European Patent Office of Opposition to That Patent, in Accordance with the Implementing Regulations

Total Page:16

File Type:pdf, Size:1020Kb

European Patent Office of Opposition to That Patent, in Accordance with the Implementing Regulations (19) TZZ Z_T (11) EP 2 576 708 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C09D 5/00 (2006.01) 21.09.2016 Bulletin 2016/38 (86) International application number: (21) Application number: 11738854.6 PCT/US2011/039283 (22) Date of filing: 06.06.2011 (87) International publication number: WO 2011/153534 (08.12.2011 Gazette 2011/49) (54) AQUEOUS CROSS-LINKING COMPOSITIONS AND METHODS WÄSSRIGE VERNETZUNGSZUSAMMENSETZUNGEN UND VERFAHREN COMPOSITIONS DE RÉTICULATION AQUEUSES ET PROCÉDÉS (84) Designated Contracting States: • SHEERIN, Robert J. AL AT BE BG CH CY CZ DE DK EE ES FI FR GB N. Caldwell, NJ 07006 (US) GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO • MAUCK, Jean Fredrick PL PT RO RS SE SI SK SM TR Hackettstown, NJ 07840 (US) • TILARA, Navin (30) Priority: 04.06.2010 US 351657 P Roseland, NJ 07068 (US) 03.06.2011 US 201113152856 • GARCIA DE VISICARO, Johanna Lake Hopatcong, NJ 07849 (US) (43) Date of publication of application: 10.04.2013 Bulletin 2013/15 (74) Representative: Gerbino, Angelo et al Jacobacci & Partners S.p.A. (73) Proprietor: Benjamin Moore & Co. Corso Emilia 8 Montvale, NJ 07645 (US) 10152 Torino (IT) (72) Inventors: (56) References cited: • YANG, Yong EP-A1- 0 945 495 EP-A2- 0 219 047 Hillsborough, NJ 08844 (US) WO-A1-00/31197 JP-A- 2000 001 633 • CHEN, Yue US-A1- 2006 231 487 US-A1- 2008 307 587 Edison, NJ 08820 (US) Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention). EP 2 576 708 B1 Printed by Jouve, 75001 PARIS (FR) EP 2 576 708 B1 Description CROSS-REFERENCE TO RELATED APPLICATIONS 5 [0001] This application claims the benefit of United States Patent Application No. 13/152,856, filed 3 June 2011, which claims the benefit of United States Provisional Patent Application Serial No. 61/351,657, filed 4 June 2010, both references are incorporated herein by reference in their entirety as if fully set forth below. FIELD OF THE INVENTION 10 [0002] The invention concerns water-borne cross-linking polymeric compositions and related embodiments, such as methods of making and using the compositions, as well as products formed with said compositions. BACKGROUND 15 [0003] Water-borne paints, primers, coatings, inks, adhesives, and other water-borne film-forming compositions ("wa- ter-borne compositions") may comprise solvents, binder, pigments and other additional components that favorably affect various properties of the compositions, such as polymeric surfactants and dispersants. The binder and the pigment, if present, are the primary solid components of the water-borne composition and remain on surfaces to which they have 20 been applied forming a solid layer as solvent evaporates. In water-borne compositions, the primary solvent is water. Typical water-borne compositions include latex paints. [0004] Polymer latexes or dispersions are widely used in water-based coatings. The polymer latex or dispersion is dried to form a film via coalescence to obtain desired mechanical and physical properties. Coalescence is a process whereby polymer particles in aqueous dispersion come into contact with one another during drying, and polymer chains 25 form (i.e., diffuse) across boundaries of latex/dispersion particles to yield continuous films with good bonding of the particles. [0005] A method of improving the properties of films formed by water- borne compositions is to include polymers that are capable of cross-linking. The polymers may be self cross-linking or require a cross-linking agent to react with the polymers. The cross-linking agents can be used to cross-link the binders and/or other polymeric additives such as 30 polymeric surfactants and dispersants (U.S. Patent No. 5,348,997) or