Basic Pymol Tutorial

Total Page:16

File Type:pdf, Size:1020Kb

Basic Pymol Tutorial Basic PyMOL Tutorial PyMOL is a great freeware program used to view 3D crystal structures created by Delano Scientific, and could be downloaded for free previously. If not, you can purchase it at https://www.pymol.org/ ​ The freely available version is 0.99, although the newest version is 1.0. Students and Professors can download the new version only after you have registered and the company approves you. For everything we do, I have not found that version 0.99 is in anyway obsolete. Step 1 PyMOL takes .PDB files which can be found at http://www.pdb.org by ​ ​ searching for the molecule of your choice. In the example shown below, I have located the C8γ-Indel structure and I would like to download the .PDB to view and manipulate in PyMOL. The .PDB file can be downloaded by navigating to the left pane under Display Files, then right clicking on the the PDB File, and then Save Link As…as shown circled in red. After you have saved the file in your ​ ​ desired location, you can now open PyMol and view the structure. 1 Step 2 Open the previously installed PyMOL application, navigate to the file menu, and then open the newly downloaded structure (in this case, C8γ-Indel with 2qos accession code) as shown below. The molecule will open in the Line form, with all atoms in the backbone and ​ ​ sidechains shown by carbon in green, nitrogen in blue, and oxygen in red. Waters and any bound ligands will also be shown at this point but may be difficult to decipher from the protein in Line view. Since I find the Line view rather useless, we will change to the more common Cartoon view to look at the structure. This is achieved by navigating to the right menu show below where each letter stands for A=Actions, S=Show, H=Hide, L=Label, and C=Color. 2 We must first Hide all lines, including the proteins, waters, and in this case no ​ ​ ligands. This is done by clicking on the H button next to the all tab , and then ​ ​ clicking on Everything. This will give you an entirely blank screen with no ​ ​ structure shown at all. To Show the structure up in cartoon mode, click on the S ​ ​ ​ button next to the all tab, and then click cartoon. This will give you a structure as shown below: NOTE: If you would like to switch to a Line, Stick or Ribbon view, you must first Hide the Cartoon view, or the new view will be overlayed on the current cartoon. Step 3 To enjoy all of the features of PyMOL you will need a 3-button mouse. The buttons functions as follows: Left button: Rotates the protein around a center axis. ​ Center scroll wheel: When held down will move the protein around the screen as ​ an object. 3 Right button: When held, will zoom in on the protein by pulling the mouse ​ towards you (zoom in), and pushing away (zoom out). I chose to use the C8γ-Indel structure because it not only incorporates a protein, but a peptide too. This means that there are really 2 objects in the structure, but they will be called 2 different Chains from here forward. In the case of this ​ ​ structure there is an A and a C chain which stands for the C8α Indel peptide, and ​ ​ C8γ protein respectively. The chains are named after the greek letters α, β, γ, ​ ​ which stand for a,b,c) Now that you know how to rotate, zoom and move the molecule, changing color is next. There are two ways to change the color; by using the right tool bar under C=Color, or using the command line located in the window labeled PyMOL ​ Td/Tk GUI as circled in red below. If you would like to color both the A and C ​ chains orange, you would type “color orange” in the command line: 4 Notice that with this “color orange” command, you will color both C8γ and the C8α Indel which is circled in green. To alleviate this problem, there is a special ​ ​ command for coloring only one specific chain. I will use the following command to change the C8α Indel peptide to green, while keeping C8γ orange: “color green, chain A” which produces the following screen: Likewise, if you would like to chain the color of C8γ to red, you would use the command “color red, chain C”. 5 Changing the color of specific residues: Command are also helpful to color ​ specific residues in a chain different than the main cartoon color. The following command would be used to color residues 55-110 purple in C8g: “color purple, chain C and resi 55-110” To give the following: Now that you know how to manipulate the color of individual chains, let’s take a look viewing side chains of individual residues. 