Rectangle Hexagon Pentagon Triangle 5 10 Decagon Square Nonagon 7 9 Octagon Quadrilateral 6 8 Math

Total Page:16

File Type:pdf, Size:1020Kb

Rectangle Hexagon Pentagon Triangle 5 10 Decagon Square Nonagon 7 9 Octagon Quadrilateral 6 8 Math Identifying Shapes Name: Solve each problem. Answers 1) A normal piece of notebook paper has 4 sides, 2 that are the same length and another 2 that are the same lenght. What type of shape is the paper? 1. Rectangle 2) While reading a book about buildings, Debby saw a building with 6 sides. This 2. Hexagon building is an example of what shape? 3) Paige noticed that a table top had 5 sides. Because it has 5 sides, the top of the table 3. Pentagon would be what shape? 4. Triangle 4) Paul heard that a shape with 3 sides has angles that will always equal 180°. What shape did he learn about? 5. 5 5) The patterns on a soccer ball are pentagons and hexagons. How many sides does the 10 pentagon portion have? 6. 6) Edward sketched a logo into the shape of a decagon how many sides would the logo 7. Decagon have? 8. Square 7) Tom was looking at coin shapes from other countries and found one with 10 sides. This coin is what shape? 9. Nonagon 8) Bianca bought a poster with 4 equal length sides. What shape was the poster she 7 bought? 10. 9) While drawing on some scrap paper, Cody drew a shape with 9 sides. What is the 11. 9 name of this shape he drew? 12. Octagon 10) A stained glass window is made of hundreds of tiny heptagons. How many sides would each heptagon have? 13. Quadrilateral 11) Tiffany's family is building a pool in the shape of a nonagon. How many sides will 6 the pool have? 14. 12) While walking to school, Will saw a sign with 8 sides. What shape would the sign 15. 8 be? 13) For an art project Kaleb cut a sheet of paper into a shape with 4 sides, but none of them were the same length. What type of shape was the paper? 14) The patterns on a soccer ball are hexagons and pentagons. How many sides does the Hexagon portion have? 15) An octagon is a shape with how many sides? 1-10 93 87 80 73 67 60 53 47 40 33 Math www.CommonCoreSheets.com 3 11-15 27 20 13 7 0.
Recommended publications
  • How Can You Put Shapes Together to Make Other Shapes?
    Lesson 27 Understand Tiling in Rectangles Name: How can you put shapes together to make other shapes? Study the example showing how to put shapes together to make other shapes. Then solve Problems 1–4. Example How can you use smaller shapes to make a circle? Look at the shapes in the green box Draw lines to show how you could use the shapes Write how many of each shape you would need 2 4 1 Draw a line to show how you could use squares like the one in the green box to make a rectangle How many squares would you need? squares 2 Draw lines to show how you could use triangles like the one in the green box to make a rectangle How many triangles would you need? triangles ©Curriculum Associates, LLC Copying is not permitted. Lesson 27 Understand Tiling in Rectangles 283 Solve. 3 Draw lines to show how you could use hexagons to make the first shape below Then show how you could use trapezoids to make the second shape How many of each shape would you need? hexagons trapezoids 4 Draw lines to show how you could use triangles to make the first shape below Then show how you could use trapezoids to make the second shape Then show how you could use rhombuses to make the third shape How many of each shape would you need? triangles trapezoids rhombuses 284 Lesson 27 Understand Tiling in Rectangles ©Curriculum Associates, LLC Copying is not permitted. Lesson 27 Name: Draw and Count Squares Study the example showing how to draw and count squares.