rheology modifiers (U.S. Published Patent Appli- cation No. 2009/0162669). Cross-linking of polymers in coatings, inks, and other water-borne film-forming compositions can improve physical and mechanical strength, adhesion, and durability. In coating applications, cross-linking may also improve scrubability, blocking resistance, chemical resistance, and weatherability (See U.S. Patent No. 7,547,740 and U.S. Patent Application Publication No. 2007/0265391). Cross-linking of polymer constituents may also enhance adhe- 35 sion and bonding strength for adhesives. Additionally, cross-linking is widely utilized in the formulation of printing inks, in order to improve the mechanical and chemical resistance of prints. [0006] Cross-linking during and after coalescence further enhances the physical and mechanical properties of the films. However, if the polymer cross-linking reaction begins before the water-borne composition is applied to a surface, the resultant film may have poor physical and mechanical properties. Premature cross-linking is that which occurs within 40 the polymer latex or dispersion before it is applied to a surface and may prevent coatings from forming coalesced films. [0007] Premature cross-linking in compositions used for paints, inks, adhesives, dispersants, polymeric surfactants or rheology modifiers can also be disadvantageous in causing viscosity instability, thus reducing shelf-life. For example, typical latex base paints are manufactured in bulk and then dispensed into retail containers for shipping and storage. The retail container and its contents may be kept in a warehouse or a retail store prior to sale and ultimate use. During 45 this storage period, cross-linking of the polymers may occur, thereby reducing the quality of the latex paint. The cross- linked polymers may gel and/or build up viscosity in the can and a paint film formed therefrom can have reduced physical and mechanical properties such as reduced scrubability. [0008] Thus, in an effort to improve properties, water-borne compositions have been produced with polymers com- prising a monomer such as diacetone acrylamide ("DAAM") and the cross-linking agent adipic acid dihydrazide ("ADH"). 50 Without significant pre-application cross -linking, such water-borne compositions give improved properties over paint comprising non-cross-linkable polymer, but the improvement is not realized if there is any substantial pre-application cross-linking. Studies have shown that the cross-linking of polymers comprising DAAM with ADH cross-linking agent through a keto-hydrazide reaction has a substantial reaction rate in an aqueous solution. ("The diacetone acrylamide cross-linking reaction and its influence on the film formation of an acrylic latex", Journal of Coatings Technology and 55 Research, 5(3), 285-297, 2008.) Consequently, premature cross-linking impedes the attainment of desired properties. [0009] Other polymers are self-cross-linking. Self-cross-linking polymers such as polymers containing acetoacetox- yethylmethacrylate ("AAEM"), glycidyl methacrylate, and oxidative or UV curable functional groups are also used in water-borne coatings, inks, and adhesives. Unfortunately, self-cross-linked polymers yield only minimally improved 2 EP 2 576 708 B1 mechanical properties in the resultant films, particularly for scrubability of water-borne paints. [0010] An attempt to address the problem of cross-linking prior to application of a polymeric composition containing a polyhydrazide or the like, appears in U.S. Patent No. 4,786,676. There it is taught that polymeric compositions which have a long shelf life in aqueous solutions or dispersions and which undergo cross-linking after drying at room temperature 5 or elevated temperatures are obtainable by reacting polymeric organic compounds possessing carbonyl and carboxyl groups with polyhydrazides in the presence of monoketones and/or