Nutritional Aspects of Breeding in Birds

Total Page:16

File Type:pdf, Size:1020Kb

Nutritional Aspects of Breeding in Birds Nutritional aspects of breeding in birds Andrea Lindsey Fidgett Thesis presented for the degree of Doctor of Philosophy, Division of Environmental & Evolutionary Biology, Faculty of Biomedical & Life Sciences, University of Glasgow. March 2002 ® Andrea L. Fidgett 2002 ProQuest Number: 13833998 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest 13833998 Published by ProQuest LLC(2019). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States C ode Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106- 1346 GLASGOW 1 UNIVERS5TY .LIBRARY: A \isk\ Co P M \ D e c l a r a t io n I declare that the work described in this thesis has been carried out by myself unless otherwise cited or acknowledged. It is entirely my own composition and has not, in or in part, been submitted for any other degree Andrea L. Fidgett March 2002 “It has, I believe, been often remarked that a hen is only an egg’s way of making another egg.” Samuel Butler, 1877 No two alike... For Irene, Shona, Mum & Dad A bstr a c t This study set out to investigate the relationships between dietary nutrition, female quality and egg production. Representing a considerable investment of her resources, a female bird deposits all the chemical nutrients required for the growth of an avian embryo within a sealed unit over a short period of time. Variation in both the total amount of resources allocated to a clutch of eggs and the distribution of those resources within a clutch can have a profound influence on both her offspring's and her own fitness. Cockatiels (Nymphicus hollandkus ) were used as a model for a parrot species, to examine the interaction between the body condition of females before breeding and the quality of diet they obtain during egg formation on subsequent clutch production. Feeding a supplement of high quality nutrients had a positive influence on breeding performance. Clutch mass was 32% larger in birds that received the supplement all through the breeding cycle, versus the birds who only received a maintenance diet over the same time period. Clutch size rather than egg size was increased. High quality nutrition offered during the period of egg production did not produce significantly larger clutches. Instead there was a significant increase in clutch mass when a feeding supplement was offered during the pre-laying period, suggesting an important contribution from endogenous reserves to egg production. Feeding a supplement of high quality nutrients did not appear to affect egg mass, an attribute often used as a measure of egg quality. Chicks hatching from eggs laid by birds fed a supplement of high quality nutrients tended to gain weight and grow skeletally faster than those hatching from eggs laid by birds with no exposure to the high quality diet. To examine interspecific variation in egg composition, eggs of 18 bird species, representing 10 avian orders, a range of dietary habits and many of the eight classes of developmental maturity of chicks at hatching, were collected and analysed. The gross composition (lipid, protein and water contents), amino acid and essential fatty acid profiles of their eggs are presented. Differences in egg composition are discussed in terms of developmental maturity of chick at hatching, and maternal diet. Variation in egg composition and therefore quality, also occurs within a species and this was examined in detail by manipulating the egg production of lesser black-backed gulls Lams fuscus. Birds were experimentally induced to lay extended clutches, presumably representing their physiological and nutritional extremes of egg production, and a number of egg composition variables was measured. It is known from previous work that changes in egg composition have a substantial effect on offspring survival. The objective of this study was to examine the chemical composition of experimentally induced extended clutches in more detail, in order to elucidate which aspects of the eggs are involved in this trade-off. The gross composition (lipid, protein and water contents), amino acid and essential fatty acid profiles of their eggs are presented. An enzyme-linked immunosorbent assay was developed to measure variation in yolk immunoglobulins, the avian equivalent of maternally-derived passive immunity, across extended laying sequences. The weight of amino and fatty acids declined in absolute terms within an extended sequence, but relative to egg mass remained at the same concentration. Earlier laid eggs contained significantly greater quantities of vitamin E and carotenoids, a phenomenon also observed in normal three-egg clutches. Both compounds are powerful antioxidants that protect both against peroxidative damage during development and the oxidative stress associated with hatching. Caroteniods are also believed to enhance the immune system and last-laid eggs have been