Joanna Emerson, Andrew Wong, Phillip Zinsli

Total Page:16

File Type:pdf, Size:1020Kb

Joanna Emerson, Andrew Wong, Phillip Zinsli 2-HYDROXYETHYL HYDRAZINE AND HYDRAZINE HYDRATE PLANT DESIGN Item Type text; Electronic Thesis Authors Hsu, Ivann Hong; Emerson, Joanna; Wong, Andrew; Zinsli, Phillip Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 04/10/2021 01:26:45 Item License http://rightsstatements.org/vocab/InC/1.0/ Link to Item http://hdl.handle.net/10150/192492 2-HYDROXYETHYL HYDRAZINE AND HYDRAZINE HYDRATE PLANT DESIGN Ivann Hong Hsu Group Members: Joanna Emerson, Andrew Wong, Phillip Zinsli A Thesis Submitted to The Honors College In Partial Fulfillment of the Bachelor’s degree With Honors in Chemical Engineering THE UNIVERSITY OF ARIZONA MAY 2009 Approved by: _____________________________ Kimberly Ogden Chemical and Environmental Engineering STATEMENT BY ONE OF THE AUTHORS I hereby grant to the University of Arizona Library the nonexclusive worldwide right to reproduce and distribute my thesis and abstract (herein, the “licensed materials”), in whole or in part, in any and all media of distribution and in any format in existence now or developed in the future. I, and my group members, represent and warrant to the University of Arizona that the licensed materials are my original work that I am one of the owners of the rights in and to the licensed materials, and that none of the licensed materials infringe or violate the rights of my group members. I further represent that I have obtained all necessary rights to permit the University of Arizona Library to reproduce and distribute any nonpublic third party software necessary to access, display, run, or print my thesis. I acknowledge that University of Arizona Library may elect not to distribute my thesis in digital format if, in its reasonable judgment, it believes all such rights have not been secured. SIGNED: _____________________________ Abstract: The goal of this project is to design a manufacturing plant producing a military grade of 2-hydroxyethylhydrazine (HEH) as well as producing an excess of 48% hydrazine hydrate (HZH), 90% hydrazine hydrate and 95% hydrazine hydrate. HEH is synthesized through the reaction of ethylene oxide and hydrazine. Through a series of reactors and distillation columns, the product is produced. The purpose of producing this product is to replace the current propellant, anhydrous hydrazine, because anhydrous hydrazine is a very toxic compound. HEH is produced for markets such as the United States Air Force and the United States Department of Defense. After a 30 year cost analysis, the investment has a net present value of $960,000,00, and an investor’s rate of return of 43.34%. With a 20% interest rate, the pay back period is 2.83 years. Furthermore, a process hazard analysis was completed to determine the safety and environmental hazards of the process. Several actions must be taken to put the placed design into effect, but if these uncertainties are studied, it is recommended to build the plan as outlined in this document. The Roles of Group Members A chemical engineering group, all students represented by the honors college, developed a 2-hydroxyethylhydrazine (HEH) and hydrazine hydrate (HZH) plant. This project most exemplifies as an honors project by how in depth the project was and the amount of time placed in the project. All members of the group contributed an even amount of work. Phillip Zinsli was the team manager of the group. He organized group meetings, set deadlines for when things were due and planned meetings with our mentor, Dr. Greg Ogden. Furthermore, Phillip modeled the process of Unit 100, 400 and 500 on ASPEN Simulations. He did extensive research on reactions that could be used for the process and kept everyone focused on the goal at hand. Joanna Emerson modeled Unit 300, on ASPEN which contained many different chemical engineering processes. Furthermore, she determined the process safety hazards (PHAs) of the entire plant, edited the document and created the poster being presented at the Engineering Design Day. Andrew Wong , was the document organizer. He compiled everything that was placed and also edited the document. Furthermore, he determined the environmental concerts of the plant as well as calculated the amount of utilities needed. Other various activities