monoaldehydes. However, the development dis- cussed in the patent is not adequate for reliably suppressing premature cross-linking because there are side reactions which introduce impurities that degrade the desired stoichiometry, because any chemical species that might prevent premature cross-linking would not be produced in sufficient quantity within a time frame that the undesired reaction could 10 be precluded, and because the use of (at least) ketones can present a safety hazard. Therefore, the patent’s teaching does not afford a practical solution. [0011] US-2008/307587 discloses the deposition of a colorant-containing composition on a surface, wherein the com- position includes a rheology modifier, a stabilizer, a surfactant, a colorant, a resin, and a curative catalyst, which may comprise polyamines and especially dihydrazides. 15 [0012] US-2006/231487 discloses a coating composition applied to a filtration medium, which composition comprises a polymer, a cross-linking agent, and a compatibilizing agent having the functions of solubilizing the reactive polymer and reacting with the polymer to prevent cross-linking. [0013] WO 00/31197 discloses a coating composition comprising a polymer, a silane, and a pigment, wherein the polymer is said to include at least one hydrazide group. 20 [0014] EP-0945495 relates to a powder coating composition comprising a multilayer polymer particle, in which at least one inner layer is a polymer layer having a glass transition temperature of not over 20°C, and an outermost layer is a polymer layer having a glass transition temperature of not less than 60°C. The inner layer(s) has monomer components having an unsaturated double bond, including 0.3 to 5 weight % of a cross-linking monomer and 1 to 10 weight % of a grafting monomer. A curing agent, such as adipic acid dihydrazide, can be incorporated. 25 [0015] JP-2000 001633 discloses a powder coating composition exhibiting dispersibility in various powder coating materials, which is apparently much like that of the above-mentioned EP-0945495. [0016] There exists a need for a water-borne composition with improved physical, chemical and mechanical properties, such as, scrubability.
Recommended publications
  • Supporting Information For
    Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011 Supporting Information for: 2- Quadruple-CO3 Bridged Octanuclear Dysprosium(III) Compound Showing Single-Molecule Magnet Behaviour Experimental Section Synthetic procedures All chemicals were of reagent grade and were used without any further purification. Synthesis of pyrazine-2-carbohydrazide The pyrazine-2-carboxylic acid methyl ester was prepared by a literature procedure described elsewhere. A mixture of pyrazine-2-carboxylic acid methyl ester (1.38 g, 10 mmol) and hydrazine hydrate (85%, 15 ml) in methanol (20 ml) was refluxed overnight, at a temperature somewhat below 80°C. The resulting pale-yellow solution set aside 12 hrs. During this period, a colorless product, i.e. pyrazine-2-carbohydrazide, precipitated from the reaction mixture as a crystalline solid (yield = 0.84 g, 61%). Synthesis of (E)-N'-(2-hyborxy-3-methoxybenzylidene)pyrazine-2-carbohydrazide Pyrazine-2-carbohydrazide (2 mmol, 0.276 g) was suspended together with o-vanillin (2 mmol, 0.304 g) in methanol (20 ml), and the resulting mixture was stirred at the room temperature overnight. The pale yellow solid was collected by filtration (yield = 0.56 g, 83%). Elemental analysis (%) calcd for C13H12N4O3: C, 57.35, H, 4.44, N, 20.58: found C, 57.64, H, 4.59, N, 20.39. IR (KBr, cm-1): 3415(w), 3258(w), 1677(vs), 1610(s), 1579(m). 1530(s), 1464(s), 1363(m), 1255(vs), 1153(s), 1051(w), 1021(s), 986(w), 906(m), 938(w), 736(s), 596(m), 498(w). Synthesis of the complex 1 The solution of DyCl3⋅6H2O (56.5 mg, 0.15 mmol) and the H2L (40.5 mg, 0.15 mmol) in 15 ml CH3OH/CH2Cl2 (1:2 v/v) was stirred with triethylamine (0.4 mmol) for 6h.