6 Viewing Side Chains: There are several ways to identify an individual residue ​ that you would like to look at. The first way is to directly left click on the molecule, and the residue that is highlighted will be identified in the PyMOL Td/Tk GUI window as shown here: You can see I click on Glu 45 as shown in the text window. At this time, you can show this side chain by navigating to the right tool bar, where you will now see a tab labeled (sele), which stands for the residue you have just selected. Now under the (sele) tab, click on the S button for show, and then ​ ​ the side chain tab, selecting to show the sticks representation. The side chain will ​ ​ ​ ​ be the same orange color as the cartoon back bone. You can change the color by navigating to the (sele) tab once again, and clicking the on the C button for color. You can choose to color the sidechain a solid color, or you can color the side chain by element. I like to color side chains by atom because nitrogen is blue, oxygen is red, and you can state what color you want carbon to be. Shown below, I have made carbon yellow by coloring by element: 7 While this works very well for coloring the side chain, as you can see, the backbone carbon was also colored yellow, taking away from the orange flow the backbone. This can be fixed by only changing that one carbon back to orange. To achieve this, hold down the Control button on your keyboard while right-clicking on the carbon. You will see the following white sphere around the carbon if done correctly, and the presence of a new toolbar to the right: To chain the backbone back to orange, navigate to the new (pk1) tab and clik on the C button for color. Change to orange, and you now have an orange backbone 8 with a nice yellow side chain. To remove the white sphere from the carbon, you have to hold control and right click away from the protein molecule. Changing the background color: You can change the background to white to ​ make figures by navigating to the top toolbar under Display, then Background, ​ ​ ​ ​ and choose white. I will work with a white background from here forward. Making the cartoon backbone transparent: There are times that you would like to ​ highlight the side chains and not have the cartoon backbone take away from the figure. A nice way to do this is by making the cartoon transparent. This can be done by navigating to the top tool bar under Setting, then Transparency, then Cartoon, and choosing your desired transparency level. I like to use 60% as shown below. You can see that the cartoon look changes, indicating the transparency setting has taken effect. This grainy look with 60% transparency will not be present in the final figure I will be showing you how to create later in this tutorial. 9 How to create high-resolution figures: To create high-resolution figures worthy ​ of publication, you must perform what is known as a ray function. This can be done by creating a figure you are ready to Ray, and the typing the following command into the command window: “ray 1200,1200” This will create a figure that is 1200x1200 pixels, which is very high-resolution. This function may take a few minutes as shown by a progress bar, but will produce a screen that looks like the following. You can see the cartoon transparency compared to the sidechain that has very bold colors. 10 At this point, you must save the picture by going to the File, Save image as.. tab. ​ ​ ​ ​ Images will be saved as .PNG image files. You should also save the work you have done with this molecule by going to the File, Save session tab. This file will have a .PSE extension, and can be opened ​ ​ ​ only by PyMOL so you can pick up where you left off while manipulating the shown C8γ-Indel structure. More advanced options will not be covered in this tutorial. A detailed tutorial directly from the software author can be found here: http://pymol.sourceforge.net/tutorial/index.html Another VERY helpful tutorial that covers molecular surface, bond distance and making movies can be found here: http://137.189.50.96/kbwong/teaching/pymol/pymol_tutorial.html 11 .
Recommended publications
  • Real-Time Pymol Visualization for Rosetta and Pyrosetta
    Real-Time PyMOL Visualization for Rosetta and PyRosetta Evan H. Baugh1, Sergey Lyskov1, Brian D. Weitzner1, Jeffrey J. Gray1,2* 1 Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland, United States of America, 2 Program in Molecular Biophysics, The Johns Hopkins University, Baltimore, Maryland, United States of America Abstract Computational structure prediction and design of proteins and protein-protein complexes have long been inaccessible to those not directly involved in the field. A key missing component has been the ability to visualize the progress of calculations to better understand them. Rosetta is one simulation suite that would benefit from a robust real-time visualization solution. Several tools exist for the sole purpose of visualizing biomolecules; one of the most popular tools, PyMOL (Schro¨dinger), is a powerful, highly extensible, user friendly, and attractive package. Integrating Rosetta and PyMOL directly has many technical and logistical obstacles inhibiting usage. To circumvent these issues, we developed a novel solution based on transmitting biomolecular structure and energy information via UDP sockets. Rosetta and PyMOL run as separate processes, thereby avoiding many technical obstacles while visualizing information on-demand in real-time. When Rosetta detects changes in the structure of a protein, new coordinates are sent over a UDP network socket to a PyMOL instance running a UDP socket listener. PyMOL then interprets and displays the molecule. This implementation also allows remote execution of Rosetta. When combined with PyRosetta, this visualization solution provides an interactive environment for protein structure prediction and design. Citation: Baugh EH, Lyskov S, Weitzner BD, Gray JJ (2011) Real-Time PyMOL Visualization for Rosetta and PyRosetta.
