Ciridops Anna) Based on the Three Best- Preserved Specimens
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Pu'u Wa'awa'a Biological Assessment
PU‘U WA‘AWA‘A BIOLOGICAL ASSESSMENT PU‘U WA‘AWA‘A, NORTH KONA, HAWAII Prepared by: Jon G. Giffin Forestry & Wildlife Manager August 2003 STATE OF HAWAII DEPARTMENT OF LAND AND NATURAL RESOURCES DIVISION OF FORESTRY AND WILDLIFE TABLE OF CONTENTS TITLE PAGE ................................................................................................................................. i TABLE OF CONTENTS ............................................................................................................. ii GENERAL SETTING...................................................................................................................1 Introduction..........................................................................................................................1 Land Use Practices...............................................................................................................1 Geology..................................................................................................................................3 Lava Flows............................................................................................................................5 Lava Tubes ...........................................................................................................................5 Cinder Cones ........................................................................................................................7 Soils .......................................................................................................................................9 -
Pritchardia Schattaueri
Plants Lo‘ulu Pritchardia schattaueri SPECIES STATUS: Federally Listed as Endangered Genetic Safety Net Species IUCN Red List Ranking ‐ CR A1ce+2ce, B1+2abcde, D Hawai‘i Natural Heritage Ranking ‐ Critically Imperiled (G1) NTBG Endemism – Island of Hawai‘i Critical Habitat ‐ Designated SPECIES INFORMATION: This species is known only from South Kona on the island of Hawai‘i. P. schattaueri is a large fan palm 30‐40 m tall, with a gray trunk. The areas where this species has been found have been extensively altered by agriculture. Rats are also known to feed on Hawaiian Pritchardia fruits. DISTRIBUTION: South Kona, island of Hawai‘i. ABUNDANCE: Only 12 individuals in three subpopulations remain in the wild on Hawai‘i. LOCATION AND CONDITION OF KEY HABITAT: Pritchardia schattaueri grows in ‘ōhi‘a‐dominated Lowland Mesic Forest, at elevations between 600 and 800 m (1,970 to 2,600 ft). Known to grow in mesic forests on old lava. The last remaining plants are located on private land. THREATS: Grazing and trampling by cattle and feral pigs; Competition from alien plant taxa, like strawberry guava, common guava, kikuyu grass, Christmas berry and thimbleberry; Seed predation by rats; Residential and commercial development; Habitat change due to volcanic activity; Extinction from naturally occurring events; Reduced reproductive vigor due to the small number of existing populations. CONSERVATION ACTIONS: The goals of conservation actions are not only to protect current populations, but also to establish new populations to reduce the risk of extinction. The USFWS has developed a recovery plan that details specific tasks needed to recover this species. -
Coconut and Other Palm Trees Posted on August 8, 2019 by Leslie Lang
HOME HOURS & DIRECTIONS GARDEN SLIDESHOW GARDEN NEWS & BLOG Coconut and Other Palm Trees Posted on August 8, 2019 by Leslie Lang Of all the types of palm trees, many people here in Hawai‘i are most familiar with the coconut palm, Cocos nucifera. It’s the tree that says, “tropics.” But there’s so much more to the coconut palm. Its fruit, the niu or coconut, is so useful that early Polynesians brought it along to sustain themselves when they sailed across the Pacific to Hawai‘i. Polynesians knew that when they settled on new islands, they could plant coconuts and make use of the entire tree that grew—not only the coconut meat and water, but also the leaves, the wood, the fiber, and every other part. According to the book Canoe Plants of Ancient Hawaii, “Besides drink, food and shade, niu offers the possibilities of