    [Show full text]
  • Hydrous Hydrazine Decomposition for Hydrogen Production Using of Ir/Ceo2: Effect of Reaction Parameters on the Activity
    nanomaterials Article Hydrous Hydrazine Decomposition for Hydrogen Production Using of Ir/CeO2: Effect of Reaction Parameters on the Activity Davide Motta 1, Ilaria Barlocco 2 , Silvio Bellomi 2, Alberto Villa 2,* and Nikolaos Dimitratos 3,* 1 Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK; [email protected] 2 Dipartimento di Chimica, Università degli Studi di Milano, 20133 Milano, Italy; [email protected] (I.B.); [email protected] (S.B.) 3 Dipartimento di Chimica Industriale e dei Materiali, Alma Mater Studiorum Università di Bologna, 40136 Bologna, Italy * Correspondence: [email protected] (A.V.); [email protected] (N.D.) Abstract: In the present work, an Ir/CeO2 catalyst was prepared by the deposition–precipitation method and tested in the decomposition of hydrazine hydrate to hydrogen, which is very important in the development of hydrogen storage materials for fuel cells. The catalyst was characterised using different techniques, i.e., X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), scanning electron microscopy (SEM) equipped with X-ray detector (EDX) and inductively coupled plasma—mass spectroscopy (ICP-MS). The effect of reaction conditions on the activity and selectivity of the material was evaluated in this study, modifying parameters such as temperature, the mass of the catalyst, stirring speed and concentration of base in order to find the optimal conditions of reaction, which allow performing the test in a kinetically limited regime. Citation: Motta, D.; Barlocco, I.; Bellomi, S.; Villa, A.; Dimitratos, N. Keywords: iridium; cerium oxide; hydrous hydrazine; hydrogen production Hydrous Hydrazine Decomposition for Hydrogen Production Using of Ir/CeO2: Effect of Reaction Parameters on the Activity.
    [Show full text]
  • Pyramidalization/Twisting of the Amide Functional Group Via Remote Steric Congestion Triggered by Metal Coordination Chemical Science
    Chemical Volume 8 Number 1 January 2017 Pages 1–810 Science rsc.li/chemical-science ISSN 2041-6539 EDGE ARTICLE Naoya Kumagai, Masakatsu Shibasaki et al. Pyramidalization/twisting of the amide functional group via remote steric congestion triggered by metal coordination Chemical Science View Article Online EDGE ARTICLE View Journal | View Issue Pyramidalization/twisting of the amide functional group via remote steric congestion triggered by Cite this: Chem. Sci.,2017,8,85 metal coordination† Shinya Adachi, Naoya Kumagai* and Masakatsu Shibasaki* For decades, the planarity of the amide functional group has garnered sustained interest in organic chemistry, enticing chemists to deform its usually characteristic high-fidelity plane. As opposed to the construction of amides that are distorted by imposing rigid covalent bond assemblies, we demonstrate herein the deformation of the amide plane through increased steric bulk in the periphery of the amide moiety, which is induced by coordination to metal cations. A crystallographic analysis revealed that the thus obtained amides exhibit significant pyramidalization and twisting upon coordination to the metals, Received 16th August 2016 while the amide functional group remained intact. The observed deformation, which should be Accepted 21st September 2016 attributed to through-space interactions, substantially enhanced the solvolytic cleavage of the amide, DOI: 10.1039/c6sc03669d Creative Commons Attribution 3.0 Unported Licence. providing compelling evidence that temporary crowding in the periphery
    [Show full text]
  • Empowering Alcohols As Carbonyl Surrogates for Grignard-Type Reactions
    ARTICLE https://doi.org/10.1038/s41467-020-19857-9 OPEN Empowering alcohols as carbonyl surrogates for Grignard-type reactions Chen-Chen Li 1, Haining Wang1, Malcolm M. Sim1, Zihang Qiu 1, Zhang-Pei Chen1, Rustam Z. Khaliullin1 & ✉ Chao-Jun Li 1 The Grignard reaction is a fundamental tool for constructing C-C bonds. Although it is widely used in synthetic chemistry, it is normally applied in early stage functionalizations owing to 1234567890():,; poor functional group tolerance and less availability of carbonyls at late stages of molecular modifications. Herein, we report a Grignard-type reaction with alcohols as carbonyl surro- gates by using a ruthenium(II) PNP-pincer complex as catalyst. This transformation proceeds via a carbonyl intermediate generated in situ from the dehydrogenation of alcohols, which is followed by a Grignard-type reaction with a hydrazone carbanion to form a C-C bond. The reaction conditions are mild and can tolerate a broad range of substrates. Moreover, no oxidant is involved during the entire transformation, with only H2 and N2 being generated as byproducts. This reaction opens up a new avenue for Grignard-type reactions by enabling the use of naturally abundant alcohols as starting materials without the need for pre-synthesizing carbonyls. 1 Department of Chemistry and FQRNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, ✉ Canada. email: [email protected] NATURE COMMUNICATIONS | (2020) 11:6022 | https://doi.org/10.1038/s41467-020-19857-9 | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-19857-9 n tandem with the significant advancements of biological and even be successfully applied in synergistic relay reactions29.