were that he aided in were finding raw material costs, researching the storage and transportation and compiling the references used for the project. I, Ivann Hsu, calculated the economics for the plant. I calculated how much the equipment costs, called vendors to price equipments we did not have equations for, determined 1 the cost of the raw materials, and utilities needed and the annual amount of sales of the hydrazine hydrate and 2-hydroxyehtyl hydrazine. I determined the cost of start up, land costs and other costs that would lead to the calculation of the total capital investment. Furthermore, I was able to calculate a pay back period, and investor’s rate of return through an excel spreadsheet and to apply a 30 year MACRS deprecation schedule to calculate the net present value. Besides economics, I was in charge of writing about the safety issues of the plant and how one should protect themselves from the chemicals in the system. I also estimated thermodynamic properties for methyl ethyl ketazine, a compound in which no literature was found. In addition, I determined where the plant could be built and contributed to the preliminary research conducted. 2 2-Hydroxyethylhydrazine (HEH) Plant Design Nedgo Engineering Design Team Nedgo Engineering, LLC Date Submitted: May 1 st , 2009 ___________________________ ___________________________ Phillip Zinsli Joanna Emerson Project Manager Senior Design Engineer ___________________________ ___________________________ Andrew Wong Ivann Hsu Senior Design Engineer Economics Analyst 3 Executive Summary The goal of the following project is to design a manufacturing plant with the capacity for producing 200 metric tons per year (MTPY) of military grade 2-hydroxyethylhydrazine (HEH). In addition to HEH, the proposed process also produces an excess 2,800 MTPY of 48 % hydrazine hydrate (HZH), 270 MTPY of 90 % HZH, and 9,700 MTPY of 95 % HZH, which will be sold as a product for use in non-military applications. The plant will be located in the panhandle area of Texas, just north of Amarillo. The close proximity to raw material suppliers and U. S. railways makes the area an ideal location. The product is intended to serve as a replacement for the current standard propellant, anhydrous hydrazine. The capacity represents about 6 % of the United State’s consumption of anhydrous hydrazine in rocket fuel applications in 1995. There exists a high demand for alternative rocket fuels with lower toxicity concerns, and there is a strong belief that HEH will be that future replacement. The production of HEH is intended primarily for use by the U. S. Government. The target markets are the United States Department of Defense, United States Air Force, and the Air Force Research Laboratory. HEH is synthesized from the reaction of HZH and ethylene oxide as outlined in U. S. Patent 2,660,607. Following the reaction, a series of distillation columns are used to concentrate and isolate the final product. The more environmentally friendly and economically efficient Produits Chimiques Ugine Kuhlmann Peroxide Method was chosen as the method of production of HZH. The Peroxide Method utilizes a series of distillation towers and a hydrolysis tower to synthesize 4 HZH. It is characterized for its internal recycle of catalyst and regeneration of the raw material, methyl ethyl ketone. Gel filtration and ion exchange columns are used to remove impurities from the final products. A complete process hazard analysis and a gate to gate life cycle assessment were performed on the proposed process to evaluate and minimize safety and environmental hazards. Combustion and explosion hazards from the contact of HZH with oxygen were identified as the most significant process hazard. The most significant environmental burdens of this process comes from the plant’s nearly 33 billion gallon annual water consumption and nearly 370 million kW·h annual energy requirement. A 30 year cost analysis was performed to evaluate any economical considerations. At 30 years, the investment has a net present value (NPV) of $ 960,000,000 and an investor’s rate of return of 43.34 %. At a 20 % interest rate, the payback period is 2.83 years. Sensitivity analyses were also performed to evaluate the economic effects of potential market fluctuations. Decreases in annual sales and increases in production