Can Citizen Science Enhance Public Understanding of Science?
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Teaching Science Through Citizen Science in This Toolkit
CITIZEN SCIENCE TOOLKIT Teaching science through citizen science In this toolkit This toolkit is designed to help educators, like yourself, integrate citizen science 3 What is Citizen Science? projects into classroom curricula or 5 The Value of Citizen Science in the Classroom afterschool programming. It contains LEARN resources—including lessons, readings, 7 Citizen Science Skills and worksheets—to help you communicate the value of citizen science to your students and help them cultivate a sense 9 About the Citizen Science Workbook of empowerment and impact when 10 Workbook: Get Started performing science investigations. 15 Workbook: Your Citizen Science Project You can use this toolkit in the order outlined or adapt it to meet your needs. 28 Workbook: Expand the Experience Similarly, the activities and projects are 32 Educator Case Studies designed for you to use as-is or to modify ACT to fit the context of your classrooms. 40 Citizen Science and the Standards 45 Citizen Science Resources 49 Links in this Toolkit 2 EXTEND What is Citizen Science? Citizen science is a process by which anyone can take an active participants, which helped ensure the classifications were reliable, role in scientific discovery. Harnessing a collective curiosity and accurate, and as trustworthy as those made by professional employing common technology, citizen scientists work with astronomers. Citizen scientists not only correctly identified the professional researchers to learn about our world more quickly shapes and features of the galaxies, but also discovered brand- LEARN and comprehensively than ever before. Projects can take many new astronomical objects and brought to light a whole new class forms: counting backyard birds to assess climate change, of galaxy. -
Citizen Science: Expertise, Democracy, and Public Participation
Citizen Science: Expertise, Democracy, and Public Participation Prof. Bruno J. Strasser University of Geneva & Yale University Prof. Muki Haklay University College London — Excerpt of the second part from the SSC policy analysis 1/2018 Policy analysis 1/2018 18 Citizen Science: Citizen Science: Expertise, Democracy, and Public Participation Expertise, Democracy, and Public Participation About the authors Prof. Bruno J. Strasser, University of Geneva & Yale University Bruno J. Strasser’s research focuses on the history of science, technology and society in recent times. He received an ERC/ SNSF Consolidator Grant for a new project on “The Rise of the Citizen Science: rethinking Public Participation in Science”. He is finishing a book on “big data science” and has published on the history of international scientific cooperation during the Cold War, the interactions between experimental science and clinical medicine, the transformations of the pharmaceutical industry, the development of scientific instrumentation, the role of collective memory, and the relationships between sci- ence and society. His first book, La fabrique d’une nouvelle sci- ence: La biologie moléculaire à l’âge atomique, 1945–1964 explores the emergence of molecular biology as a new scientific disci- pline and professional identity in the atomic age. It received the Henry-E. Sigerist prize 2006. He has developed a public out- reach lab, the Bioscope. Contact details: http://citizensciences.net/bruno-strasser/ Prof. Muki Haklay, University College London In the late 1980s, Muki Haklay worked in a company that de- veloped computer mapping systems on early personal comput- ers. He became interested in Geographic Information Systems (GIS) and understood that he needed to have proper academ- ic foundations in this area. -
D6.6 Innovation Management Plan: “Making Citizen Science Work” Ditos