    [Show full text]
  • Synthesis of Optically Pure Macroheterocycles with 2,6-Pyridinedicarboxylic and Adipic Acid Fragments from ∆3-Carene
    Macrolides Paper Макролиды Статья DOI: 10.6060/mhc190660y Synthesis of Optically Pure Macroheterocycles with 2,6-Pyridinedicarboxylic and Adipic Acid Fragments from ∆3-Carene Marina P. Yakovleva,@ Kseniya S. Denisova, Galina R. Mingaleeva, Valentina A. Vydrina, and Gumer Yu. Ishmuratov Ufa Institute of Chemistry, Ufa Federal Research Center, Russian Academy of Sciences, 450054 Ufa, Russia @Corresponding author E-mail: [email protected] Based on the available natural monoterpene ∆3-carene we have developed the synthesis of four optically pure macroheterocycles with ester and dihydrazide fragments through the intermediate 1-((1S,3R)-3-(2-hydroxyethyl- 2,2-dimethylcyclopropyl)propan-2-one using its [2+1]-interaction with dichloranhydrides of adipic or 2,6-pyridinedicarboxylic acids and [1+1]-condensation of the obtained α,ω-diketodiesters with dihydrazides of adipic or 2,6-pyridinedicarboxylic acids. The structure of new compounds was confirmed by IR and NMR spectroscopy and mass spectrometry. Keywords: 3-Carenes, ozonolysis, sodium hypochlorite, macroheterocycles with ester and dihydrazide fragments, [2+1] and [1+1] condensations, synthesis. Синтез оптически чистых макрогетероциклов со сложноэфирными и дигидразидными фрагментами адипиновой и 2,6-пиридиндикарбоновой кислот из D3-карена М. П. Яковлева,@ К. С. Денисова, Г. Р. Мингалеева, В. А. Выдрина, Г. Ю. Ишмуратов Уфимский Институт химии – обособленное структурное подразделение Федерального бюджетного научного учреждения Уфимского федерального исследовательского центра Российской академии
    [Show full text]
  • Periodic Trends in the Main Group Elements
    Chemistry of The Main Group Elements 1. Hydrogen Hydrogen is the most abundant element in the universe, but it accounts for less than 1% (by mass) in the Earth’s crust. It is the third most abundant element in the living system. There are three naturally occurring isotopes of hydrogen: hydrogen (1H) - the most abundant isotope, deuterium (2H), and tritium 3 ( H) which is radioactive. Most of hydrogen occurs as H2O, hydrocarbon, and biological compounds. Hydrogen is a colorless gas with m.p. = -259oC (14 K) and b.p. = -253oC (20 K). Hydrogen is placed in Group 1A (1), together with alkali metals, because of its single electron in the valence shell and its common oxidation state of +1. However, it is physically and chemically different from any of the alkali metals. Hydrogen reacts with reactive metals (such as those of Group 1A and 2A) to for metal hydrides, where hydrogen is the anion with a “-1” charge. Because of this hydrogen may also be placed in Group 7A (17) together with the halogens. Like other nonmetals, hydrogen has a relatively high ionization energy (I.E. = 1311 kJ/mol), and its electronegativity is 2.1 (twice as high as those of alkali metals). Reactions of Hydrogen with Reactive Metals to form Salt like Hydrides Hydrogen reacts with reactive metals to form ionic (salt like) hydrides: 2Li(s) + H2(g) 2LiH(s); Ca(s) + H2(g) CaH2(s); The hydrides are very reactive and act as a strong base. It reacts violently with water to produce hydrogen gas: NaH(s) + H2O(l) NaOH(aq) + H2(g); It is also a strong reducing agent and is used to reduce TiCl4 to titanium metal: TiCl4(l) + 4LiH(s) Ti(s) + 4LiCl(s) + 2H2(g) Reactions of Hydrogen with Nonmetals Hydrogen reacts with nonmetals to form covalent compounds such as HF, HCl, HBr, HI, H2O, H2S, NH3, CH4, and other organic and biological compounds.