    [Show full text]
  • Square Rectangle Triangle Diamond (Rhombus) Oval Cylinder Octagon Pentagon Cone Cube Hexagon Pyramid Sphere Star Circle
    SQUARE RECTANGLE TRIANGLE DIAMOND (RHOMBUS) OVAL CYLINDER OCTAGON PENTAGON CONE CUBE HEXAGON PYRAMID SPHERE STAR CIRCLE Powered by: www.mymathtables.com Page 1 what is Rectangle? • A rectangle is a four-sided flat shape where every angle is a right angle (90°). means "right angle" and show equal sides. what is Triangle? • A triangle is a polygon with three edges and three vertices. what is Octagon? • An octagon (eight angles) is an eight-sided polygon or eight-gon. what is Hexagon? • a hexagon is a six-sided polygon or six-gon. The total of the internal angles of any hexagon is 720°. what is Pentagon? • a plane figure with five straight sides and five angles. what is Square? • a plane figure with four equal straight sides and four right angles. • every angle is a right angle (90°) means "right ang le" show equal sides. what is Rhombus? • is a flat shape with four equal straight sides. A rhombus looks like a diamond. All sides have equal length. Opposite sides are parallel, and opposite angles are equal what is Oval? • Many distinct curves are commonly called ovals or are said to have an "oval shape". • Generally, to be called an oval, a plane curve should resemble the outline of an egg or an ellipse. Powered by: www.mymathtables.com Page 2 What is Cube? • Six equal square faces.tweleve edges and eight vertices • the angle between two adjacent faces is ninety. what is Sphere? • no faces,sides,vertices • All points are located at the same distance from the center. what is Cylinder? • two circular faces that are congruent and parallel • faces connected by a curved surface.
    [Show full text]
  • Geometry Honors Mid-Year Exam Terms and Definitions Blue Class 1
    Geometry Honors Mid-Year Exam Terms and Definitions Blue Class 1. Acute angle: Angle whose measure is greater than 0° and less than 90°. 2. Adjacent angles: Two angles that have a common side and a common vertex. 3. Alternate interior angles: A pair of angles in the interior of a figure formed by two lines and a transversal, lying on alternate sides of the transversal and having different vertices. 4. Altitude: Perpendicular segment from a vertex of a triangle to the opposite side or the line containing the opposite side. 5. Angle: A figure formed by two rays with a common endpoint. 6. Angle bisector: Ray that divides an angle into two congruent angles and bisects the angle. 7. Base Angles: Two angles not included in the legs of an isosceles triangle. 8. Bisect: To divide a segment or an angle into two congruent parts. 9. Coincide: To lie on top of the other. A line can coincide another line. 10. Collinear: Lying on the same line. 11. Complimentary: Two angle’s whose sum is 90°. 12. Concave Polygon: Polygon in which at least one interior angle measures more than 180° (at least one segment connecting two vertices is outside the polygon). 13. Conclusion: A result of summary of all the work that has been completed. The part of a conditional statement that occurs after the word “then”. 14. Congruent parts: Two or more parts that only have the same measure. In CPCTC, the parts of the congruent triangles are congruent. 15. Congruent triangles: Two triangles are congruent if and only if all of their corresponding parts are congruent.
    [Show full text]
  • Quadrilateral Theorems
    Quadrilateral Theorems Properties of Quadrilaterals: If a quadrilateral is a TRAPEZOID then, 1. at least one pair of opposite sides are parallel(bases) If a quadrilateral is an ISOSCELES TRAPEZOID then, 1. At least one pair of opposite sides are parallel (bases) 2. the non-parallel sides are congruent 3. both pairs of base angles are congruent 4. diagonals are congruent If a quadrilateral is a PARALLELOGRAM then, 1. opposite sides are congruent 2. opposite sides are parallel 3. opposite angles are congruent 4. consecutive angles are supplementary 5. the diagonals bisect each other If a quadrilateral is a RECTANGLE then, 1. All properties of Parallelogram PLUS 2. All the angles are right angles 3. The diagonals are congruent If a quadrilateral is a RHOMBUS then, 1. All properties of Parallelogram PLUS 2. the diagonals bisect the vertices 3. the diagonals are perpendicular to each other 4. all four sides are congruent If a quadrilateral is a SQUARE then, 1. All properties of Parallelogram PLUS 2. All properties of Rhombus PLUS 3. All properties of Rectangle Proving a Trapezoid: If a QUADRILATERAL has at least one pair of parallel sides, then it is a trapezoid. Proving an Isosceles Trapezoid: 1st prove it’s a TRAPEZOID If a TRAPEZOID has ____(insert choice from below) ______then it is an isosceles trapezoid. 1. congruent non-parallel sides 2. congruent diagonals 3. congruent base angles Proving a Parallelogram: If a quadrilateral has ____(insert choice from below) ______then it is a parallelogram. 1. both pairs of opposite sides parallel 2. both pairs of opposite sides ≅ 3.