costs were found to have the greatest negative impact on NPV. Several actions must be taken before the proposed design can be considered robust. Section 200 of the plant was not modeled and leaves several uncertainties about capital and economical costs, and raw material requirements. The exact grading requirement of HEH is assumed to be similar to military specification anhydrous hydrazine, but is ultimately unknown and should be determined. Thermodynamic data on HEH, methyl ethyl ketazine, and multi-phase mixtures of methyl ethyl ketazine, methyl ethyl ketone, hydrogen peroxide, and ammonia are needed to more 5 accurately model the process in simulation programs such as ASPEN. Gel filtration is used to
Recommended publications
  • Supporting Information For
    Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011 Supporting Information for: 2- Quadruple-CO3 Bridged Octanuclear Dysprosium(III) Compound Showing Single-Molecule Magnet Behaviour Experimental Section Synthetic procedures All chemicals were of reagent grade and were used without any further purification. Synthesis of pyrazine-2-carbohydrazide The pyrazine-2-carboxylic acid methyl ester was prepared by a literature procedure described elsewhere. A mixture of pyrazine-2-carboxylic acid methyl ester (1.38 g, 10 mmol) and hydrazine hydrate (85%, 15 ml) in methanol (20 ml) was refluxed overnight, at a temperature somewhat below 80°C. The resulting pale-yellow solution set aside 12 hrs. During this period, a colorless product, i.e. pyrazine-2-carbohydrazide, precipitated from the reaction mixture as a crystalline solid (yield = 0.84 g, 61%). Synthesis of (E)-N'-(2-hyborxy-3-methoxybenzylidene)pyrazine-2-carbohydrazide Pyrazine-2-carbohydrazide (2 mmol, 0.276 g) was suspended together with o-vanillin (2 mmol, 0.304 g) in methanol (20 ml), and the resulting mixture was stirred at the room temperature overnight. The pale yellow solid was collected by filtration (yield = 0.56 g, 83%). Elemental analysis (%) calcd for C13H12N4O3: C, 57.35, H, 4.44, N, 20.58: found C, 57.64, H, 4.59, N, 20.39. IR (KBr, cm-1): 3415(w), 3258(w), 1677(vs), 1610(s), 1579(m). 1530(s), 1464(s), 1363(m), 1255(vs), 1153(s), 1051(w), 1021(s), 986(w), 906(m), 938(w), 736(s), 596(m), 498(w). Synthesis of the complex 1 The solution of DyCl3⋅6H2O (56.5 mg, 0.15 mmol) and the H2L (40.5 mg, 0.15 mmol) in 15 ml CH3OH/CH2Cl2 (1:2 v/v) was stirred with triethylamine (0.4 mmol) for 6h.
    [Show full text]
  • Hydrous Hydrazine Decomposition for Hydrogen Production Using of Ir/Ceo2: Effect of Reaction Parameters on the Activity
    nanomaterials Article Hydrous Hydrazine Decomposition for Hydrogen Production Using of Ir/CeO2: Effect of Reaction Parameters on the Activity Davide Motta 1, Ilaria Barlocco 2 , Silvio Bellomi 2, Alberto Villa 2,* and Nikolaos Dimitratos 3,* 1 Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK; [email protected] 2 Dipartimento di Chimica, Università degli Studi di Milano, 20133 Milano, Italy; [email protected] (I.B.); [email protected] (S.B.) 3 Dipartimento di Chimica Industriale e dei Materiali, Alma Mater Studiorum Università di Bologna, 40136 Bologna, Italy * Correspondence: [email protected] (A.V.); [email protected] (N.D.) Abstract: In the present work, an Ir/CeO2 catalyst was prepared by the deposition–precipitation method and tested in the decomposition of hydrazine hydrate to hydrogen, which is very important in the development of hydrogen storage materials for fuel cells. The catalyst was characterised using different techniques, i.e., X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), scanning electron microscopy (SEM) equipped with X-ray detector (EDX) and inductively coupled plasma—mass spectroscopy (ICP-MS). The effect of reaction conditions on the activity and selectivity of the material was evaluated in this study, modifying parameters such as temperature, the mass of the catalyst, stirring speed and concentration of base in order to find the optimal conditions of reaction, which allow performing the test in a kinetically limited regime. Citation: Motta, D.; Barlocco, I.; Bellomi, S.; Villa, A.; Dimitratos, N. Keywords: iridium; cerium oxide; hydrous hydrazine; hydrogen production Hydrous Hydrazine Decomposition for Hydrogen Production Using of Ir/CeO2: Effect of Reaction Parameters on the Activity.