    [Show full text]
  • 64-194 Projekt Parallelrechnerevaluation Abschlussbericht
    64-194 Projekt Parallelrechnerevaluation Abschlussbericht Automatisierte Build-Tests für Spack Sarah Lubitz Malte Fock [email protected] [email protected] Studiengang: LA Berufliche Schulen – Informatik Studiengang LaGym - Informatik Matr.-Nr. 6570465 Matr.-Nr. 6311966 Inhaltsverzeichnis i Inhaltsverzeichnis 1 Einleitung1 1.1 Motivation.....................................1 1.2 Vorbereitungen..................................2 1.2.1 Spack....................................2 1.2.2 Python...................................2 1.2.3 Unix-Shell.................................3 1.2.4 Slurm....................................3 1.2.5 GitHub...................................4 2 Code 7 2.1 Automatisiertes Abrufen und Installieren von Spack-Paketen.......7 2.1.1 Python Skript: install_all_packets.py..................7 2.2 Batch-Jobskripte..................................9 2.2.1 Test mit drei Paketen........................... 10 2.3 Analyseskript................................... 11 2.3.1 Test mit 500 Paketen........................... 12 2.3.2 Code zur Analyse der Error-Logs, forts................. 13 2.4 Hintereinanderausführung der Installationen................. 17 2.4.1 Wrapper Skript.............................. 19 2.5 E-Mail Benachrichtigungen........................... 22 3 Testlauf 23 3.1 Durchführung und Ergebnisse......................... 23 3.2 Auswertung und Schlussfolgerungen..................... 23 3.3 Fazit und Ausblick................................ 24 4 Schulische Relevanz 27 Literaturverzeichnis
    [Show full text]
  • How to Print a Crystal Structure Model in 3D Teng-Hao Chen,*A Semin Lee, B Amar H
    Electronic Supplementary Material (ESI) for CrystEngComm. This journal is © The Royal Society of Chemistry 2014 How to Print a Crystal Structure Model in 3D Teng-Hao Chen,*a Semin Lee, b Amar H. Flood b and Ognjen Š. Miljanić a a Department of Chemistry, University of Houston, 112 Fleming Building, Houston, Texas 77204-5003, United States b Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States Supporting Information Instructions for Printing a 3D Model of an Interlocked Molecule: Cyanostars .................................... S2 Instructions for Printing a "Molecular Spinning Top" in 3D: Triazolophanes ..................................... S3 References ....................................................................................................................................................................... S4 S1 Instructions for Printing a 3D Model of an Interlocked Molecule: Cyanostars Mechanically interlocked molecules such as rotaxanes and catenanes can also be easily printed in 3D. As long as the molecule is correctly designed and modeled, there is no need to assemble and glue the components after printing—they are printed inherently as mechanically interlocked molecules. We present the preparation of a cyanostar- based [3]rotaxane as an example. A pair of sandwiched cyanostars S1 (CS ) derived from the crystal structure was "cleaned up" in the molecular computation software Spartan ʹ10, i.e. disordered atoms were removed. A linear molecule was created and threaded through the cavity of two cyanostars (Figure S1a). Using a space filling view of the molecule, the three components were spaced sufficiently far apart to ensure that they did not make direct contact Figure S1 . ( a) Side and top view of two cyanostars ( CS ) with each other when they are printed. threaded with a linear molecule. ( b) Side and top view of a Bulky stoppers were added to each [3]rotaxane.
