Significant Items

Total Page:16

File Type:pdf, Size:1020Kb

Significant Items DEPARTMENT OF HEALTH AND HUMAN SERVICES NATIONAL INSTITUTES OF HEALTH FY 2022 CONGRESSIONAL JUSTIFICATION Significant Items Page No. 7q11.23 Duplication Syndrome ...................................................................................................... 4 Academic and Non-Profit Institutional Research Using Human Ocular Tissue from Not-for- Profit Eye Banks ............................................................................................................................. 6 Addressing Maternal Mortality Disparities .................................................................................... 8 Addressing Youth Mental Health Disparities ............................................................................... 10 Alzheimer’s Disease and Dementia Screening Tools ................................................................... 12 Amyloidosis .................................................................................................................................. 14 Amyotrophic Lateral Sclerosis ..................................................................................................... 16 Antimicrobial Resistance .............................................................................................................. 17 Biomedical Research Facilities ..................................................................................................... 19 BRAIN Initiative ........................................................................................................................... 21 Building and Facilities (B&F) ...................................................................................................... 23 Cancer Immunotherapy ................................................................................................................. 25 Celiac Disease ............................................................................................................................... 27 Childhood Cancer Data Initiative (CCDI) .................................................................................... 29 Childhood Cancer Survival Metrics.............................................................................................. 31 Childhood Post-Infectious Autoimmune Disorders ...................................................................... 33 Clinical and Translational Science Awards (CTSA) .................................................................... 35 Deadliest Cancers.......................................................................................................................... 37 Deadliest Cancers - Updates on Seven Deadliest Cancers ........................................................... 40 Diabetes......................................................................................................................................... 45 Dystonia ........................................................................................................................................ 47 Eating Disorder Research ............................................................................................................. 49 Environmental influences on Child Health Outcomes (ECHO) ................................................... 51 E-Cigarette Research .................................................................................................................... 54 Endometrial Cancer ...................................................................................................................... 56 1 Federal Advisory Committees Transparency Initiative ................................................................ 58 Fetal Tissue ................................................................................................................................... 60 Gastric Cancer ............................................................................................................................... 61 Glioblastoma (GBM) .................................................................................................................... 63 Government-wide Collaborations ................................................................................................. 64 Hereditary Spastic Paraparesis 49 (TECPR2)............................................................................... 66 Induced Pluripotent Stem Cell (iPSC) Technology ...................................................................... 68 Inflammatory Bowel Diseases (IBD)............................................................................................ 70 Liver Cancer.................................................................................................................................. 72 Macular Degeneration ................................................................................................................... 74 Male Reproductive Health ............................................................................................................ 76 Maternal Mortality Research ........................................................................................................ 78 Maternal-Fetal Medicine Units (MFMU) Network ...................................................................... 80 Melanoma ..................................................................................................................................... 82 Mitochondrial Disease Research Coordination ............................................................................ 85 Multiple Sulfatase Deficiency (MSD) .......................................................................................... 87 Myotonic Dystrophy ..................................................................................................................... 89 National Commission on Lymphatic Diseases ............................................................................. 91 Office of Cancer Survivorship ...................................................................................................... 93 Pediatric Cancer ............................................................................................................................ 94 Pediatric Nephrology .................................................................................................................... 97 Pediatric Research ......................................................................................................................... 99 Pelvic Floor Disorder .................................................................................................................. 101 Polycystic Ovary Syndrome (PCOS, NICHD) ........................................................................... 103 Polycystic Ovary Syndrome (PCOS, NHLBI)............................................................................ 105 Premature Births ......................................................................................................................... 107 Primate Research ........................................................................................................................ 110 Psychosocial Distress Complications ......................................................................................... 113 RADx .......................................................................................................................................... 115 Rare Cancers Therapeutics Research and Development – DART Study ................................... 118 Rare Cancer Therapeutic Research and Development ................................................................ 121 2 Research in Pregnant and Lactating Women .............................................................................. 124 Sickle Cell Disease (SCD) .......................................................................................................... 126 Spina Bifida ................................................................................................................................ 128 STAR Act.................................................................................................................................... 130 Suicide Prevention ...................................................................................................................... 132 Surveillance, Epidemiology, and End Results (SEER) Program Registry ................................. 134 Swine Research ........................................................................................................................... 136 Temporomandibular Disorders (TMD)....................................................................................... 138 Thalassemia (NIA) ...................................................................................................................... 140 Thalassemia (NHLBI) ................................................................................................................. 142 Traumatic Brain Injury ............................................................................................................... 144 Women and Lung Cancer ........................................................................................................... 146 Women’s Health Research Priorities .......................................................................................... 148 Women's Health .........................................................................................................................