    [Show full text]
  • Periodic Trends in the Main Group Elements
    Chemistry of The Main Group Elements 1. Hydrogen Hydrogen is the most abundant element in the universe, but it accounts for less than 1% (by mass) in the Earth’s crust. It is the third most abundant element in the living system. There are three naturally occurring isotopes of hydrogen: hydrogen (1H) - the most abundant isotope, deuterium (2H), and tritium 3 ( H) which is radioactive. Most of hydrogen occurs as H2O, hydrocarbon, and biological compounds. Hydrogen is a colorless gas with m.p. = -259oC (14 K) and b.p. = -253oC (20 K). Hydrogen is placed in Group 1A (1), together with alkali metals, because of its single electron in the valence shell and its common oxidation state of +1. However, it is physically and chemically different from any of the alkali metals. Hydrogen reacts with reactive metals (such as those of Group 1A and 2A) to for metal hydrides, where hydrogen is the anion with a “-1” charge. Because of this hydrogen may also be placed in Group 7A (17) together with the halogens. Like other nonmetals, hydrogen has a relatively high ionization energy (I.E. = 1311 kJ/mol), and its electronegativity is 2.1 (twice as high as those of alkali metals). Reactions of Hydrogen with Reactive Metals to form Salt like Hydrides Hydrogen reacts with reactive metals to form ionic (salt like) hydrides: 2Li(s) + H2(g) 2LiH(s); Ca(s) + H2(g) CaH2(s); The hydrides are very reactive and act as a strong base. It reacts violently with water to produce hydrogen gas: NaH(s) + H2O(l) NaOH(aq) + H2(g); It is also a strong reducing agent and is used to reduce TiCl4 to titanium metal: TiCl4(l) + 4LiH(s) Ti(s) + 4LiCl(s) + 2H2(g) Reactions of Hydrogen with Nonmetals Hydrogen reacts with nonmetals to form covalent compounds such as HF, HCl, HBr, HI, H2O, H2S, NH3, CH4, and other organic and biological compounds.
    [Show full text]
  • Dihydrazides - the Versatile Curing Agent for Solid Dispersion Systems
    Dihydrazides - The Versatile Curing Agent for Solid Dispersion Systems Abe Goldstein A&C Catalysts, Inc Abstract This paper will introduce dihydrazides, a relatively obscure class of curing agents useful in virtually all thermoset resin systems. First described in 1958, by Wear, et al.(1) dihydrazides are useful curing agents for epoxy resins, chain extenders for polyurethanes, and excellent crosslinking agents for acrylics. In one-part epoxy systems, depending on the backbone chain of the chosen dihydrazide, Tg's over 150°C and pot life over 6 months as cure time of less than a minute can be seen. In acrylic emulsions, dihydrazides can be dissolved into the water phase and serve as an additional crosslinker, as the emulsion coalesces and cures. As a chain extender for poylurethanes, dihydrazides can be used to increase toughness and reduce yellowing. Introduction O O | | | | Dihydrazides are represented by the active group: H2NHNC(R) CNHNH2, where R is can be any polyvalent organic radical preferably derived from a carboxylic acid. Carboxylic acid esters are reacted with hydrazine hydrate in an alcohol solution using a catalyst and a water extraction step. The most common dihydrazides include adipic acid dihydrazide (ADH), derived from adipic acid, sebacic acid dihydrazide (SDH), valine dihydrazide (VDH), derived from the amino acid valine, and isophthalic dihydrazide (IDH). The aliphatic R group can be of any length. For example, when R group is just carbon, the resulting compound is carbodihydrazide (CDH), the fastest dihydrazide. Or R as long as C-18 has been reported as in icosanedioic acid dihydrazide (LDH). Some of the more common dihydrazides are represented in Figure 1.
    [Show full text]
  • Hydrazine, Monomethylhydrazine, Dimethylhydrazine and Binary Mixtures Containing These Compounds
    Fluid Phase Behavior from Molecular Simulation: Hydrazine, Monomethylhydrazine, Dimethylhydrazine and Binary Mixtures Containing These Compounds Ekaterina Elts1, Thorsten Windmann1, Daniel Staak2, Jadran Vrabec1 ∗ 1 Lehrstuhl f¨ur Thermodynamik und Energietechnik, Universit¨at Paderborn, Warburger Straße 100, 33098 Paderborn, Germany 2 Lonza AG, Chemical Research and Development, CH-3930 Visp, Switzerland Keywords: Molecular modeling and simulation; vapor-liquid equilibrium; Henry’s law constant; Hy- drazine; Monomethylhydrazine; Dimethylhydrazine; Argon; Nitrogen; Carbon Monoxide; Ammonia; Water Abstract New molecular models for Hydrazine and its two most important methylized derivatives (Monomethyl- hydrazine and Dimethylhydrazine) are proposed to study the fluid phase behavior of these hazardous compounds. A parameterization of the classical molecular interaction models is carried out by using quan- tum chemical calculations and subsequent fitting to experimental vapor pressure and saturated liquid density data. To validate the molecular models, vapor-liquid equilibria for the pure hydrazines and binary hydrazine mixtures with Water and Ammonia are calculated and compared with the available experimen- tal data. In addition, the Henry’s law constant for the physical solubility of Argon, Nitrogen and Carbon Monoxide in liquid Hydrazine, Monomethylhydrazine and Dimethylhydrazine is computed. In general, the simulation results are in very good agreement with the experimental data. ∗ corresponding author, tel.: +49-5251/60-2421, fax: +49-5251/60-3522, email: [email protected] 1 1 Introduction On October 24, 1960, the greatest disaster in the history of rocketry, now also known as Nedelin disaster, occurred [1–3]. At that time, the Soviet newspapers published only a short communique informing that Marshall of Artillery Mitrofan Nedelin has died in an airplane crash.