    [Show full text]
  • Framing Cyclic Revolutionary Emergence of Opposing Symbols of Identity Eppur Si Muove: Biomimetic Embedding of N-Tuple Helices in Spherical Polyhedra - /
    Alternative view of segmented documents via Kairos 23 October 2017 | Draft Framing Cyclic Revolutionary Emergence of Opposing Symbols of Identity Eppur si muove: Biomimetic embedding of N-tuple helices in spherical polyhedra - / - Introduction Symbolic stars vs Strategic pillars; Polyhedra vs Helices; Logic vs Comprehension? Dynamic bonding patterns in n-tuple helices engendering n-fold rotating symbols Embedding the triple helix in a spherical octahedron Embedding the quadruple helix in a spherical cube Embedding the quintuple helix in a spherical dodecahedron and a Pentagramma Mirificum Embedding six-fold, eight-fold and ten-fold helices in appropriately encircled polyhedra Embedding twelve-fold, eleven-fold, nine-fold and seven-fold helices in appropriately encircled polyhedra Neglected recognition of logical patterns -- especially of opposition Dynamic relationship between polyhedra engendered by circles -- variously implying forms of unity Symbol rotation as dynamic essential to engaging with value-inversion References Introduction The contrast to the geocentric model of the solar system was framed by the Italian mathematician, physicist and philosopher Galileo Galilei (1564-1642). His much-cited phrase, " And yet it moves" (E pur si muove or Eppur si muove) was allegedly pronounced in 1633 when he was forced to recant his claims that the Earth moves around the immovable Sun rather than the converse -- known as the Galileo affair. Such a shift in perspective might usefully inspire the recognition that the stasis attributed so widely to logos and other much-valued cultural and heraldic symbols obscures the manner in which they imply a fundamental cognitive dynamic. Cultural symbols fundamental to the identity of a group might then be understood as variously moving and transforming in ways which currently elude comprehension.
    [Show full text]
  • Polygon Review and Puzzlers in the Above, Those Are Names to the Polygons: Fill in the Blank Parts. Names: Number of Sides
    Polygon review and puzzlers ÆReview to the classification of polygons: Is it a Polygon? Polygons are 2-dimensional shapes. They are made of straight lines, and the shape is "closed" (all the lines connect up). Polygon Not a Polygon Not a Polygon (straight sides) (has a curve) (open, not closed) Regular polygons have equal length sides and equal interior angles. Polygons are named according to their number of sides. Name of Degree of Degree of triangle total angles regular angles Triangle 180 60 In the above, those are names to the polygons: Quadrilateral 360 90 fill in the blank parts. Pentagon Hexagon Heptagon 900 129 Names: number of sides: Octagon Nonagon hendecagon, 11 dodecagon, _____________ Decagon 1440 144 tetradecagon, 13 hexadecagon, 15 Do you see a pattern in the calculation of the heptadecagon, _____________ total degree of angles of the polygon? octadecagon, _____________ --- (n -2) x 180° enneadecagon, _____________ icosagon 20 pentadecagon, _____________ These summation of angles rules, also apply to the irregular polygons, try it out yourself !!! A point where two or more straight lines meet. Corner. Example: a corner of a polygon (2D) or of a polyhedron (3D) as shown. The plural of vertex is "vertices” Test them out yourself, by drawing diagonals on the polygons. Here are some fun polygon riddles; could you come up with the answer? Geometry polygon riddles I: My first is in shape and also in space; My second is in line and also in place; My third is in point and also in line; My fourth in operation but not in sign; My fifth is in angle but not in degree; My sixth is in glide but not symmetry; Geometry polygon riddles II: I am a polygon all my angles have the same measure all my five sides have the same measure, what general shape am I? Geometry polygon riddles III: I am a polygon.