    [Show full text]
  • Conformational and Chemical Selection by a Trans-Acting Editing
    Correction BIOCHEMISTRY Correction for “Conformational and chemical selection by a trans- acting editing domain,” by Eric M. Danhart, Marina Bakhtina, William A. Cantara, Alexandra B. Kuzmishin, Xiao Ma, Brianne L. Sanford, Marija Kosutic, Yuki Goto, Hiroaki Suga, Kotaro Nakanishi, Ronald Micura, Mark P. Foster, and Karin Musier-Forsyth, which was first published August 2, 2017; 10.1073/pnas.1703925114 (Proc Natl Acad Sci USA 114:E6774–E6783). The authors note that Oscar Vargas-Rodriguez should be added to the author list between Brianne L. Sanford and Marija Kosutic. Oscar Vargas-Rodriguez should be credited with de- signing research, performing research, and analyzing data. The corrected author line, affiliation line, and author contributions appear below. The online version has been corrected. The authors note that the following statement should be added to the Acknowledgments: “We thank Daniel McGowan for assistance with preparing mutant proteins.” Eric M. Danharta,b, Marina Bakhtinaa,b, William A. Cantaraa,b, Alexandra B. Kuzmishina,b,XiaoMaa,b, Brianne L. Sanforda,b, Oscar Vargas-Rodrigueza,b, Marija Kosuticc,d,YukiGotoe, Hiroaki Sugae, Kotaro Nakanishia,b, Ronald Micurac,d, Mark P. Fostera,b, and Karin Musier-Forsytha,b aDepartment of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210; bCenter for RNA Biology, The Ohio State University, Columbus, OH 43210; cInstitute of Organic Chemistry, Leopold Franzens University, A-6020 Innsbruck, Austria; dCenter for Molecular Biosciences, Leopold Franzens University, A-6020 Innsbruck, Austria; and eDepartment of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan Author contributions: E.M.D., M.B., W.A.C., B.L.S., O.V.-R., M.P.F., and K.M.-F.
    [Show full text]
  • Package Name Software Description Project
    A S T 1 Package Name Software Description Project URL 2 Autoconf An extensible package of M4 macros that produce shell scripts to automatically configure software source code packages https://www.gnu.org/software/autoconf/ 3 Automake www.gnu.org/software/automake 4 Libtool www.gnu.org/software/libtool 5 bamtools BamTools: a C++ API for reading/writing BAM files. https://github.com/pezmaster31/bamtools 6 Biopython (Python module) Biopython is a set of freely available tools for biological computation written in Python by an international team of developers www.biopython.org/ 7 blas The BLAS (Basic Linear Algebra Subprograms) are routines that provide standard building blocks for performing basic vector and matrix operations. http://www.netlib.org/blas/ 8 boost Boost provides free peer-reviewed portable C++ source libraries. http://www.boost.org 9 CMake Cross-platform, open-source build system. CMake is a family of tools designed to build, test and package software http://www.cmake.org/ 10 Cython (Python module) The Cython compiler for writing C extensions for the Python language https://www.python.org/ 11 Doxygen http://www.doxygen.org/ FFmpeg is the leading multimedia framework, able to decode, encode, transcode, mux, demux, stream, filter and play pretty much anything that humans and machines have created. It supports the most obscure ancient formats up to the cutting edge. No matter if they were designed by some standards 12 ffmpeg committee, the community or a corporation. https://www.ffmpeg.org FFTW is a C subroutine library for computing the discrete Fourier transform (DFT) in one or more dimensions, of arbitrary input size, and of both real and 13 fftw complex data (as well as of even/odd data, i.e.
    [Show full text]
  • Optimizing the Use of Open-Source Software Applications in Drug
    DDT • Volume 11, Number 3/4 • February 2006 REVIEWS TICS INFORMA Optimizing the use of open-source • software applications in drug discovery Reviews Werner J. Geldenhuys1, Kevin E. Gaasch2, Mark Watson2, David D. Allen1 and Cornelis J.Van der Schyf1,3 1Department of Pharmaceutical Sciences, School of Pharmacy,Texas Tech University Health Sciences Center, Amarillo,TX, USA 2West Texas A&M University, Canyon,TX, USA 3Pharmaceutical Chemistry, School of Pharmacy, North-West University, Potchefstroom, South Africa Drug discovery is a time consuming and costly process. Recently, a trend towards the use of in silico computational chemistry and molecular modeling for computer-aided drug design has gained significant momentum. This review investigates the application of free and/or open-source software in the drug discovery process. Among the reviewed software programs are applications programmed in JAVA, Perl and Python, as well as resources including software libraries. These programs might be useful for cheminformatics approaches to drug discovery, including QSAR studies, energy minimization and docking studies in drug design endeavors. Furthermore, this review explores options for integrating available computer modeling open-source software applications in drug discovery programs. To bring a new drug to the market is very costly, with the current of combinatorial approaches and HTS. The addition of computer- price tag approximating US$800 million, according to data reported aided drug design technologies to the R&D approaches of a com- in a recent study [1]. Therefore, it is not surprising that pharma- pany, could lead to a reduction in the cost of drug design and ceutical companies are seeking ways to optimize costs associated development by up to 50% [6,7].