Recommended publications
  • Diagnostic Immunohistochemistry for Canine Cutaneous Round Cell Tumours — Retrospective Analysis of 60 Cases
    FOLIA HISTOCHEMICA ORIGINAL PAPER ET CYTOBIOLOGICA Vol. 57, No. 3, 2019 pp. 146–154 Diagnostic immunohistochemistry for canine cutaneous round cell tumours — retrospective analysis of 60 cases Katarzyna Pazdzior-Czapula, Mateusz Mikiewicz, Michal Gesek, Cezary Zwolinski, Iwona Otrocka-Domagala Department of Pathological Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland Abstract Introduction. Canine cutaneous round cell tumours (CCRCTs) include various benign and malignant neoplastic processes. Due to their similar morphology, the diagnosis of CCRCTs based on histopathological examination alone can be challenging, often necessitating ancillary immunohistochemical (IHC) analysis. This study presents a retrospective analysis of CCRCTs. Materials and methods. This study includes 60 cases of CCRCTs, including 55 solitary and 5 multiple tumours, evaluated immunohistochemically using a basic antibody panel (MHCII, CD18, Iba1, CD3, CD79a, CD20 and mast cell tryptase) and, when appropriate, extended antibody panel (vimentin, desmin, a-SMA, S-100, melan-A and pan-keratin). Additionally, histochemical stainings (May-Grünwald-Giemsa and methyl green pyronine) were performed. Results. IHC analysis using a basic antibody panel revealed 27 cases of histiocytoma, one case of histiocytic sarcoma, 18 cases of cutaneous lymphoma of either T-cell (CD3+) or B-cell (CD79a+) origin, 5 cases of plas- macytoma, and 4 cases of mast cell tumours. The extended antibody panel revealed 2 cases of alveolar rhabdo- myosarcoma, 2 cases of amelanotic melanoma, and one case of glomus tumour. Conclusions. Both canine cutaneous histiocytoma and cutaneous lymphoma should be considered at the beginning of differential diagnosis for CCRCTs. While most poorly differentiated CCRCTs can be diagnosed immunohis- tochemically using 1–4 basic antibodies, some require a broad antibody panel, including mesenchymal, epithelial, myogenic, and melanocytic markers.