    [Show full text]
  • Formulas Involving Polygons - Lesson 7-3
    you are here > Class Notes – Chapter 7 – Lesson 7-3 Formulas Involving Polygons - Lesson 7-3 Here’s today’s warmup…don’t forget to “phone home!” B Given: BD bisects ∠PBQ PD ⊥ PB QD ⊥ QB M Prove: BD is ⊥ bis. of PQ P Q D Statements Reasons Honors Geometry Notes Today, we started by learning how polygons are classified by their number of sides...you should already know a lot of these - just make sure to memorize the ones you don't know!! Sides Name 3 Triangle 4 Quadrilateral 5 Pentagon 6 Hexagon 7 Heptagon 8 Octagon 9 Nonagon 10 Decagon 11 Undecagon 12 Dodecagon 13 Tridecagon 14 Tetradecagon 15 Pentadecagon 16 Hexadecagon 17 Heptadecagon 18 Octadecagon 19 Enneadecagon 20 Icosagon n n-gon Baroody Page 2 of 6 Honors Geometry Notes Next, let’s look at the diagonals of polygons with different numbers of sides. By drawing as many diagonals as we could from one diagonal, you should be able to see a pattern...we can make n-2 triangles in a n-sided polygon. Given this information and the fact that the sum of the interior angles of a polygon is 180°, we can come up with a theorem that helps us to figure out the sum of the measures of the interior angles of any n-sided polygon! Baroody Page 3 of 6 Honors Geometry Notes Next, let’s look at exterior angles in a polygon. First, consider the exterior angles of a pentagon as shown below: Note that the sum of the exterior angles is 360°.
    [Show full text]
  • Folding the Regular Nonagon
    210 Folding the Regular Nonagon Robert Geretschlager, Bundesrealgymnasium, Graz, Austria Introduction In the March 1997 of Crux [1997: 81], I presented a theoretically precise method of folding a regular heptagon from a square of paper using origami methods in an article titled \Folding the Regular Heptagon". The method was derived from results established in \Euclidean Constructions and the Geometry of Origami" [2], where it is shown that all geometric problems that can be reduced algebraically to cubic equations can be solved by elementary methods of origami. Speci cally, the corners of the regular heptagon were thought of as the solutions of the equation 7 z 1=0 in the complex plane, and this equation was then found to lead to the cubic equation 3 2 + 2 1= 0; which was then discussed using methods of origami. Finally, a concrete method of folding the regular heptagon was presented, as derived from this discussion. In this article, I present a precise method of folding the regular nonagon from a square of paper, again as derived from results established in [2]. However, as we shall see, the sequence of foldings used is quite di erent from that used for the regular heptagon. As for the heptagon, the folding method is once again presented in standard origami notation, and the mathematical section cross-referenced to the appropriate diagrams. Angle Trisection For any regular n-gon, the angle under which each side appears as seen from 2 the mid-point is . Speci cally, for n =9, the sides of a regular nonagon n 2 are seen from its mid-point under the angle .
    [Show full text]
  • Teach the Square…And the Rectangle
    f e a t u r e Teach the square…and the rectangle eaching these two geometric needs of ancient civilizations. familiar and trusted shapes, they Tshapes is like a line from an (Some believe the square symbol- represent order and stability. old song: “You can’t have one izes civilization.) Ancient peoples Because a square has four equal without the other.” needed to measure plots of land, sides, it can also be said to sym- The square and rectangle go build structures, collect taxes, bolize the seasons (spring, sum- hand in hand—maybe not like describe constellations, and create mer, fall, winter), cardinal direc- “love and marriage” or “horse calendars, all of which required tions (north, east, south, west), and carriage,” but perhaps best numbers, shapes, and calculations. and the elements (fire, water, air, understood in terms of the other. Of the basic geometric shapes in earth). Children have undoubtedly had today’s world, the rectangle is the In nature, we see no naturally experience with the two shapes in most common. The rectangle and formed squares or rectangles. objects all around them. They its square soul-mate form the Trees, branches, and leaves, for begin learning geometric shapes structure of most buildings. As example, are uneven, rounded, in a more formal way in preschool z T and are usually expected to know gae how to make and take apart N shapes by the time they finish kindergarten. by susa oto Texas Child Care has posted two ph previous articles on teaching geo- metric shapes: Go round: Teach the circle shape in Spring 2015 and Teach the triangle in Spring 2017.