    [Show full text]
  • Bringing Open Source to Drug Discovery
    Bringing Open Source to Drug Discovery Chris Swain Cambridge MedChem Consulting Standing on the shoulders of giants • There are a huge number of people involved in writing open source software • It is impossible to acknowledge them all individually • The slide deck will be available for download and includes 25 slides of details and download links – Copy on my website www.cambridgemedchemconsulting.com Why us Open Source software? • Allows access to source code – You can customise the code to suit your needs – If developer ceases trading the code can continue to be developed – Outside scrutiny improves stability and security What Resources are available • Toolkits • Databases • Web Services • Workflows • Applications • Scripts Toolkits • OpenBabel (htttp://openbabel.org) is a chemical toolbox – Ready-to-use programs, and complete programmer's toolkit – Read, write and convert over 110 chemical file formats – Filter and search molecular files using SMARTS and other methods, KNIME add-on – Supports molecular modeling, cheminformatics, bioinformatics – Organic chemistry, inorganic chemistry, solid-state materials, nuclear chemistry – Written in C++ but accessible from Python, Ruby, Perl, Shell scripts… Toolkits • OpenBabel • R • CDK • OpenCL • RDkit • SciPy • Indigo • NumPy • ChemmineR • Pandas • Helium • Flot • FROWNS • GNU Octave • Perlmol • OpenMPI Toolkits • RDKit (http://www.rdkit.org) – A collection of cheminformatics and machine-learning software written in C++ and Python. – Knime nodes – The core algorithms and data structures are written in C ++. Wrappers are provided to use the toolkit from either Python or Java. – Additionally, the RDKit distribution includes a PostgreSQL-based cartridge that allows molecules to be stored in relational database and retrieved via substructure and similarity searches.
    [Show full text]
  • GROMACS Tutorial Lysozyme in Water
    Free Energy Calculations: Methane in Water 1/20 GROMACS Tutorial Lysozyme in water Based on the tutorial created by Justin A. Lemkul, Ph.D. Department of Pharmaceutical Sciences University of Maryland, Baltimore Adapted by Atte Sillanpää, CSC - IT Center for Science Ltd. This example will guide a new user through the process of setting up a simulation system containing a protein (lysozyme) in a box of water, with ions. Each step will contain an explanation of input and output, using typical settings for general use. This tutorial assumes you are using a GROMACS version in the 2018 series. Step One: Prepare the Topology Some GROMACS Basics With the release of version 5.0 of GROMACS, all of the tools are essentially modules of a binary named "gmx" This is a departure from previous versions, wherein each of the tools was invoked as its own command. To get help information about any GROMACS module, you can invoke either of the following commands: Free Energy Calculations: Methane in Water 2/20 gmx help (module) or gmx (module) -h where (module) is replaced by the actual name of the command you're trying to issue. Information will be printed to the terminal, including available algorithms, options, required file formats, known bugs and limitations, etc. For new users of GROMACS, invoking the help information for common commands is a great way to learn about what each command can do. Now, on to the fun stuff! Lysozyme Tutorial We must download the protein structure file with which we will be working. For this tutorial, we will utilize hen egg white lysozyme (PDB code 1AKI).
    [Show full text]
  • Open Source Molecular Modeling
    Accepted Manuscript Title: Open Source Molecular Modeling Author: Somayeh Pirhadi Jocelyn Sunseri David Ryan Koes PII: S1093-3263(16)30118-8 DOI: http://dx.doi.org/doi:10.1016/j.jmgm.2016.07.008 Reference: JMG 6730 To appear in: Journal of Molecular Graphics and Modelling Received date: 4-5-2016 Accepted date: 25-7-2016 Please cite this article as: Somayeh Pirhadi, Jocelyn Sunseri, David Ryan Koes, Open Source Molecular Modeling, <![CDATA[Journal of Molecular Graphics and Modelling]]> (2016), http://dx.doi.org/10.1016/j.jmgm.2016.07.008 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. Open Source Molecular Modeling Somayeh Pirhadia, Jocelyn Sunseria, David Ryan Koesa,∗ aDepartment of Computational and Systems Biology, University of Pittsburgh Abstract The success of molecular modeling and computational chemistry efforts are, by definition, de- pendent on quality software applications. Open source software development provides many advantages to users of modeling applications, not the least of which is that the software is free and completely extendable. In this review we categorize, enumerate, and describe available open source software packages for molecular modeling and computational chemistry. 1. Introduction What is Open Source? Free and open source software (FOSS) is software that is both considered \free software," as defined by the Free Software Foundation (http://fsf.org) and \open source," as defined by the Open Source Initiative (http://opensource.org).