    [Show full text]
  • Dermatofibrosarcoma Protuberans and Dermatofibroma: Dermal Dendrocytomas? a Ultrastructural Study
    Dermatofibrosarcoma Protuberans and Dermatofibroma: Dermal Dendrocytomas? A Ultrastructural Study Hugo Dominguez-Malagon, M.D., Ana Maria Cano-Valdez, M.D. Department of Pathology, Instituto Nacional de Cancerología, Mexico. ABSTRACT population of plump spindled cells devoid of cell processes, these cells contained intracytoplasmic lipid droplets and rare Dermatofibroma (DF) and Dermatofibrosarcoma subplasmalemmal densities but lacked MVB. Protuberans (DFSP) are dermal tumors whose histogenesis has not been well defined to date. The differential diagnosis in most With the ultrastructural characteristics and the constant cases is established in routine H/E sections and may be confirmed expression of CD34 in DFSP, a probable origin in dermal by immunohistochemistry; however there are atypical variants dendrocytes is postulated. The histogenesis of DF remains of DF with less clear histological differences and non-conclusive obscure. immunohistochemical results. In such cases electron microscopy studies may be useful to establish the diagnosis. INTRODUCTION In the present paper the ultrastructural characteristics of 38 The histogenesis or differentiation of cases of DFSP and 10 cases of DF are described in detail, the Dermatofibrosarcoma Protuberans (DFSP) and objective was to identify some features potentially useful for Dermatofibroma (DF) is controversial in the literature. For differential diagnosis, and to identify the possible histogenesis of DFSP diverse origins such as fibroblastic,1 fibro-histiocytic2 both neoplasms. Schwannian,3 myofibroblastic,4 perineurial,5,6 and endoneurial (7) have been postulated. DFSP in all cases was formed by stellate or spindled cells with long, slender, ramified cell processes joined by primitive junctions, Regarding DF, most authors are in agreement of a subplasmalemmal densities were frequently seen in the processes.
    [Show full text]
  • Plant Tumorigenesis: Different Ways for Shifting Systemic Control of Plant Cell Division and Differentiation
    Transgenic Plant Journal ©2007 Global Science Books Plant Tumorigenesis: Different Ways for Shifting Systemic Control of Plant Cell Division and Differentiation Irina E. Dodueva* • Nadezhda V. Frolova • Ludmila A. Lutova Saint-Petersburg State University, Department of Genetics and Breeding, 199034, 7/9 Universitetskaya emb., Saint-Petersburg, Russia Corresponding author : * [email protected] ABSTRACT Investigation of plant tumorigenesis is a way to clarify the mechanisms of systemic control of plant cell division and differentiation. Two spacious groups of plant tumors are exist. The first are tumors which are induced by different pathogens. Most known tumorigenic plant pathogens are the representatives of the Agrobacterium genus which use a specific way to genetically colonize and insert a plasmid DNA fragment (T-DNA) into the host genome. The second group includes spontaneous tumors that form on plants with certain genotypes: interspecific hybrids in some genera (most known of them are Nicotiana interspecific hybrids), inbred lines of some cross-pollinating species (e.g. tumorous lines of radish Raphanus sativus var. radicula Pers.), tumorous mutants and transgenic plants (e.g. pas and tsd mutants of Arabidopsis thaliana, CHRK1-supressed transgenic Nicotiana tabacum plants). The cause for all types of plant tumorigenesis is deviations in the metabolism and/or signaling of two main groups of phytohormones – cytokinins and auxins. These hormones take part in the control of the plant cell cycle via regulation of cyclins and cyclin-dependent
    [Show full text]
  • Dermatofibrosarcoma Protuberans of the Parotid Gland -A Case Report
    The Korean Journal of Pathology 2004; 38: 276-9 Dermatofibrosarcoma Protuberans of the Parotid Gland -A Case Report - Ok-Jun Lee∙David Y. Pi∙ Dermatofibrosarcoma protuberans (DFSP) typically presents during the early or mid-adult life, Daniel H. Jo∙Kyung-Ja Cho and the most common site of origin is the skin on the trunk and proximal extremities. DFSP of Sang Yoon Kim1∙Jae Y. Ro the parotid gland is extremely rare and only one case has been reported in the literature. We present here a case of a 30-year-old woman with DFSP occurring in the parotid gland, and we Departments of Pathology and discuss the differential diagnosis. The patient is alive and doing well one year after her operation. 1Otolaryngology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea Received : January 27, 2004 Accepted : July 5, 2004 Corresponding Author Jae Y. Ro, M.D. Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, 388-1 Pungnap-dong, Songpa-gu, Seoul 138-736, Korea Tel: 02-3010-4550 Fax: 02-472-7898 E-mail: [email protected] Key Words : Dermatofibrosarcoma Protuberans-Parotid Gland Epithelial tumors make up the majority of salivary gland neo- CASE REPORT plasms, while mesenchymal tumors of this organ are uncommon. Dermatofibrosarcoma protuberans (DFSP) of the salivary gland A 30-year-old woman came to the Otolaryngology Clinic at is exremely rare and only one case has been reported in the parotid the Asan Medical Center with a 2-year history of a slowly enlarg- gland.1 ing mass inferior to the left angle of the mandible.