demonstrated to contain significantly less immunoglobulin G (IgG) than earlier laid eggs. Smaller eggs contained most major nutrients in the same proportions as larger eggs, suggesting a blueprint for egg composition exists within the female, with limited scope for variation. That the last egg laid in extended clutches was not smaller than third eggs in normal clutches indicates the probability of a minimum size threshold below which an egg is unlikely to hatch and survive. Thus differential mortality of chicks hatching from eggs laid later in a sequence may result from them having suffered more oxidative stress during development or having an increased susceptibility to pathogens. Both the crystallographic and chemical structure of lysozyme have been documented for many bird species other than domesticated birds, yet there has been comparatively little work done on levels of lysozyme activity in wild bird eggs and their ecological importance. Investigating lysozyme activity in eggs of experimentally extended clutches laid by L. fuscus, within a clutch, later-laid eggs exhibited demonstrably less lysozyme activity and therefore had a lower lysozyme concentration. Since egg mass also declined significantly with laying position, these later-laid eggs were also more likely to contain less lysozyme in absolute terms. On its own, the decreasing lysozyme concentration observed in experimentally extended gull egg clutches, may not be biologically significant but combined with declines in other components of the egg already described it may contribute cumulatively to the decreased hatchability and fledging success observed in previous research. These investigations of chemical composition of eggs, both within and between species, demonstrate the complexity of the avian female’s reproductive system. Female body condition is an integral part of that system and it would appear to influence egg production long before oviposition. A cknowledgements My heartfelt thanks to Dr. Jean Harper at Waltham Centre for Pet Nutrition and Prof. David Houston at Glasgow University for their patient supervision. Jean was particularly generous in all the access I had to the resources Waltham and Pedigree Petfoods could offer. David, in addition to this project, has been instrumental in helping shape my career for some time and I am hugely appreciative of all his support and guidance over the years. The success of this project depended largely upon the generosity of a great many people, donating time, resources, expertise, or all of the above! At Waltham, Vickie Kitchener advised on cockatiel care and Ian Craig, Paul Francis and Rob Hebbs of the Central Nutritional Laboratory, Pedigree Petfoods ensured my bird egg samples were in good hands. Scottish National Heritage and English Nature granted permission to collect wild bird eggs; Edinburgh and Chester Zoo also provided valuable eggs for analysis, as did Ruth Cromie of the Wildfowl and Wetlands Tmst (Martin Mere and Slimbridge Centres). I thank the following for advice, guidance and in some instances, bench space and materials to conduct various experiments: Harry Birkbeck, June Freel, Malcolm Kennedy, Anne McIntosh, Helen Reid, Nick Sparks, Brian Speake, Peter Surai, Alastair Wardlaw and Ian Watt. Davor Fatori and Laura Bence at Diagnostics Scotland produced the anti-gull immunoglobulin. Jon Blount, Rob Field, Georgina Pickerell, Ruedi Nager and Michael Trewby supplied expertise in the field at South Walney Nature Reserve; Graham Law, Paul McGowan and Davina Graham did a sterling job of caring for cockatiels all year round; Mat Cottam & Mykela Heath collected data for me during holidays. So many folk kept me going throughout, in so many ways... flatmates, officemates, friends in general. All credit to (in absolutely no order of preference - honest!); Elvira, Mike, Kat, Reudi, Amanda, Kate, Ben, Jen, Drea, Kenny, Mat, Helen, Henriikka, Jane, Suki, Mike, Jon, Stu, Ian, Iain, Fiona, Ellen, Jae-Bum, Stu, Dave, Jen, Kate, Francis, Jan, Beth and Christina. Maggie Reilly, June Freel and Isobel Thompson receive honourable mentions; Steve Arnott is awarded a gold star. Felicity Huntingford, Pat Monaghan, Graeme Ruxton, and Ruedi Nager in particular, attempted to keep me focussed on just one task at a time (harder
Recommended publications
  • When and How to Study the Nesting Biology of Indian Birds: Research Needs, Ethical Considerations, and Best Practices