    [Show full text]
  • Synthesis of Hydrazide-Hydrazone Derivatives and Their Evaluation of Antidepressant, Sedative and Analgesic Agents R
    R M Mohareb et al, /J. Pharm. Sci. & Res. Vol.2(4), 2010, 185-196 Synthesis of hydrazide-hydrazone derivatives and their evaluation of antidepressant, sedative and analgesic agents 1,2 1 2 3 R. M. Mohareb , K. A. El-Sharkawy , M. M. Hussein and H. M. El-Sehrawi 1Faculty of Pharmacy, Organic Chemistry Department, October University for Modern Sciences and Arts (MSA) – El-Wahat Road – 6 October City – Egypt. 2Department of Chemistry, Faculty of Science, Cairo University, Giza, A. R. Egypt. 3Faculty of Pharmacy (Girls), Pharmaceutical Chemistry Department, Al-Azhar University, Nasr City, Cairo, A.R. Egypt. Abstract: The reaction of cyanoacetylhydrazine (1) with -bromo(4-methoxyacetophenone) (2) gave the hydrazide- hydrazone derivative 3. Compound 3 reacted with either potassium cyanide or potassium thiocyanide to give the cyanide or thiocyanide derivatives 4a or 4b respectively. The reaction of compound 3 with either hydrazine hydrate or phenylhydrazine gave the hydrazine derivatives 6a or 6b respectively. The latter compounds underwent a series of heterocyclization when react with different reagents to give 1,3,4-triazine and pyridine derivatives. The antidepressant, sedative and analgesic activities of the newly synthesized products were evaluated. Keywords: Antidepressant. hydrazide-hydrazone. pyridine. sedative. 1,3,4-triazine, Introduction: Micro Analytical Data Unit at Cairo We report here the synthesis of a series of University, Giza, Egypt. hydrazide-hydrzones via the reaction of Synthetic pathways are presented in cyanoacetylhydrazine 1 with -bromo(4- Schemes 1-2 and physicochemical, methoxyacetophenone) 2. The hydrazide- spectral data for the newly synthesized hydrazones have been demonstrated to compounds are given in Tables 1 and 2.