    [Show full text]
  • Helicobacter Pylori Infection and Extragastric Diseases—A Focus on the Central Nervous System
    cells Review Helicobacter pylori Infection and Extragastric Diseases—A Focus on the Central Nervous System Jacek Baj 1,* , Alicja Forma 2 , Wojciech Flieger 1 , Izabela Morawska 3 , Adam Michalski 3 , Grzegorz Buszewicz 2 , Elzbieta˙ Sitarz 4, Piero Portincasa 5 , Gabriella Garruti 6, Michał Flieger 2 and Grzegorz Teresi´nski 2 1 Chair and Department of Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland; [email protected] 2 Department of Forensic Medicine, Medical University of Lublin, 20-090 Lublin, Poland; [email protected] (A.F.); [email protected] (G.B.); michalfl[email protected] (M.F.); [email protected] (G.T.) 3 Department of Clinical Immunology and Immunotherapy, Medical University of Lublin, 20-093 Lublin, Poland; [email protected] (I.M.); [email protected] (A.M.) 4 Chair and I Department of Psychiatry, Psychotherapy, and Early Intervention, Medical University of Lublin, 20-439 Lublin, Poland; [email protected] 5 Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy; [email protected] 6 Section of Endocrinology, Department of Emergency and Organ Transplantations, University of Bari “Aldo Moro” Medical School, Piazza G. Cesare 11, 70124 Bari, Italy; [email protected] * Correspondence: [email protected] Abstract: Helicobacter pylori (H. pylori) is most known to cause a wide spectrum of gastrointestinal Citation: Baj, J.; Forma, A.; Flieger, impairments; however, an increasing number of studies indicates that H. pylori infection might W.; Morawska, I.; Michalski, A.; be involved in numerous extragastric diseases such as neurological, dermatological, hematologic, Buszewicz, G.; Sitarz, E.; Portincasa, ocular, cardiovascular, metabolic, hepatobiliary, or even allergic diseases.
    [Show full text]
  • Epithelioid Fibrous Histiocytoma
    Modern Pathology (2018) 31, 753–762 © 2018 USCAP, Inc All rights reserved 0893-3952/18 $32.00 753 Epithelioid fibrous histiocytoma: molecular characterization of ALK fusion partners in 23 cases Brendan C Dickson1,2,3, David Swanson1,3, George S Charames1,2,3, Christopher DM Fletcher4,5 and Jason L Hornick4,5 1Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, Canada; 2Department of Pathobiology and Laboratory Medicine, University of Toronto, Toronto, ON, Canada; 3Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada; 4Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA and 5Harvard Medical School, Boston, MA, USA Epithelioid fibrous histiocytoma is a rare and distinctive cutaneous neoplasm. Most cases harbor ALK rearrangement and show ALK overexpression, which distinguish this neoplasm from conventional cutaneous fibrous histiocytoma and variants. SQSTM1 and VCL have previously been shown to partner with ALK in one case each of epithelioid fibrous histiocytoma. The purpose of this study was to examine a large cohort of epithelioid fibrous histiocytomas by next-generation sequencing to characterize the nature and prevalence of ALK fusion partners. A retrospective archival review was performed to identify cases of epithelioid fibrous histiocytoma (2012–2016). Immunohistochemistry was performed to confirm ALK expression. Targeted next- generation sequencing was applied on RNA extracted from formalin-fixed paraffin-embedded tissue to identify the fusion partners. Twenty-three cases fulfilled inclusion criteria. The mean patient age was 39 years (range, 8– 74), there was no sex predilection, and 475% of cases involved the lower extremities. The most common gene fusions were SQSTM1-ALK (N = 12; 52%) and VCL-ALK (N = 7; 30%); the other four cases harbored novel fusion partners (DCTN1, ETV6, PPFIBP1, and SPECC1L).