    [Show full text]
  • Petrie Schemes
    Canad. J. Math. Vol. 57 (4), 2005 pp. 844–870 Petrie Schemes Gordon Williams Abstract. Petrie polygons, especially as they arise in the study of regular polytopes and Coxeter groups, have been studied by geometers and group theorists since the early part of the twentieth century. An open question is the determination of which polyhedra possess Petrie polygons that are simple closed curves. The current work explores combinatorial structures in abstract polytopes, called Petrie schemes, that generalize the notion of a Petrie polygon. It is established that all of the regular convex polytopes and honeycombs in Euclidean spaces, as well as all of the Grunbaum–Dress¨ polyhedra, pos- sess Petrie schemes that are not self-intersecting and thus have Petrie polygons that are simple closed curves. Partial results are obtained for several other classes of less symmetric polytopes. 1 Introduction Historically, polyhedra have been conceived of either as closed surfaces (usually topo- logical spheres) made up of planar polygons joined edge to edge or as solids enclosed by such a surface. In recent times, mathematicians have considered polyhedra to be convex polytopes, simplicial spheres, or combinatorial structures such as abstract polytopes or incidence complexes. A Petrie polygon of a polyhedron is a sequence of edges of the polyhedron where any two consecutive elements of the sequence have a vertex and face in common, but no three consecutive edges share a commonface. For the regular polyhedra, the Petrie polygons form the equatorial skew polygons. Petrie polygons may be defined analogously for polytopes as well. Petrie polygons have been very useful in the study of polyhedra and polytopes, especially regular polytopes.
    [Show full text]
  • Quadrilaterals
    Name: Quadrilaterals Match the quadrilateral with its definition. a. 1. All sides are the same length. There are four right angles. Parallelogram b. 2. There is only one pair of parallel sides. Rectangle c. 3. Opposite sides are parallel and the same length. There are four right angles. Trapezoid d. 4. There are two pairs of parallel sides. All sides are the same length. Rhombus 5. There are two pairs of opposite parallel e. sides. Square 6. List two ways a rectangle and square are alike and one way in which they are different. Super Teacher Worksheets - www.superteacherworksheets.com ANSWER KEY Quadrilaterals Match the quadrilateral with its definition. a. e 1. All sides are the same length. There are four right angles. Parallelogram b. c 2. There is only one pair of parallel sides. Rectangle c. b 3. Opposite sides are parallel and the same length. There are four right angles. Trapezoid d. d 4. There are two pairs of parallel sides. All sides are the same length. Rhombus a 5. There are two pairs of opposite parallel e. sides. Square 6. List two ways a rectangle and square are alike and one way in which they are different. Rectangles and squares are alike in that both have two pairs of parallel sides and four right angles. They are different because a square must have four equal sides lengths and a rectangle has two pairs of equal side lengths. Super Teacher Worksheets - www.superteacherworksheets.com.
    [Show full text]
  • ( ) Methods for Construction of Odd Number Pointed
    Daniel DOBRE METHODS FOR CONSTRUCTION OF ODD NUMBER POINTED POLYGONS Abstract: The purpose of this paper is to present methods for constructing of polygons with an odd number of sides, although some of them may not be built only with compass and straightedge. Odd pointed polygons are difficult to construct accurately, though there are relatively simple ways of making a good approximation which are accurate within the normal working tolerances of design practitioners. The paper illustrates rather complicated constructions to produce unconstructible polygons with an odd number of sides, constructions that are particularly helpful for engineers, architects and designers. All methods presented in this paper provide practice in geometric representations. Key words: regular polygon, pentagon, heptagon, nonagon, hendecagon, pentadecagon, heptadecagon. 1. INTRODUCTION n – number of sides; Ln – length of a side; For a specialist inured to engineering graphics, plane an – apothem (radius of inscribed circle); and solid geometries exert a special fascination. Relying R – radius of circumscribed circle. on theorems and relations between linear and angular sizes, geometry develops students' spatial imagination so 2. THREE - POINT GEOMETRY necessary for understanding other graphic discipline, descriptive geometry, underlying representations in The construction for three point geometry is shown engineering graphics. in fig. 1. Given a circle with center O, draw the diameter Construction of regular polygons with odd number of AD. From the point D as center and, with a radius in sides, just by straightedge and compass, has preoccupied compass equal to the radius of circle, describe an arc that many mathematicians who have found ingenious intersects the circle at points B and C.
    [Show full text]