    [Show full text]
  • The. Reactions Op Semicarbazones, Thiosbmicarbazonbs
    THE. REACTIONS OP SEMICARBAZONES, THIOSBMICARBAZONBS AMD RELATED COMPOUNDS, IMCLTJDIMG THE ACTION OF AMINES ON AMINOCARBOCARBAZONES. A THESIS PRESENTED BY JOHN MCLEAN B.So. IN FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY OF THE UNIVERSITY OF GLASGOW. / MAY *936. THE ROYAL TECHNICAL COLLEGE, GLASGOW. ProQuest Number: 13905234 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest 13905234 Published by ProQuest LLC(2019). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States C ode Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106- 1346 This research was carried out in the Royal Technical College, Glasgow, under the supervision of Professor F.J. Wilson, whose helpful advice was greatly appreciated by the author. CONTENTS. Page General Introduction, PART 1. The Action of Amines on Amino Carhocarbazones. Introduction... ..... ,..................... 4 Benzylamine......... Theoretical.............. 11 ......... Experimental............. 15 Aniline............. Theoretical............ 21 ............. Experimental............ 22 B-Naphthylamine..... Theoretical............... 27
    [Show full text]
  • Design and Biological Evaluation of Biphenyl-4-Carboxylic Acid Hydrazide-Hydrazone for Antimicrobial Activity
    Acta Poloniae Pharmaceutica ñ Drug Research, Vol. 67 No. 3 pp. 255ñ259, 2010 ISSN 0001-6837 Polish Pharmaceutical Society DESIGN AND BIOLOGICAL EVALUATION OF BIPHENYL-4-CARBOXYLIC ACID HYDRAZIDE-HYDRAZONE FOR ANTIMICROBIAL ACTIVITY AAKASH DEEP1*, SANDEEP JAIN2, PRABODH CHANDER SHARMA3 PRABHAKAR VERMA4, MAHESH KUMAR4, and CHANDER PARKASH DORA1 1Department of Pharmaceutical Sciences, G.V.M. College of Pharmacy, Sonepat-131001, India 2Department of Pharm. Sciences, Guru Jambheshwar University of Science and Technology, Hisar-125001, India 3Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra-136119, India 4Institute of Pharmaceutical Sciences, Maharishi Dayanand University, Rohtak-124001, India Abstract: Seven biphenyl-4-carboxylic acid hydrazide-hydrazones have been synthesized. These hydrazone derivatives were characterized by CHN analysis, IR, and 1H NMR spectral data. All the compounds were eval- uated for their in vitro antimicrobial activity against two Gram negative strains (Escherichia coli and Pseudomonas aeruginosa) and two Gram positive strains (Bacillus subtilis and Staphylococcus aureus) and fun- gal strain Candida albicans and Aspergillus niger. All newly synthesized compounds exhibited promising results. Keywords: synthesis, hydrazide-hydrazones, antimicrobial activity Development of novel chemotherapeutic EXPERIMENTAL agents is an important and challenging task for the medicinal chemists and many research programs are Melting points were determined in open capil- directed towards the design and synthesis of new lary tubes and are uncorrected. Infra-red spectra drugs for their chemotherapeutic usage. Hydrazone were recorded on Perkin Elmer Spectrum RXI FTIR compounds constitute an important class for new spectrophotomer in KBr phase. 1H NMR spectra drug development in order to discover an effective were run on BRUKER spectrometer (300 MHz) compound against multidrug resistant microbial using TMS as an internal standard.
    [Show full text]
  • Microwave Assisted Synthesis, Spectral and Antimicrobial Evaluation of Hydrazones and Their Metal Complexes
    Devendra Kumar et al. / Journal of Pharmacy Research 2012,5(2),830-834 Research Article Available online through ISSN: 0974-6943 http://jprsolutions.info Microwave assisted synthesis, spectral and antimicrobial evaluation of hydrazones and their metal complexes Devendra Kumar ,Shivani Singh,Neelam,Rubeena Akhtar Department of Chemistry, Institute of Basic Sciences,Dr. B. R. Ambedkar University, Khandari Campus, Agra-282002 Received on:19-12-2011; Revised on: 07-01-2012; Accepted on:28-01-2012 ABSTRACT Six new metal complexes of Co (II), Ni (II) and Cu (II) with bis-(furfuryl) adipic acid dihydrazone (FADH) and bis- (2-acetyl thiophene) adipic acid dihydrazone (2-ATADH) have been synthesized under microwave irradiation. The Microwave irradiation method was found remarkably successful and gave higher yield at less reaction time. All the synthesized compounds have been characterized by running their TLC for single spot, repeated melting point determinations, elemental analyses, IR, 1H-NMR and electronic spectral studies. The elemental analyses and spectral analysis results revealed their Metal: Ligand (1:1) stoichiometry. All the synthesized compounds have been screened in vitro for their antibacterial activity against Staphylococcus aureus, Pseudomonas aeruginosa and also for their antifungal activity against Aspergillus niger and Candida albicans. Key words: Synthesis, Microwave irradiation, Spectral, Antibacterial, Antifungal. INTRODUCTION Over the last few years, there has been growing interest in the synthesis of Synthesis of diethyl adipate: 14.6 g (0.1M) adipic acid was dissolved in organic compounds under green or sustainable chemistry such as micro- 20 ml absolute alcohol. To this solution, 3ml conc. H2SO4 was added. The wave irradiation because of increasing environmental consciousness.