    [Show full text]
  • About Soft Tissue Sarcoma Overview and Types
    cancer.org | 1.800.227.2345 About Soft Tissue Sarcoma Overview and Types If you've been diagnosed with soft tissue sarcoma or are worried about it, you likely have a lot of questions. Learning some basics is a good place to start. ● What Is a Soft Tissue Sarcoma? Research and Statistics See the latest estimates for new cases of soft tissue sarcoma and deaths in the US and what research is currently being done. ● Key Statistics for Soft Tissue Sarcomas ● What's New in Soft Tissue Sarcoma Research? What Is a Soft Tissue Sarcoma? Cancer starts when cells start to grow out of control. Cells in nearly any part of the body can become cancer and can spread to other areas. To learn more about how cancers start and spread, see What Is Cancer?1 There are many types of soft tissue tumors, and not all of them are cancerous. Many benign tumors are found in soft tissues. The word benign means they're not cancer. These tumors can't spread to other parts of the body. Some soft tissue tumors behave 1 ____________________________________________________________________________________American Cancer Society cancer.org | 1.800.227.2345 in ways between a cancer and a non-cancer. These are called intermediate soft tissue tumors. When the word sarcoma is part of the name of a disease, it means the tumor is malignant (cancer).A sarcoma is a type of cancer that starts in tissues like bone or muscle. Bone and soft tissue sarcomas are the main types of sarcoma. Soft tissue sarcomas can develop in soft tissues like fat, muscle, nerves, fibrous tissues, blood vessels, or deep skin tissues.
    [Show full text]
  • Mesenchymal) Tissues E
    Bull. Org. mond. San 11974,) 50, 101-110 Bull. Wid Hith Org.j VIII. Tumours of the soft (mesenchymal) tissues E. WEISS 1 This is a classification oftumours offibrous tissue, fat, muscle, blood and lymph vessels, and mast cells, irrespective of the region of the body in which they arise. Tumours offibrous tissue are divided into fibroma, fibrosarcoma (including " canine haemangiopericytoma "), other sarcomas, equine sarcoid, and various tumour-like lesions. The histological appearance of the tamours is described and illustrated with photographs. For the purpose of this classification " soft tis- autonomic nervous system, the paraganglionic struc- sues" are defined as including all nonepithelial tures, and the mesothelial and synovial tissues. extraskeletal tissues of the body with the exception of This classification was developed together with the haematopoietic and lymphoid tissues, the glia, that of the skin (Part VII, page 79), and in describing the neuroectodermal tissues of the peripheral and some of the tumours reference is made to the skin. HISTOLOGICAL CLASSIFICATION AND NOMENCLATURE OF TUMOURS OF THE SOFT (MESENCHYMAL) TISSUES I. TUMOURS OF FIBROUS TISSUE C. RHABDOMYOMA A. FIBROMA D. RHABDOMYOSARCOMA 1. Fibroma durum IV. TUMOURS OF BLOOD AND 2. Fibroma molle LYMPH VESSELS 3. Myxoma (myxofibroma) A. CAVERNOUS HAEMANGIOMA B. FIBROSARCOMA B. MALIGNANT HAEMANGIOENDOTHELIOMA (ANGIO- 1. Fibrosarcoma SARCOMA) 2. " Canine haemangiopericytoma" C. GLOMUS TUMOUR C. OTHER SARCOMAS D. LYMPHANGIOMA D. EQUINE SARCOID E. LYMPHANGIOSARCOMA (MALIGNANT LYMPH- E. TUMOUR-LIKE LESIONS ANGIOMA) 1. Cutaneous fibrous polyp F. TUMOUR-LIKE LESIONS 2. Keloid and hyperplastic scar V. MESENCHYMAL TUMOURS OF 3. Calcinosis circumscripta PERIPHERAL NERVES II. TUMOURS OF FAT TISSUE VI.