    BARVE ET AL.: Nesting biology of Indian birds 1 When and how to study the nesting biology of Indian birds: Research needs, ethical considerations, and best practices Sahas Barve, T. R. Shankar Raman, Aparajita Datta & Girish Jathar Barve, S., Raman, T. R. S, Datta, A., & Jathar, G., 2020. When and how to study the nesting biology of Indian birds: Research needs, ethical considerations, and best practices. Indian BIRDS 16 (1): 1–9. Sahas Barve, Smithsonian National Museum of Natural History, 10th Street and Constitution Avenue NW, Washington, D.C. 20560. E-mail: [email protected]. [Corresponding author.] T. R. Shankar Raman, Nature Conservation Foundation, 1311, ‘Amritha’, 12th A Main, Vijayanagar 1st Stage, Mysore 570017, Karnataka, India. Aparajita Datta, Nature Conservation Foundation, 1311, ‘Amritha’, 12th A Main, Vijayanagar 1st Stage, Mysore 570017, Karnataka, India. Girish Jathar, Bombay Natural History Society, Hornbill House, Dr Salim Ali Chowk, Shaheed Bhagat Singh Road, Mumbai 400001, Maharashtra, India. Manuscript received on 03 February 2020. Abstract The nesting biology of a bird species is likely the most important component of its life history and it is affected by several ecological and environmental factors. Various components of avian nesting biology have proved to be important traits for testing fundamental ecological and evolutionary hypotheses, and for monitoring the efficacy of biological conservation programs. Despite its significance, the nesting biology of most Indian bird species is still poorly understood. The past few years have, however, seen a significant increase in the number of submissions to Indian BIRDS, of observational studies of avian nesting biology, which promises an exciting new wave of ornithological natural history research in India.
    [Show full text]
  • Comparative Life History of the South Temperate Cape Penduline Tit (Anthoscopus Minutus) and North Temperate Remizidae Species
    J Ornithol (2017) 158:569–577 DOI 10.1007/s10336-016-1417-4 ORIGINAL ARTICLE Comparative life history of the south temperate Cape Penduline Tit (Anthoscopus minutus) and north temperate Remizidae species 1,2 1 1 Penn Lloyd • Bernhard D. Frauenknecht • Morne´ A. du Plessis • Thomas E. Martin3 Received: 19 June 2016 / Revised: 22 October 2016 / Accepted: 14 November 2016 / Published online: 22 November 2016 Ó Dt. Ornithologen-Gesellschaft e.V. 2016 Abstract We studied the breeding biology of the south parental nestling care. Consequently, in comparison to the temperate Cape Penduline Tit (Anthoscopus minutus)in other two species, the Cape Penduline Tit exhibits greater order to compare its life history traits with those of related nest attentiveness during incubation, a similar per-nestling north temperate members of the family Remizidae, namely feeding rate and greater post-fledging survival. Its rela- the Eurasian Penduline Tit (Remiz pendulinus) and the tively large clutch size, high parental investment and Verdin (Auriparus flaviceps). We used this comparison to associated high adult mortality in a less seasonal environ- test key predictions of three hypotheses thought to explain ment are consistent with key predictions of the adult latitudinal variation in life histories among bird species— mortality hypothesis but not with key predictions of the the seasonality and food limitation hypothesis, nest pre- seasonality and food limitation hypothesis in explaining dation hypothesis and adult mortality hypothesis. Contrary life history variation among Remizidae species. These to the general pattern of smaller clutch size and lower adult results add to a growing body of evidence of the impor- mortality among south-temperate birds living in less sea- tance of age-specific mortality in shaping life history sonal environments, the Cape Penduline Tit has a clutch evolution.
    [Show full text]
  • Mouse Breeding Colony Management 1. Mouse Reproduction A. General Mouse Information I. the Average Mouse Lives Approximately
    Mouse Breeding Colony Management 1. Mouse Reproduction A. General Mouse Information i. The average mouse lives approximately 2.5 years; however, the reproductive life span of mice is significantly shorter at 7-8 months. ii. Most mice reach sexual maturity (males and females) at 4-7 weeks of age. Younger mice generally produce smaller litters and therefore are not typically mated until they reach 6-8 weeks, of age. Mice that have been housed alone or in same-sex pairs will usually not breed successfully if they are older than 6-8 months. iii. The mouse estrous cycle is 4-5 days in length. Mice cycle continuously throughout the year (non-seasonal breeders). Female mice are only receptive to males when they are in estrus. Mating typically occurs at night (lights off). Ovulation occurs 8-12 hours after the onset of estrous. iv. If fertilization occurs, fetuses can be palpated by day 14. v. Gestation in mice is typically 19-21 days (strain dependent). vi. Parturition in mice may last 1-3 hours and frequently occurs at night. Females will go into estrus within 24 hours of parturition and are sexually receptive during this time. vii. Litter size varies among strains, but averages 4-12 pups. Inbred mice tend to have smaller litters than outbred mice. viii. Mice are typically weaned at 21-28 days or at 10g of body weight. The Purdue Animal Care and Use Committee requires that mouse pups be weaned at 21 days unless PACUC approval is given on an approved animal use protocol. See Policy attached.