    [Show full text]
  • Ethane / Nitrous Oxide Mixtures As a Green Propellant to Substitute Hydrazine: Validation of Reaction Mechanism C
    Ethane / Nitrous Oxide Mixtures as a Green Propellant to Substitute Hydrazine: Validation of Reaction Mechanism C. Naumann*, C. Janzer, U. Riedel German Aerospace Center (DLR), Institute of Combustion Technology Pfaffenwaldring 38-40, 70569 Stuttgart, Germany Abstract The combustion properties of propellants like ethane / nitrous oxide mixtures that have the potential to substitute hydrazine or hydrazine / dinitrogen tetroxide in chemical propulsion systems are investigated. In support of CFD- simulations of new rocket engines powered by green propellants ignition delay times of ethane / nitrous oxide mixtures diluted with nitrogen have been measured behind reflected shock waves at atmospheric and elevated pressures, at stoichiometric and fuel-rich conditions aimed for the validation of reaction mechanism. In addition, ignition delay time measurements of ethene / nitrous oxide mixtures and ethane / O2 / N2 - mixtures with an O2:N2 ratio of 1:2 as oxidant at the same level of dilution are shown for comparison. Finally, the ignition delay time predictions of a recently published reaction mechanism by Glarborg et al. are compared with the experimental results. Introduction waves at initial pressures of pnominal = 1, 4, and 16 bar. Hydrazine and hydrazine derivatives like The results are compared to ignition delay time monomethyl hydrazine (MMH) and unsymmetrical measurements of stoichiometric C2H4 / N2O mixtures dimethyl hydrazine (UDMH) are used for spacecraft (see [6], [7], [8]). Complementary, ignition delay times propulsion applications in various technological of the corresponding oxygen based reactive mixture contexts despite their drawback of being highly toxic. C2H6 / (1/3 O2 + 2/3 N2) have been measured, too. Today, hydrazine consumption for European space Thereafter, the predictions of a recently published activities is on the order of 2-5 tons per year.
    [Show full text]
  • HYDRAZINE Method Number: 108 Matrix: Air Target Concentration
    HYDRAZINE Method number: 108 Matrix: Air Target concentration: 10 ppb (13 µg/m3) and 1 ppm (1.3 mg/m3) OSHA PEL: 1 ppm (1.3 mg/m3) ACGIH TLV: 10 ppb (13 µg/m3) Procedure: Samples are collected closed-face by drawing known volumes of air through sampling devices consisting of three-piece cassettes, each containing two sulfuric acid treated 37-mm glass fiber filters separated by the ring section. The filters are extracted with a buffered EDTA disodium solution. An aliquot of the extract is derivatized with a benzaldehyde solution to form benzalazine from any hydrazine in the samples. The benzalazine is quantitated by LC using a UV detector. Recommended air volume and sampling rate: 240 L at 1.0 L/min Reliable quantitation limit: 0.058 ppb (0.076 µg/m3) Standard error of estimate at the target concentration: 7.5% at 10 ppb Target Concentration 5.2% at 1 ppm Target Concentration Status of method: Evaluated method. This method has been subjected to the established evaluation procedures of the Organic Methods Evaluation Branch. Date: February 1997 Chemist: Carl J. Elskamp Organic Methods Evaluation Branch OSHA Salt Lake Technical Center Salt Lake City, UT 84165-0200 1 of 19 T-108-FV-01-9702-M 1. General Discussion 1.1 Background 1.1.1 History In 1980, an air sampling and analytical procedure to determine hydrazine was validated by the OSHA Analytical Laboratory. (Ref. 5.1) The method (OSHA Method 20) is based on a field procedure developed by the U.S. Air Force that involves collection of samples using sulfuric acid coated Gas Chrom R and colorimetric analysis using p¯dimethylaminobenzaldehyde.