    [Show full text]
  • Clinical and Molecular Anatomy of Gastrointestinal Stromal Tumors (GIST)
    International Journal of New Technology and Research (IJNTR) ISSN:2454-4116, Volume-2, Issue-4, April 2016 Pages 110-114 Clinical and Molecular Anatomy of Gastrointestinal Stromal Tumors (GIST) Giorgio Maria Paolo Graziano, Giovanni Castelli, Prof Anthony Graziano capable of activating phosphorylation that stimulates Abstract—Introduction Gastrointestinal stromal tumors uncontrolled cell proliferation , activation of the KIT gene GISTs are rare and fall into the category of non-epithelial present in 80% of GIST ,[5,6] has introduced a new tumors of the gastrointestinal tract , involving the stomach at a therapeutic approach for these tumors . The purpose of this higher percentage (70 %). The purpose of this study , through a study , through a retrospective analysis of the observed cases , retrospective analysis of the observed cases , is to obtain data on the incidence , survival curve identification of prognostic and is to obtain data on the incidence , survival curve predictive parameters .The goal is to collect data concerning the identification of prognostic and predictive parameters . natural history of GIST , 65% of patients were female, 35% male , mean age 64 years. Metastatic disease was assessed by II. MATERIALS AND METHODS cd171. In this study, n 11 (65 %) cases were L1 ( cd171 ) positive for smooth muscle tumors . Of which 8 with headquarters in the For the study were examined retrospectively patients stomach, ileum en 3 . Investigations have been performed referred from 1996-2004 at La II clinical surgery and immunohistochemistry with CD117 , CD99 , ema . all enrolled specialist in the Department of Surgery II Policlinico Catania patients tested positive for CD117 .Discussion Thread What are and from 2005 to 2014, including by consulting the database the prognostic factors of GiST is still a matter of debate, but the referred to the same period the Institute of Anatomy consensus conference (NIH) in 2001 defined BETHESTHA n 2 Pathology of AUO Policlinico Catania.
    [Show full text]
  • Aneurysmal Fibrous Histiocytoma: a Case Report and Review of the Literature Devin M
    Aneurysmal Fibrous Histiocytoma: A Case Report and Review of the Literature Devin M. Burr, DO,* Warren A. Peterson, DO,** Michael W. Peterson, DO*** *Dermatology Resident, 1st year, Aspen Dermatology Residency Program, Springville, UT **Program Director, Aspen Dermatology Residency Program, Springville, UT ***Dermatopathologist, Springville Dermatology, Springville, UT Disclosures: None Correspondence: Devin M. Burr, DO; [email protected] Abstract Dermatofibroma is one of the most common subcutaneous dermatologic tumors. In its classic variant, a dermatofibroma is easily recognized by dermatologists; however, studies have identified numerous variants of the dermatofibroma that do not present with a classic clinical picture. Aneurysmal fibrous histiocytoma, one of these variants, is not easily recognized given its bizarre growth and potentially malignant appearance. Microscopically, aneurysmal fibrous histiocytoma can be difficult to identify, as the lesion will display some similarities to a classic dermatofibroma along with distinguishing characteristics, like large blood-filled cavernous spaces. Aneurysmal fibrous histiocytoma is a benign lesion with a low risk for recurrence if adequately excised. In this paper, we present a case of aneurysmal fibrous histiocytoma and review the literature on this rare dermatofibroma variant and what to consider on the differential diagnosis. Introduction right scapula. He reported that it had been present subcutis (Figure 3). Immunohistochemical stains Dermatofibroma, also known as fibrous for about one year and initially appeared as a 1 mm FXIIIa, CD10, and CD68 confirmed that the histiocytoma, is a common dermatologic to 2 mm purple papule. It slowly grew for the first lesion was a histiocytic tumor (Figure 4). CD34 subcutaneous tumor. It represents roughly 3% six months and then rapidly enlarged in size over highlighted the vascular component.