    [Show full text]
  • Breeding Aspects Ofcaiques and Pionus Parrots
    of unknown age and history. We had Any caging situ:J.tion should have a Breeding Aspects no way of knowing if a particular bird safety area such as a wire safety aisle had been pair-bonded in the wild and built around it. This will prevent ofCaiques and if it had ever bred before. Such birds escape ofthe birds should they get out often took several years to settle down of their breeding cage and prevent Pionus Parrots and to re-pair in captivity. Today there predation by animals such as rac­ are domestic, unrelated birds available coons. Caiques are especially adept at by Gail J. Wolth in the more common species. Both opening cage doors. Aves International, Pionus and Caiques have been bred to Rancho Palos Verdes, CA several generations in captivity. We are Nestboxes finding that domestic birds, even I recommend that nestboxes be con­ handfed ones, are breeding well in structed of wood. I do not like metal captivity. In general, domestic birds nestboxes as they are too cold in win­ he wonderful Pionus parrots have the advantage ofusually being of ter and too hot in summer. Metal con­ and Caiques are interesting known age. Young domestic hens are ducts heat and cold far better than does T groups of psittacines both as full ofeggs and will have a long breed­ wood. Additionally, I think the chewing breeding birds in the aviary and for ing future ahead of them. of the wooden box prompts birds to pets. Four species of Pionus and two Exercise caution when introducing breed.
    [Show full text]
  • Avian Monogamy
    (ISBN: 0-943610-45-1) AVIAN MONOGAMY EDITED BY PATRICIA ADAIR GOWATY AND DOUGLAS W. MOCK Department of Zoology University of Oklahoma Norman, Oklahoma 73019 ORNITHOLOGICAL MONOGRAPHS NO. 37 PUBLISHED BY THE AMERICAN ORNITHOLOGISTS' UNION WASHINGTON, D.C. 1985 AVIAN MONOGAMY ORNITHOLOGICAL MONOGRAPHS This series, published by the American Ornithologists' Union, has been estab- lished for major papers too long for inclusion in the Union's journal, The Auk. Publication has been made possiblethrough the generosityof the late Mrs. Carll Tucker and the Marcia Brady Tucker Foundation, Inc. Correspondenceconcerning manuscripts for publication in the seriesshould be addressedto the Editor, Dr. David W. Johnston,Department of Biology, George Mason University, Fairfax, VA 22030. Copies of Ornithological Monographs may be ordered from the Assistant to the Treasurer of the AOU, Frank R. Moore, Department of Biology, University of Southern Mississippi, Southern Station Box 5018, Hattiesburg, Mississippi 39406. (See price list on back and inside back covers.) OrnithologicalMonographs,No. 37, vi + 121 pp. Editors of Ornithological Monographs, Mercedes S. Foster and David W. Johnston Special Reviewers for this issue, Walter D. Koenig, Hastings Reservation, Star Route Box 80, Carmel Valley, CA 93924; Lewis W. Oring, De- partment of Biology,Box 8238, University Station, Grand Forks, ND 58202 Authors, Patricia Adair Gowaty, Department of BiologicalSciences, Clem- son University, Clemson, SC 29631; Douglas W. Mock, Department of Zoology, University of Oklahoma, Norman, OK 73019 First received, 23 August 1983; accepted29 February 1984; final revision completed 8 October 1984 Issued October 17, 1985 Price $11.00 prepaid ($9.00 to AOU members). Library of CongressCatalogue Card Number 85-647080 Printed by the Allen Press,Inc., Lawrence, Kansas 66044 Copyright ¸ by the American Ornithologists'Union, 1985 ISBN: 0-943610-45-1 ii AVIAN MONOGAMY EDITED BY PATRICIA ADAIR GOWATY AND DOUGLAS W.