    [Show full text]
  • Unsymmetrical Dimethylhydrazine (UDMH) Technical Data Sheet
    Technical Performance Chemicals Product Hydrazine Information Unsymmetrical Dimethylhydrazine (UDMH) Unsymmetrical dimethylhydrazine (1,1-dimethylhydrazine) chemicals). It has also been used in acidic gas absorbers and is a clear, colorless hygroscopic liquid. It has an ammonia- as a fuel additive stabilizer. like odor which closely resembles that of aliphatic amines. UDMH is miscible with water, hydrazine, Handling, Storage and Safety dimethylenetriamine, ethanol, amines and most petroleum fuels. The experience accumulated by the chemical and aerospace industries indicates that with rigid adherence to proper UDMH is mildly alkaline and is a very strong reducing precautions, UDMH can be handled safely. Because UDMH agent. Its high chemical reactivity, easily-controlled vapors have such a very wide range of explosive limits and functionality and strong hydrogen bonding are its most useful because UDMH liquid is extremely reactive with many properties. materials, the safety precautions outlined are necessary to avoid fire or explosions. Table 1 Specifications In addition, prolonged exposure to UDMH vapor, contact % by with skin, or ingestion may produce harmful or fatal effects. Component Weight 1,1-dimethylhydrazine, min 98.0 Storage : UDMH may be stored in the DOT-approved Amines and water, max 2.0 container in which it is shipped. (See Shipping Information below.) Store away from heat, sparks, open flame and Table 2 Typical Physical Properties oxidants. Store only in well-ventilated areas. Do not contaminate. Density @ 25'C (g/ml) 0.784 (lb/gal) 6.6 Since UDMH is stable, it can be stored without loss of Viscosity @ 20'C (cp) 0.56 purity. Keep the container closed securely.
    [Show full text]
  • Thermo-Reversible Gelation of Aqueous Hydrazine for Safe Storage of Hydrazine
    technologies Article Thermo-Reversible Gelation of Aqueous Hydrazine for Safe Storage of Hydrazine Bungo Ochiai * and Yohei Shimada Department of Chemistry and Chemical Engineering, Faculty of Engineering, Yamagata University, Jonan 4-3-16, Yonezawa, Yamagata 992-8510, Japan; [email protected] * Correspondence: [email protected]; Tel.: +81-238-26-3092 Received: 5 September 2020; Accepted: 9 October 2020; Published: 12 October 2020 Abstract: A reversible gelation–release system was developed for safe storage of toxic hydrazine solution based on gelation at lower critical solution temperature (LCST). Poly(N-isopropylacrylamide) (PNIPAM) and its copolymer could form gels of 35wt% hydrazine by dissolution under low temperature and storage at ambient temperatures. For example, PNIPAM gelled a 63 fold heavier amount of 35wt% hydrazine. Aqueous hydrazine was released from the gels by compression or heating, and the gelation–release cycles proceeded quantitatively (> 95%). The high gelation ability and recyclability are suitable for rechargeable systems for safe storage of hydrazine fuels. Keywords: hydrazine; gel; LCST; fuel cell; poly (N-isopropylacrylamide) 1. Introduction Hydrazine and its derivatives contain high energy and have been applied as fuels and propellants of artificial satellites, space vehicles, and fighter jets [1–5]. Another potential application is a fuel for hydrazine fuel cells (HFCs) [6–19]. HFCs using aqueous solutions with 10%–15% of hydrazine can exhibit outputs as high as those of typical hydrogen fuel cells. Furthermore, the low corrosion of the basic media enables use of accessible materials for both electrocatalysts and electrolyte membranes, namely Co, Ni, Ag, and carbon electrodes and non-fluorine polymer membranes, which cannot be used in hydrogen and methanol fuel cells requiring highly acidic media.