housing, thatching, hats, baskets, furniture, mats, cordage, clothing, charcoal, brooms, fans, ornaments, musical instruments, shampoo, containers, implements and oil for fuel, light, ointments, soap and more.” The only palm tree that’s native to Hawai‘i is the loulu (Pritchardia). There are perhaps 19 loulu species in Hawai‘i and a few related species in Tahiti and Fiji. Hawai‘i used to have large loulu forests, but while some loulu still survive in the wild, many disappeared because of rats, pigs, goats, and even people. Within the genus Pritchardia, there are 25 species of palms native to the tropical Pacific Islands. In Hawai‘i, as many as 19 species of Pritchardia are endemic, and some of them are categorized as endangered, rare, or vulnerable. -
The Relationships of the Hawaiian Honeycreepers (Drepaninini) As Indicated by Dna-Dna Hybridization
THE RELATIONSHIPS OF THE HAWAIIAN HONEYCREEPERS (DREPANININI) AS INDICATED BY DNA-DNA HYBRIDIZATION CH^RrES G. SIBLEY AND Jo• E. AHLQUIST Departmentof Biologyand PeabodyMuseum of Natural History, Yale University, New Haven, Connecticut 06511 USA ABSTRACT.--Twenty-twospecies of Hawaiian honeycreepers(Fringillidae: Carduelinae: Drepaninini) are known. Their relationshipsto other groups of passefineswere examined by comparing the single-copyDNA sequencesof the Apapane (Himationesanguinea) with those of 5 speciesof carduelinefinches, 1 speciesof Fringilla, 15 speciesof New World nine- primaried oscines(Cardinalini, Emberizini, Thraupini, Parulini, Icterini), and members of 6 other families of oscines(Turdidae, Monarchidae, Dicaeidae, Sylviidae, Vireonidae, Cor- vidae). The DNA-DNA hybridization data support other evidence indicating that the Hawaiian honeycreepersshared a more recent common ancestorwith the cardue!ine finches than with any of the other groupsstudied and indicate that this divergenceoccurred in the mid-Miocene, 15-20 million yr ago. The colonizationof the Hawaiian Islandsby the ancestralspecies that radiated to produce the Hawaiian honeycreeperscould have occurredat any time between 20 and 5 million yr ago. Becausethe honeycreeperscaptured so many ecologicalniches, however, it seemslikely that their ancestor was the first passefine to become established in the islands and that it arrived there at the time of, or soon after, its separationfrom the carduelinelineage. If so, this colonist arrived before the present islands from Hawaii to French Frigate Shoal were formed by the volcanic"hot-spot" now under the island of Hawaii. Therefore,the ancestral drepaninine may have colonizedone or more of the older Hawaiian Islandsand/or Emperor Seamounts,which also were formed over the "hot-spot" and which reachedtheir present positions as the result of tectonic crustal movement. -
Pritchardia Pacifica (Fiji Fan Palm) Pritchardia Pacifica Is a Small to Medium Size Palm Tree Native to Hawaii
Pritchardia pacifica (Fiji Fan Palm) Pritchardia pacifica is a small to medium size palm tree native to Hawaii. Its flowerstalks are long with a yellowish brown color. Landscape Information French Name: Palmier éventail du Pacifique Pronounciation: pritch-AR-dee-uh pa-SIF-ik-uh Plant Type: Palm Origin: Fiji, Hawaii Heat Zones: Hardiness Zones: 10, 11 Uses: Specimen, Indoor, Container Size/Shape Growth Rate: Slow Tree Shape: Upright, Palm Height at Maturity: 8 to 15 m Spread at Maturity: 3 to 5 meters Plant Image Pritchardia pacifica (Fiji Fan Palm) Botanical Description Foliage Leaf Arrangement: Spiral Leaf Venation: Palmate Leaf Persistance: Evergreen Leaf Type: Costapalmate Leaf Blade: Over 80 cm Leaf Margins: Entire, Ciliate Leaf Textures: Leathery, Glossy, Medium Leaf Scent: Color(growing season): Green Color(changing season): Green Flower Flower Showiness: True Flower Size Range: 0 - 1.5 Flower Type: Panicle Flower Sexuality: Monoecious (Bisexual) Flower Color: Yellow, Brown Seasons: Summer Trunk Trunk Has Crownshaft: False Number of Trunks: Single Trunk Plant Image Trunk Esthetic Values: Not Showy, Smooth Fruit Fruit Type: Drupe Fruit Showiness: False Fruit Size Range: 0 - 1.5 Fruit Colors: Black Seasons: Summer Pritchardia pacifica (Fiji Fan Palm) Horticulture Management Tolerance Frost Tolerant: No Heat Tolerant: Yes Drought Tolerant: Yes Salt Tolerance: Moderate Requirements Soil Requirements: Clay, Loam, Sand Soil Ph Requirements: Neutral Water Requirements: Moderate Light Requirements: Full, Part Management Toxity: No Invasive Potential: No Susceptibility to Pests and Diseases: No Pruning Requirement: Little needed, to develop a strong structure Fruit/ Leaves/ Flowers litter: No Surface Rooting: No Life Span: More than 50 Edible Parts: Plant Propagations: Seed Plant Image. -
