed as vulnerable on Schedule 2 of the NSW TSC Act. A further nine have been reported under the RoTAP criteria. Cunninghamia (2004) 8(4): 453–466 Introduction Basket Swamp National Park is located approximately 30 km north east of Tenterfield and 10 km west of the Mount Lindsay Highway (28°54’S, 152°09’E) (Fig.