    [Show full text]
  • Synthesis of Macrocyclic Bis-Hydrazone and Their Use in Metal Cations Extraction
    International Scholarly Research Network ISRN Organic Chemistry Volume 2012, Article ID 208284, 8 pages doi:10.5402/2012/208284 Research Article Synthesis of Macrocyclic Bis-Hydrazone and Their Use in Metal Cations Extraction Farouk Kandil, Mohamad Khaled Chebani, and Wail Al Zoubi Department of Chemistry, Faculty of Science, University of Damascus, Damascus, Syria Correspondence should be addressed to Wail Al Zoubi, [email protected] Received 9 October 2011; Accepted 30 October 2011 Academic Editor: G. Li Copyright © 2012 Farouk Kandil et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Two new macrocyclic hydrazone Schiff bases were synthesized by reaction of succindihydrazide and adipdihydrazide with acetylacetone. Hydrazones have been characterized by elemental analyses and IR, mass, 1HNMR,and 13C NMR spectral data. Hydrazones have been studied by liquid-liquid extraction towards the s-metal ions (Li+,Na+,andK+)andd-metalions(Cu2+ and Cr3+) from aqueous phase to organic phase. The effect of chloroform and dichloromethane as organic solvents over the metal chlorides extraction was investigated at 25 ± 0.1◦C by using flame atomic absorption. We found differences between the two solvents in extraction selectivity. 1. Introduction Five dissymmetric tridentate Schiff base ligands contain- ing a mixed donor set of ONN and ONO were prepared by ff Hydrazones are special class of compounds in the Schi bases the reaction of benzohydrazide with the appropriate salicy- family. They are characterized by the presence of the follow- laldehyde and pyridine-2-carbaldehyde and characterized by ing FT-IR, 1HNMR,and13CNMR[13].
    [Show full text]
  • SCOMET List 2013
    (Annexure to Notification No. 37(RE-2012)/2009-2014 Dated 14.03.2013) Special Chemicals, Organisms, Materials, Equipment and Technologies (SCOMET) export of which is regulated Export of Special Chemicals, Organisms, Materials, Equipment and Technologies (SCOMET) listed below shall be permitted only against an export licence issued in this behalf unless export is prohibited or is permitted without licence subject to fulfillment of conditions, if any, as indicated under/against any specific category or item. Provisions of Chapter IV A of the FT(D&R) Act,1992 as amended in 2010 shall apply to the goods, services and technologies specified in the list below. Supply of SCOMET Items from DTA to SEZ No export permission is required for supply of SCOMET items from DTA to SEZ. However, all supplies of SCOMET items from DTA to SEZ will be reported to the Development Commissioner of the respective SEZ by the supplier in the prescribed proforma (Annexure 1) within one (1) week of the supplies getting effected. An annual report of such supplies from DTA to SEZ shall be sent to SCOMET Cell, DGFT (Hqrs), Department of Commerce, Udyog Bhawan, Maulana Azad Road, New Delhi-110011, by the Development Commissioner (DC), SEZ in the prescribed proforma (Annexure 2) . Report by the DC, SEZ to be filed by 15th May of every financial year for the supplies effected during the preceding financial year. Export of SCOMET Items from SEZ to outside the country Export permission is required if the SCOMET items are to be physically exported outside the country from SEZ i.e.
    [Show full text]