Nomenclature of the Laysan Honeycreeper Himatione [Sanguinea] Fraithii
Peter Pyle 116 Bull. B.O.C. 2011 131(2) Nomenclature of the Laysan Honeycreeper Himatione [sanguinea] fraithii by Peter Pyle Received 21 May 2010 The Apapane Himatione sanguinea is the most abundant extant species of Hawaiian finch (Fringillidae, Drepanidinae) (Pratt 2005, Pyle & Pyle 2009). It occurs throughout high islands of the south-east Hawaiian Islands, where it shows little to no inter-island variation. On Laysan Island, Northwestern Hawaiian Islands, a resident Himatione was first encountered on 3 April 1828 by the naturalist C. Isenbeck (von Kittlitz 1834) and named much later from specimens collected by H. Palmer and G. Munro in June 1891 (Rothschild 1892). While Palmer and Munro were on Laysan they were assisted by George D. Freeth, manager of a guano-mining operation there and an amateur naturalist. In acknowledgement, Rothschild named the new bird Himatione fraithii, based evidently on a miscommunication from Palmer or Munro or an erroneous assumption concerning the spelling of Freeth’s name, which is not mentioned in the description. This taxon, widely known as the Laysan Honeyeater and, later, the Laysan Honeycreeper, became extinct in 1923 (Ely & Clapp 1975, A. Wetmore in Olson 1996). Walter Rothschild was a well-known British zoologist with an avid interest in the birdlife of islands (Rothschild 1983, Olson 2008). He had sent Palmer and other collectors to procure specimens from the Hawaiian Islands in 1890–93 for his private museum in Tring, England. Based upon this collection he published Avifauna of Laysan and the neighbouring islands, with a complete history to date of the birds of the Hawaiian possession in three parts, Part I in August 1893, Part II in November 1893 and Part III in December 1900 (Rothschild 1893– 1900; see Olson 2003). -
Appendix, French Names, Supplement
685 APPENDIX Part 1. Speciesreported from the A.O.U. Check-list area with insufficient evidencefor placementon the main list. Specieson this list havebeen reported (published) as occurring in the geographicarea coveredby this Check-list.However, their occurrenceis considered hypotheticalfor one of more of the following reasons: 1. Physicalevidence for their presence(e.g., specimen,photograph, video-tape, audio- recording)is lacking,of disputedorigin, or unknown.See the Prefacefor furtherdiscussion. 2. The naturaloccurrence (unrestrained by humans)of the speciesis disputed. 3. An introducedpopulation has failed to becomeestablished. 4. Inclusionin previouseditions of the Check-listwas basedexclusively on recordsfrom Greenland, which is now outside the A.O.U. Check-list area. Phoebastria irrorata (Salvin). Waved Albatross. Diornedeairrorata Salvin, 1883, Proc. Zool. Soc. London, p. 430. (Callao Bay, Peru.) This speciesbreeds on Hood Island in the Galapagosand on Isla de la Plata off Ecuador, and rangesat seaalong the coastsof Ecuadorand Peru. A specimenwas takenjust outside the North American area at Octavia Rocks, Colombia, near the Panama-Colombiaboundary (8 March 1941, R. C. Murphy). There are sight reportsfrom Panama,west of Pitias Bay, Dari6n, 26 February1941 (Ridgely 1976), and southwestof the Pearl Islands,27 September 1964. Also known as GalapagosAlbatross. ThalassarchechrysosWma (Forster). Gray-headed Albatross. Diornedeachrysostorna J. R. Forster,1785, M6m. Math. Phys. Acad. Sci. Paris 10: 571, pl. 14. (voisinagedu cerclepolaire antarctique & dansl'Ocean Pacifique= Isla de los Estados[= StatenIsland], off Tierra del Fuego.) This speciesbreeds on islandsoff CapeHorn, in the SouthAtlantic, in the southernIndian Ocean,and off New Zealand.Reports from Oregon(mouth of the ColumbiaRiver), California (coastnear Golden Gate), and Panama(Bay of Chiriqu0 are unsatisfactory(see A.O.U. -
The Phylogenetic Relationships and Generic Limits of Finches