    [Show full text]
  • The Effect of Climate Change on the Correlation Between Avian Life-History Traits
    Global Change Biology (2005) 11, 1606–1613, doi: 10.1111/j.1365-2486.2005.01038.x The effect of climate change on the correlation between avian life-history traits CHRISTIAAN BOTH1 andMARCEL E. VISSER Netherlands Institute of Ecology (NIOO-KNAW), PO Box 40, 6666 ZG Heteren, The Netherlands Abstract The ultimate reason why birds should advance their phenology in response to climate change is to match the shifting phenology of underlying levels of the food chain. In a seasonal environment, the timing of food abundance is one of the crucial factors to which birds should adapt their timing of reproduction. They can do this by shifting egg-laying date (LD), and also by changing other life-history characters that affect the period between laying of the eggs and hatching of the chicks. In a long-term study of the migratory Pied Flycatcher, we show that the peak of abundance of nestling food (caterpillars) has advanced during the last two decades, and that the birds advanced their LD. LD strongly correlates with the timing of the caterpillar peak, but in years with an early food peak the birds laid their eggs late relative to this food peak. In such years, the birds advance their hatching date by incubating earlier in the clutch and reducing the interval between laying the last egg to hatching of the first egg, thereby partly compensating for their relative late LD. Paradoxically, they also laid larger clutches in the years with an early food peak, and thereby took more time to lay (i.e. one egg per day).
    [Show full text]
  • Variability in Egg Size and Population Declines of Herring Gulls in Relation to Fisheries and Climate Conditions
    VOLUME 12, ISSUE 2, ARTICLE 16 Bennett, J. L., E. G. Jamieson, R. A. Ronconi, and S. N. P. Wong. 2017. Variability in egg size and population declines of Herring Gulls in relation to fisheries and climate conditions. Avian Conservation and Ecology 12(2):16. https://doi.org/10.5751/ACE-01118-120216 Copyright © 2017 by the author(s). Published here under license by the Resilience Alliance. Research Paper Variability in egg size and population declines of Herring Gulls in relation to fisheries and climate conditions Jessica L. Bennett 1, Ellen G. Jamieson 2,3, Robert A. Ronconi 2,4 and Sarah N. P. Wong 2,5 1Department of Civil and Resource Engineering, Dalhousie University, Halifax, NS, Canada, 2Department of Biology, Dalhousie University, Halifax, NS, Canada, 3Department of Environmental and Life Sciences, Trent University, Peterborough, ON, Canada, 4Canadian Wildlife Service, Environment and Climate Change Canada, Dartmouth, NS, Canada, 5Department of Biology, Acadia University, Wolfville, NS, Canada ABSTRACT. Changes in clutch and egg size in many avian species have been linked to seasonal variation, female physiological state, and laying date during breeding season. These reproductive variables have also been linked to population status and habitat variables. Recent declines in Herring Gull (Larus argentatus) populations in the Atlantic region may be associated with environmental changes, fishery activities, or natural species interactions and fluctuations. We studied variability and trends in Herring Gull egg, clutch, and population size at a cluster of three islands of the Grand Manan Archipelago in the Bay of Fundy, Canada. A generalized linear model investigating variability in Herring Gull egg volume over a 28-year period (1988 to 2015) showed increasing egg volume since a low in 2000, significant positive correlations with regional fisheries landings, and weak interactions with sea surface temperature and the winter North Atlantic Oscillation (NAO) index.