    [Show full text]
  • Ucri, 100554 Preprint
    UCRI, 100554 PREPRINT x CHEMICAL THERMODYNAMICS OF TECHNETIUM 0 r0 0 0m 0 Joseph A.' Rard z C w1 m This paper was prepared for inclusion in the book CHEMICAL THERMODYNAMICS OF TECHNETIUM (to' be published by the Nuclear Energy Agency, Paris, France) February 1989 This is a preprint of a paper intended for publication in a journal or proceedings. Since changes may be made before publication, this preprint is made available with the understanding that it will not be cited or reproduced without the permission of the author. - DISCILAIMER This document was prepared as an account of work sponsored by asnagency of the United States Government Neither the United States Government nor the University of California nor any of their employees. makes any warranty, express or implieid, or assumes any legal liability or responsibility for the accuracy completeness, or useful- ness of any Information, apparatus. product, or process disclosed. or represents that Its use would not Iafringe privately owned rights. Reference hereln to any specific commercial products, process, or service by trade name. trademark. manufacturer, or otherwise. does not necessarily constitute or Imply its endorsement. recommendation, or favoring by the United States Government or the University of California. The views and opinions of authors expressed hereb do not necessarily state or reflect those of the United States Government or the University of California, and shall not be used for advertising or product endorsement purposes. -W This manuscript by JA Rard is to be part of a book entitled "CHEMICAL THERMODYNAMICS OF TECHNETIUM". It will be published by the Nuclear Energy Agency Data Bank at Saclay, France.
    [Show full text]
  • Oxidation of Hydrazine by Alkaline Ferricyanide in Water-Methanol Mixtures V
    188 V. K. JINDAL, M. C. AGRAWAL, AND S. P. MUSHRAN Oxidation of Hydrazine by Alkaline Ferricyanide in Water-methanol Mixtures V. K. Jin d a l , M. C. A graw al , and S. P. M ush ra n Department of Chemistry, University of Allahabad, Allahabad, India (Z. Naturforsdi. 25 b, 188—190 [1970] ; eingegangen am 2. September 1969) Kinetics of the oxidation of hydrazine by ferricyanide was investigated in water-methanol mix­ tures using several buffer solutions. The reaction showed first order dependence in both hydrazine and ferricyanide. The order with respect to hydroxide ion concentration was zero. Increase in con­ centration of methanol had a retarding influence on the rate while the addition of neutral salts showed a specific ion effect. The energy and entropy of activation were calculated as 12.3 kcals. mole- 1 and — 20.8 cals. deg-1 mole-1 respectively. A suitable mechanism has been proposed which suggests the primary rate determining reaction between N2H4 and Fe(CN)63e. Nitrogen was found to be the product of the reaction. Hydrazine and its derivatives have been exten­ Several buffer solutions were prepared by mixing sively used as reducing titrants in both acidic and suitable amounts of sodium carbonate and bicarbonate (0.2 m ) and final pH was adjusted in 50% methanol. alkaline media.1 The principal product of the oxi­ The following table gives the pH of the buffers employed dation is nitrogen. A little work has been done on in aqueous and 50% methanolic solutions. the kinetics of the oxidation of hydrazine in alkaline solutions 2.
    [Show full text]
  • Nanocatalysts for Hydrogen Generation from Ammonia Borane and Hydrazine Borane
    Hindawi Publishing Corporation Journal of Nanomaterials Volume 2014, Article ID 729029, 11 pages http://dx.doi.org/10.1155/2014/729029 Review Article Nanocatalysts for Hydrogen Generation from Ammonia Borane and Hydrazine Borane Zhang-Hui Lu, Qilu Yao, Zhujun Zhang, Yuwen Yang, and Xiangshu Chen College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China Correspondence should be addressed to Zhang-Hui Lu; [email protected] and Xiangshu Chen; [email protected] Received 15 February 2014; Accepted 26 February 2014; Published 14 April 2014 Academic Editor: Ming-Guo Ma Copyright © 2014 Zhang-Hui Lu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Ammonia borane (denoted as AB, NH3BH3) and hydrazine borane (denoted as HB, N2H4BH3), having hydrogen content as high as 19.6 wt% and 15.4 wt%, respectively, have been considered as promising hydrogen storage materials. Particularly, the AB and HB hydrolytic dehydrogenation system can ideally release 7.8 wt% and 12.2 wt% hydrogen of the starting materials, respectively, showing their high potential for chemical hydrogen storage. A variety of nanocatalysts have been prepared for catalytic dehydrogenation from aqueous or methanolic solution of AB and HB. In this review, we survey the research progresses in nanocatalysts for hydrogen generation from the hydrolysis or methanolysis of NH3BH3 and N2H4BH3. 1. Introduction 19.6 wt% and a low molecular weight (30.9 g/mol), exceeding that of gasoline and Li/NaBH4, has made itself an attractive Hydrogen, as a globally accepted clean and source-independ- candidate for chemical hydrogen storage applications [14].
    [Show full text]