    [Show full text]
  • Desmoplastic Small Round Cell Tumor of the Abdomen: a Case Report and Literature Review of Therapeutic Options
    Vol.4, No.4, 207-211 (2012) Health http://dx.doi.org/10.4236/health.2012.44031 Desmoplastic small round cell tumor of the abdomen: A case report and literature review of therapeutic options Hafida Benhammane1*, Leila Chbani2, Abdelmalek Ousadden3, Ouadii Mouquit3, Siham Tizniti4, Afaf Riffi Amarti2, Nouafal Mellas1, Omar El Mesbahi1 1Department of Medical Oncology, Hassan II University Hospital, Fez, Morocco; *Corresponding Author: [email protected] 2Department of Pathology, Hassan II University Hospital, Fez, Morocco 3Department of General Surgery, Hassan II University Hospital, Fez, Morocco 4Department of Radiology, Hassan II University Hospital, Fez, Morocco Received 22 December 2011; revised 18 January 2012; accepted 6 February 2012 ABSTRACT rent therapeutic options include multiagent chemothe- rapy and aggressive surgical debulking and radiotherapy Desmoplastic small round cell tumor (DSRCT) is [4,5]. The addition of hyperthermic intra-peritoneal che- a rare and highly aggressive variety of sarcoma motherapy in the multimodal approach has been reported arising typically from abdominal or pelvic peri- in very few cases but no effect on survival has been clearly toneum. Diagnosis and treatment approaches of demonstrated [6]. this entity are complex and require a skilled, ex- The prognosis of this disease is poor with a Median perienced, multidisciplinary team. Authors re- survival of 17 months approximately [7]. port their experience with a case of an intra-ab- We report a case of an intra-abdominal DSRCT in a 37 dominal DSRCT arising in a 37-year-old young -year-old young man who was treated with combination man in order to discuss the clinico-pathological chemotherapy and surgery.
    [Show full text]
  • NMJ-Analyser: High-Throughput Morphological Screening of Neuromuscular Junctions
    bioRxiv preprint doi: https://doi.org/10.1101/2020.09.24.293886; this version posted September 25, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 NMJ-Analyser: high-throughput morphological screening of neuromuscular junctions 2 identifies subtle changes in mouse neuromuscular disease models 3 4 Alan Mejia Maza1, Seth Jarvis1, Weaverly Colleen Lee1, Thomas J. Cunningham2, Giampietro 5 Schiavo1,3, Maria Secrier4, Pietro Fratta1, James N. Sleigh1,3, Carole H. Sudre5,6,7,* & Elizabeth 6 M.C. Fisher1 7 8 1 Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, 9 University College London, London WC1N 3BG, UK. 10 2 Mammalian Genetics Unit, MRC Harwell Institute, Oxfordshire, OX11 0RD, UK. 11 3 UK Dementia Research Institute, University College London, London WC1E 6BT, UK. 12 4 Department of Genetics, Evolution and Environment, UCL Genetic Institute, University 13 College London, London WC1E 6BT, UK. 14 5 MRC Unit for Lifelong Health and Ageing, Department of Population Science and 15 Experimental Medicine, University College London, London WC1E 6BT, UK. 16 6 Centre for Medical Image Computing, Department of Computer Science, University College 17 London, London WC1E 6BT, UK. 18 7 School of Biomedical Engineering and Imaging Sciences, King's College London, London 19 W2CR 2LS, UK. 20 * Corresponding author. E-mail: [email protected] 21 22 23 24 25 26 27 28 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.09.24.293886; this version posted September 25, 2020.
    [Show full text]