    [Show full text]
  • Distribution, Ecology, and Life History of the Pearly-Eyed Thrasher (Margarops Fuscatus)
    Adaptations of An Avian Supertramp: Distribution, Ecology, and Life History of the Pearly-Eyed Thrasher (Margarops fuscatus) Chapter 6: Survival and Dispersal The pearly-eyed thrasher has a wide geographical distribution, obtains regional and local abundance, and undergoes morphological plasticity on islands, especially at different elevations. It readily adapts to diverse habitats in noncompetitive situations. Its status as an avian supertramp becomes even more evident when one considers its proficiency in dispersing to and colonizing small, often sparsely The pearly-eye is a inhabited islands and disturbed habitats. long-lived species, Although rare in nature, an additional attribute of a supertramp would be a even for a tropical protracted lifetime once colonists become established. The pearly-eye possesses passerine. such an attribute. It is a long-lived species, even for a tropical passerine. This chapter treats adult thrasher survival, longevity, short- and long-range natal dispersal of the young, including the intrinsic and extrinsic characteristics of natal dispersers, and a comparison of the field techniques used in monitoring the spatiotemporal aspects of dispersal, e.g., observations, biotelemetry, and banding. Rounding out the chapter are some of the inherent and ecological factors influencing immature thrashers’ survival and dispersal, e.g., preferred habitat, diet, season, ectoparasites, and the effects of two major hurricanes, which resulted in food shortages following both disturbances. Annual Survival Rates (Rain-Forest Population) In the early 1990s, the tenet that tropical birds survive much longer than their north temperate counterparts, many of which are migratory, came into question (Karr et al. 1990). Whether or not the dogma can survive, however, awaits further empirical evidence from additional studies.
    [Show full text]
  • Life History Variation Between High and Low Elevation Subspecies of Horned Larks Eremophila Spp
    J. Avian Biol. 41: 273Á281, 2010 doi: 10.1111/j.1600-048X.2009.04816.x # 2010 The Authors. J. Compilation # 2010 J. Avian Biol. Received 29 January 2009, accepted 10 August 2009 Life history variation between high and low elevation subspecies of horned larks Eremophila spp. Alaine F. Camfield, Scott F. Pearson and Kathy Martin A. F. Camfield ([email protected]) and K. Martin, Centr. for Appl. Conserv. Res., Fac. of Forestry, Univ. of British Columbia, 2424 Main Mall, Vancouver, B.C., Canada, V6T 1Z4. AFC and KM also at: Canadian Wildlife Service, Environment Canada, 351 St. Joseph Blvd., Gatineau, QC K1A 0H3. Á S. F. Pearson, Wildl. Sci. Div., Washington Dept. of Fish and Wildl., 1111 Washington St. SE, Olympia, WA, USA, 98501-1091. Environmental variation along elevational gradients can strongly influence life history strategies in vertebrates. We investigated variation in life history patterns between a horned lark subspecies nesting in high elevation alpine habitat Eremophila alpestris articola and a second subspecies in lower elevation grassland and sandy shoreline habitats E. a. strigata. Given the shorter breeding season and colder climate at the northern alpine site we expected E. a. articola to be larger, have lower fecundity and higher apparent survival than E. a. strigata. As predicted, E. a. articola was larger and the trend was toward higher apparent adult survival for E. a. articola than E. a. strigata (0.69 vs 0.51). Contrary to our predictions, however, there was a trend toward higher fecundity for E. a. articola (1.75 female fledglings/female/year vs 0.91).
    [Show full text]
  • Genetic Improvement of Captive-Bred Raptors
    Genetic improvement of captive‐bred raptors By Toby Bradshaw October 2009 [NB: Quantitative geneticists will recognize that the description below is overly simplified. I have done this deliberately to make the basic genetic principles of selection accessible to the average reader. For those seeking a more detailed understanding, I recommend the books Introduction to Quantitative Genetics by Falconer and Mackay and Principles of Plant Breeding by Allard.] For a little more than 50 years raptors have been bred in captivity, primarily for research, reintroduction to the wild, or falconry. Over the past three decades captive breeding has become an increasingly important (and in some countries, exclusive) source of hawks and falcons for falconry. It seems clear that captive propagation will continue to be critical to the future of falconry. Much has been written about the mechanics of captive raptor propagation and training of the hawks and falcons produced by captive breeding, but the genetic principles of long‐term captive propagation have received less attention. Some falconers will insist that “the falconer makes the hawk” – that is, a good falconer can be successful with any hawk, and the differences among hawks are the result of training rather than any inborn qualities. In other words, “nurture” trumps “nature.” The truth is more complicated than this, as anyone who has flown a large number of hawks can attest. A trained hawk, like a trained dog or horse, is the product of both its genes and its environment. No hawk, however well‐bred, can achieve its full potential without skillful handling. Conversely, no falconer, however skilled, can make a genetically inferior hawk into a great gamehawk, any more than he can train a French bulldog to trail rabbits as well as a beagle does, or turn a plow horse into a winning race horse.