    [Show full text]
  • Molecular Simulation Methods with Gromacs
    Molecular Simulation Methods with Gromacs Hands-on tutorial Introduction to Molecular Dynamics: Simulation of Lysozyme in Water Background The purpose of this tutorial is not to master all parts of Gromacs simulation and analysis tools in detail, but rather to give an overview and “feeling” for the typical steps used in practical simulations. Since the time available for this exercise is rather limited we can only perform a very short sample simulation, but you will also have access to a slightly longer pre-calculated trajectory for analysis. In principle, the most basic system we could simulate would be water or even a gas like Argon, but to show some of the capabilities of the analysis tools we will work with a protein: Lysozyme. Lysozyme is a fascinating enzyme that has ability to kill bacteria (kind of the body’s own antibiotic), and is present e.g. in tears, saliva, and egg white. It was discovered by Alexander Fleming in 1922, and one of the first protein X-ray structures to be determined (David Phillips, 1965). The two side-chains Glu35 and Asp52 are crucial for the enzyme functionality. It is fairly small by protein standards (although large by simulation standards :-) with 164 residues and a molecular weight of 14.4 kdalton - including hydrogens it consists of 2890 atoms (see illustration on front page), although these are not present in the PDB structure since they only scatter X-rays weakly (few electrons). In the tutorial, we are first going to set up your Gromacs environments, have a look at the structure, prepare the input files necessary for simulation, solvate the structure in water, minimize & equilibrate it, and finally perform a short production simulation.
    [Show full text]
  • Download PDF 137.14 KB
    Why should biochemistry students be introduced to molecular dynamics simulations—and how can we introduce them? Donald E. Elmore Department of Chemistry and Biochemistry Program; Wellesley College; Wellesley, MA 02481 Abstract Molecular dynamics (MD) simulations play an increasingly important role in many aspects of biochemical research but are often not part of the biochemistry curricula at the undergraduate level. This article discusses the pedagogical value of exposing students to MD simulations and provides information to help instructors consider what software and hardware resources are necessary to successfully introduce these simulations into their courses. In addition, a brief review of the MD based activities in this issue and other sources are provided. Keywords molecular dynamics simulations, molecular modeling, biochemistry education, undergraduate education, computational chemistry Published in Biochemistry and Molecular Biology Education, 2016, 44:118-123. Several years ago, I developed a course on the modeling of biochemical systems at Wellesley College, which was described in more detail in a previous issue of this journal [1]. As I set out to design that course, I decided to place a particular emphasis on molecular dynamics (MD) simulations. In full candor, this decision was likely related to my experience integrating these simulations into my own research, but I also believe it was due to some inherent advantages of exposing students to this particular computational approach. Notably, even as this initial biochemical molecular modeling course evolved into a more general (i.e. not solely biochemical) course in computational chemistry, a significant emphasis on MD has remained, emphasizing the central role I and my other colleague who teaches the current course felt it played in students’ education.
    [Show full text]
  • Molecular Modeling with Pymol
    Molecular Modeling with PyMOL PyMOL software is distributed under a license that permits use by Professor Nowick and his students for research and teaching purposes. Students of Professor Nowick may contact him for a link to download PyMOL. PyMOL can perform molecular mechanics calculations to generate realistic molecular models of molecules with common types of atoms and functional groups. Molecular mechanics uses a force field to calculate the steric energy of the molecule and then adjusts the conformation of the molecule to minimize the steric energy. A force field is set of parameters for the bond lengths, angles, torsional parameters, electrostatic properties, van der Waals interactions, etc. PyMOL uses the Merck Molecular Force Field (MMFF), which accurately accommodates a variety of atom types and functional groups. The conformation generated by molecular mechanics is a local minimum. A local minimum is a conformation at the bottom of an energy well (i.e., a conformer). It is not necessarily the lowest energy conformer (i.e., the global minimum). If you start near gauche butane, you will generate gauche butane as a local minimum; if you start near anti butane, you will generate anti butane as a local minimum that is also the global minimum. If you start with a boatlike conformation of cyclohexane, you will end up with a twist-boat conformer; if you start with a chairlike conformation of cyclohexane, you will end up with a chair conformer. The lowest-energy conformer (global minimum) many be identified by various strategies. With simple molecules and small ring sizes, this is often best done by manually adjusting the structure and re-minimizing the structure.
    [Show full text]