Molecular Phylogenetics and Evolution 62 (2012) 581–596 Contents lists available at SciVerse ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev The phylogenetic relationships and generic limits of finches (Fringillidae) ⇑ Dario Zuccon a, , Robert Pryˆs-Jones b, Pamela C. Rasmussen c, Per G.P. Ericson d a Molecular Systematics Laboratory, Swedish Museum of Natural History, Box 50007, SE-104 05 Stockholm, Sweden b Bird Group, Department of Zoology, Natural History Museum, Akeman St., Tring, Herts HP23 6AP, UK c Department of Zoology and MSU Museum, Michigan State University, East Lansing, MI 48824, USA d Department of Vertebrate Zoology, Swedish Museum of Natural History, Box 50007, SE-104 05 Stockholm, Sweden article info abstract Article history: Phylogenetic relationships among the true finches (Fringillidae) have been confounded by the recurrence Received 30 June 2011 of similar plumage patterns and use of similar feeding niches. Using a dense taxon sampling and a com- Revised 27 September 2011 bination of nuclear and mitochondrial sequences we reconstructed a well resolved and strongly sup- Accepted 3 October 2011 ported phylogenetic hypothesis for this family. We identified three well supported, subfamily level Available online 17 October 2011 clades: the Holoarctic genus Fringilla (subfamly Fringillinae), the Neotropical Euphonia and Chlorophonia (subfamily Euphoniinae), and the more widespread subfamily Carduelinae for the remaining taxa. Keywords: Although usually separated in a different -
SAB 015 1994 P91-102 a Chronology of Ornithological
Studies in Avian Biology No. 15:91-102, 1994. A CHRONOLOGY OF ORNITHOLOGICAL EXPLORATION IN THE HAWAIIAN ISLANDS, FROM COOK TO PERKINS STORRS L. OLSON AND HELEN F. JAMES Abstract. Although ornithological exploration of the Hawaiian archipelago began in 1778, more than a century elapsed before reasonably comprehensive avifaunal surveys were conducted in the 1880s and 1890s. We review the history of early bird collecting for each of the major islands, based on examination of specimen data, archives, and the published literature. An island-by-island approach shows that some islands were more favored for visits by early collectors, while others, especially Maui, were long neglected. Given the uneven collecting histories of individual islands, we speculate that additional species and populations may have become extinct after first European contact, but before specimens were preserved for science. Key Words: Hawaiian Islands; history of ornithological collecting; historical extinctions; museum collections. Compared to many parts of the world, manner and timing of ornithological col- ornithological exploration got an early start lecting in the 19th century. Some species in the Hawaiian Islands, beginning with the and island populations of birds probably third and final voyage of Captain James survived undetected into the historic period Cook in 1778, which expedition marked the but were overtaken by extinction before first European contact with the islands. By specimens could be collected. To identify way of contrast, the first bird to be collected possible biases of this nature, it is instruc- for science in Panama, crossroads of world tive to examine the history of ornithological trade from the late 15th century onward, collecting on an island-by-island basis. -
Oct 1 4 2011
UNITED STATES CEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration NATIONAL MARINE FISHERIES SERVICE Silver Spring. MO 2081 0 OCT 1 4 2011 James A. Hanlon Director, EPA Office of Wastewater Management Room 7116A - EPA East 1201 Constitution Avenue, NW Washington, DC 20460 Mr. Hanlon: Enclosed is the National Marine Fisheries Service's (NMFS) Biological Opinion (Opinion), issued under the authority of section 7(a)(2) of the Endangered Species Act of 1973 (ESA) as amended, regarding the Environmental Protection Agency's (EPA's) proposal to issue a Pesticides General Permit (PGP). As proposed, the general permit will cover point source pesticide pollutant discharges to waters of the U.S. from pesticide applications in States and 1 Territories where the EPA is the permitting authority: Alaska , American Samoa, District of Columbia, Guam, Idaho, Johnston Atoll, Massachusetts, Midway Island, New Hampshire, New 1 Mexico, Northern Mariana Islands, Oklahoma , Puerto Rico, and Wake Island. The proposed pennit will also authorize pesticide pollutant discharges to waters of the U.S. resulting from pesticide