DITOs D6.6 Innovation Management Plan: “Making citizen science work” Grant agreement no. 709443 DITOs Doing It Together science Coordination & Support Action D6.6 Innovation Management Plan: “Making citizen science work” Work Package: 6 Due date of deliverable: Month 30 Actual submission date: 30 / 11 / 2018 Start date of project: June 01 2016 Duration: 36 months Lead beneficiary for this deliverable: UCL Contributors: Alexandra Albert, UCL; Muki Haklay, UCL Reviewer: Erich Prem, Eutema; Claudia Göbel, ECSA, Bálint Balázs, ESSRG Project co-funded by the European Commission within the H2020 Programme (2014-2020) PU Public X Confidential, only for members of the consortium (including the Commission CO Services) EU-RES Classified Information: RESTREINT UE (Commission Decision 2005/444/EC) EU-CON Classified Information: CONFIDENTIEL UE (Commission Decision 2005/444/EC) EU-SEC EU-SEC Classified Information: SECRET UE (Commission Decision 2005/444/EC) This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 709443 Disclaimer PU Page 1 Version 1.0 DITOs D6.6 Innovation Management Plan: “Making citizen science work” The content of this deliverable does not reflect the official opinion of the European Union. Responsibility for the information and views expressed herein lies entirely with the author(s). All ‘Doing It Together science’ (DITOs) consortium members are also committed to publish accurate and up to date information and take the greatest care to do so. However, the DITOs consortium members cannot accept liability for any inaccuracies or omissions nor do they accept liability for any direct, indirect, special, consequential or other losses or damages of any kind arising out of the use of this information. -
The Promise of Community Citizen Science
Perspective C O R P O R A T I O N Expert insights on a timely policy issue The Promise of Community Citizen Science Ramya Chari, Luke J. Matthews, Marjory S. Blumenthal, Amanda F. Edelman, Therese Jones n 2010, concerned citizens in the Gulf States responded to the Across Pennsylvania, Save Our Streams PA, a small group of Deepwater Horizon oil spill by developing low-cost, do-it-yourself citizen activists, is currently enlisting the public to find and map the Itechnologies to monitor and map oil pollutants in the environment more than 150,000 abandoned oil and gas wells located on private (Brownstone, 2014; McCormick, 2012; SkyTruth, 2016; and public lands (Save Our Streams PA, undated; Moskowitz, 2014). Carmichael, 2015). Centralized platforms and crowdsourcing applica- Because of methane leaks, abandoned wells are a potential source of tions empowered the public to engage and contribute to disaster response environmental contamination. Given the natural gas drilling boom and efforts in ways they could not before. construction of new wells, activists are concerned that the problem will In Flint, Michigan, in 2015, community members collaborated only grow in the future. with scientific experts to collect tap water samples that demonstrated These examples—diverse in topic, geography, and scope—all the existence of high lead levels in drinking water. The data forced state illustrate the emergence of citizen science into the decisionmaking officials to acknowledge that a problem existed and to begin implement- sphere. Although multiple definitions abound, citizen science is, at ing mitigation actions (Hanna-Attisha et al., 2016). its core, public participation in research and scientific endeavors. -
The Promise of Community Citizen Science
Perspective C O R P O R A T I O N Expert insights on a timely policy issue The Promise of Community Citizen Science Ramya Chari, Luke J. Matthews, Marjory S. Blumenthal, Amanda F. Edelman, Therese Jones n 2010, concerned citizens in the Gulf States responded to the Across Pennsylvania, Save Our Streams PA, a small group of Deepwater Horizon oil spill by developing low-cost, do-it-yourself citizen activists, is currently enlisting the public to find and map the Itechnologies to monitor and map oil pollutants in the environment more than 150,000 abandoned oil and gas wells located on private (Brownstone, 2014; McCormick, 2012; SkyTruth, 2016; and public lands (Save Our Streams PA, undated; Moskowitz, 2014). Carmichael, 2015). Centralized platforms and crowdsourcing applica- Because of methane leaks, abandoned wells are a potential source of tions empowered the public to engage and contribute to disaster response environmental contamination. Given the natural gas drilling boom and efforts in ways they could not before. construction of new wells, activists are concerned that the problem will In Flint, Michigan, in 2015, community members collaborated only grow in the future. with scientific experts to collect tap water samples that demonstrated These examples—diverse in topic, geography, and scope—all the existence of high lead levels in drinking water. The data forced state illustrate the emergence of citizen science into the decisionmaking officials to acknowledge that a problem existed and to begin implement- sphere. Although multiple definitions abound, citizen science is, at ing mitigation actions (Hanna-Attisha et al., 2016). its core, public participation in research and scientific endeavors.