    [Show full text]
  • EFFECTS of AGE, GENDER, and CONDITION on the REPRODUCTIVE EFFORT of CASSIN's AUKLETS (Ptychoramphus Aleuticus) on TRIANGLE ISLAND, BRITISH COLUMBIA
    EFFECTS OF AGE, GENDER, AND CONDITION ON THE REPRODUCTIVE EFFORT OF CASSIN'S AUKLETS (Ptychoramphus aleuticus) ON TRIANGLE ISLAND, BRITISH COLUMBIA. Hugh Arthur Knechtel B.Sc., Evergreen State College, 1993 THESIS SUBMllTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE in the Department of BIOLOGICAL SCIENCES O Hugh Arthur Knechtel 1998 SIMON FRASER UNIVERSITY December 3 1998 All rights reserved. This work may not be reproduced in whole or in part, by photocopy or other means, without permission of the author. National Libraty Bibliothèque nationale 1*1 ofCanada du Canada Acquisitions and Acquisitions et Bibliographie Services services bibliographiques 395 Wellington Street 395. rue Wellington Ottawa ON KtAON4 Ottawa ON K1A ON4 Canada Canada The author has granted a non- L'auteur a accordé une licence non exclusive licence dowing the exclusive permettant à la National Library of Canada to Bibliothèque nationale du Canada de reproduce, loan, distribute or sell reproduire, prêter, distribuer ou copies of this thesis in microform, vendre des copies de cette thèse sous paper or electronic formats. la forme de microfiche/^ de reproduction sur papier ou sur format électronique. The author retains ownership of the L'auteur conserve la propriété du copyright in this thesis. Neither the droit d'auteur qui protège cette thèse. thesis nor substantial extracts fiom it Ni la thèse ni des extraits substantiels may be printed or otherwise de celle-ci ne doivent être imprimés reproduced without the author's ou autrement reproduits sans son permission. autorisation, ABSTRACT The primacy goal of my research was to determine the effects of age, gender, and individual phenotypic quality (body reserves and immune function) on reproductive effort (egg size and laying date) in Cassin's Auklets (Ptychoramphus aleuticus) on Triangle Island, British Columbia.
    [Show full text]
  • Please Be Aware That Exhibitors Entering Into These Classes Must Also Be Familiar with the General Rules and Livestock Rules Must Be Between 4 & 6 Months of Age
    Please be aware that Exhibitors entering into these classes must also be familiar with the General Rules and Livestock Rules must be between 4 & 6 months of age. Chickens, ducks LIVESTOCK & geese should be fully feathered. DEPARTMENT 12 K. Exhibits to be caged until time of judging. POULTRY L. All exhibitors will be required to wear exhibitor number Chairman: Rob Christner on the front of their shirts for judging. Exhibitor (or CO-SUPERINTENDENTS: CHAD & ELIZABETH substitute Exhibitor) must be at cage for turkeys, ducks HETTIG and geese judging. ASST. SUPT.: DIANE GUNN M. Adults will not be allowed at judging table Registration Deadline: July 1, 2019 with exhibitors during judging. Pullorum Testing Clinic: July 13 - 9:00 am-noon N. Birds must come into the barn clean on entry Pre Fair Barn set up: Saturday, Aug. 3rd @ 9 a.m. day NO WET BIRDS or they will be sent home. O. Birds can be washed Monday, all day and/or JUDGING HELD IN THE POULTRY SHELTER Tuesday after judging. Please read new and updated information!! P. Exhibitors must be present during judging of FAIR WEEK SCHEDULE: Champion class to be eligible to win. Health Check --- Sunday: 8:00 a.m. – 1:00 p.m. Q. Fancy Classes judged mainly on conformation, health Animal Cert. Form turned in at Health Check and breed characteristics according to the Poultry Book Must be checked in barn by 1, can go to Entry Office till 2 of Standards. Entry Office ---Sunday: 8:00 a.m. - 2:00 p.m. R. Meat classes judged mainly on conformation, finish and Exh.
    [Show full text]