applications on Federal lands in Colorado, Delaware, Vermont and Washington, as well as Indian lands nationwide. This Opinion is based on our review of the EPA's Biological Evaluation/or the Environmental Protection Agency's (EPA) Pesticides General Permit (PGP), reviews of the effectiveness of the National Pollution Discharge Elimination System (NPDES) program and compliance for existing general permits, pesticide risk assessments and Section 7(a)(2) consultations on pesticide uses, species status revie\vs, listing documents, recovery plans, reports on the status and trends of water quality, past and current research and population dynamics modeling, published and unpublished scientific information and other sources of information as discussed in greater detail in the Approach to the Assessment section of this draft Opinion. -
Hawaiian Birds 1972*
HAWAIIAN BIRDS 1972* ANDREW J. BERGER More kinds (species and subspecies) of birds have become extinct in Hawaii than on all continents’ of the world combined. These endemic Hawaiian birds have become ex- tinct since 1844l, and most of them have succumbed since the 1890s. Table 1 lists the endemic Hawaiian birds which are presumed to be extinct. Moreover, Hawaiian birds account for nearly one-half of the birds in the U. S. Bureau of Sport Fisheries and Wildlifes’ Red Book of rare and endangered species. The follow- ing list contains 16 of the rare and endangered Hawaiian birds: Newells’ Manx Shear- water (Puffinus puffinus newel&), Hawaiian Dark-rumped Petrel (Pterodroma phaeo- pygia sandwichensis), Harcourt s’ Storm Petrel (Oceanodroma Castro cryptoleucura), Nene or Hawaiian Goose (Branta sandvicensis), Koloa or Hawaiian Duck (Anas wyvilliana) , Laysan Duck (Anus laysanensis) , Hawaiian Hawk (Buteo solitarius) , Hawaiian Gallinule (Gallinula chloropus sandvicensis) , Hawaiian Coot (Fulica ameri- cana alai), Hawaiian Black-necked Stilt (Himantopus himantopus knudseni), Hawaiian Crow (Corvus tropicus), Large Kauai Thrush (Phaeornis obscurus myadestina), Molo- kai Thrush (Phaeornis o. rutha), Small Kauai Thrush (Phaeornis palmeri), Nihoa Millerbird (Acrocephalus familiaris kingi), and the Kauai 00 (Moho braccetus). TO this list may be added the non-migratory Hawaiian population of the Black-crowned Night Heron (Nycticorax n. hoactli). But, there are even more endangered Hawaiian birds! Because of their special interest to ornithologists, -
Extinction Patterns in the Avifauna of the Hawaiian Islands
Diversity and Distributions, (Diversity Distrib.) (2008) 14, 509–517 Blackwell Publishing Ltd BIODIVERSITY Extinction patterns in the avifauna of the RESEARCH Hawaiian islands Alison G. Boyer Department of Biology, University of ABSTRACT New Mexico, Albuquerque, New Mexico, 87131 Through the continuing accumulation of fossil evidence, it is clear that the avifauna of the Hawaiian Islands underwent a large-scale extinction event around the time of Polynesian arrival. A second wave of extinctions since European colonization has further altered this unique avifauna. Here I present the first systematic analysis of the factors characterizing the species that went extinct in each time period and those that survived in order to provide a clearer picture of the possible causal mechanisms. These analyses were based on mean body size, dietary and ecological information and phylogenetic lineage of all known indigenous, non-migratory land and freshwater bird species of the five largest Hawaiian Islands. Extinct species were divided into ‘prehistoric’ and ‘historic’ extinction categories based on the timing of their last occurrence. A model of fossil preservation bias was also incorporated. I used regression trees to predict probability of prehistoric and historic extinction based on ecological variables. Prehistoric extinctions showed a strong bias toward larger body sizes and flightless, ground-nesting species, even after accounting for preservation bias. Many small, specialized species, mostly granivores and frugivores, also disappeared, implicating a wide suite of human impacts including destruction of dry forest habitat. In contrast, the highest extinction rates in the historic period were in medium-sized nectarivorous and insectivorous species. These differences result from different causal mechanisms underlying the two waves Correspondence: Alison G.