Basic Geometrical Optics
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Model and Visualization of Ray Tracing Using Javascript and HTML5 for TIR Measurement System Equipped with Equilateral Right Angle Prism
Invited talk in parallel session of the 2nd Indonesian Student Conference on Science and Mathematics (ISCSM-2), 11-12 October 2013, Bandung, Indonesia Model and Visualization of Ray Tracing using JavaScript and HTML5 for TIR Measurement System Equipped with Equilateral Right Angle Prism S. Viridi 1 and Hendro 2 1Nuclear Physics and Biophysics, Institut Teknologi Bandung, Bandung 40132, Indonesia 2Theoretical High Energy Physics and Instrumentation, Institut Teknologi Bandung, Bandung 40132, Indonesia [email protected], [email protected] Abstract Trace of ray deviated by a prism, which is common in a TIR (total internal reflection) 2013 measurement system, is sometimes difficult to manage, especially if the prism is an Oct equilateral right angle prism (ERAP). The point where the ray is reflected inside the right- 2 1 angle prism is also changed as the angle of incident ray changed. In an ATR (attenuated total reflectance) measurement system, range of this point determines size of sample. Using JavaScript and HTML5 model and visualization of ray tracing deviated by an ERAP is perform and reported in this work. Some data are obtained from this visualization and an empirical relations between angle of incident ray source θS , angle of ray detector hand θ D′ , [physics.optics] and angle of ray detector θ D are presented for radial position of ray source RS = 25 cm , v1 radial position of ray detector RD = 20 cm , height of right-angle prism t =15 cm , and 0000 . 0 refractive index of the prism n = 5.1 . 1 Keywords: deviation angle, equilateral right angle prism, total internal reflection, JavaScript, HTML5. -
Bringing Optical Metamaterials to Reality
UC Berkeley UC Berkeley Electronic Theses and Dissertations Title Bringing Optical Metamaterials to Reality Permalink https://escholarship.org/uc/item/5d37803w Author Valentine, Jason Gage Publication Date 2010 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California Bringing Optical Metamaterials to Reality By Jason Gage Valentine A dissertation in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Engineering – Mechanical Engineering in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Xiang Zhang, Chair Professor Costas Grigoropoulos Professor Liwei Lin Professor Ming Wu Fall 2010 Bringing Optical Metamaterials to Reality © 2010 By Jason Gage Valentine Abstract Bringing Optical Metamaterials to Reality by Jason Gage Valentine Doctor of Philosophy in Mechanical Engineering University of California, Berkeley Professor Xiang Zhang, Chair Metamaterials, which are artificially engineered composites, have been shown to exhibit electromagnetic properties not attainable with naturally occurring materials. The use of such materials has been proposed for numerous applications including sub-diffraction limit imaging and electromagnetic cloaking. While these materials were first developed to work at microwave frequencies, scaling them to optical wavelengths has involved both fundamental and engineering challenges. Among these challenges, optical metamaterials tend to absorb a large amount of the incident light and furthermore, achieving devices with such materials has been difficult due to fabrication constraints associated with their nanoscale architectures. The objective of this dissertation is to describe the progress that I have made in overcoming these challenges in achieving low loss optical metamaterials and associated devices. The first part of the dissertation details the development of the first bulk optical metamaterial with a negative index of refraction. -
Introduction to the Ray Optics Module
INTRODUCTION TO Ray Optics Module Introduction to the Ray Optics Module © 1998–2020 COMSOL Protected by patents listed on www.comsol.com/patents, and U.S. Patents 7,519,518; 7,596,474; 7,623,991; 8,457,932; 9,098,106; 9,146,652; 9,323,503; 9,372,673; 9,454,625; 10,019,544; 10,650,177; and 10,776,541. Patents pending. This Documentation and the Programs described herein are furnished under the COMSOL Software License Agreement (www.comsol.com/comsol-license-agreement) and may be used or copied only under the terms of the license agreement. COMSOL, the COMSOL logo, COMSOL Multiphysics, COMSOL Desktop, COMSOL Compiler, COMSOL Server, and LiveLink are either registered trademarks or trademarks of COMSOL AB. All other trademarks are the property of their respective owners, and COMSOL AB and its subsidiaries and products are not affiliated with, endorsed by, sponsored by, or supported by those trademark owners. For a list of such trademark owners, see www.comsol.com/ trademarks. Version: COMSOL 5.6 Contact Information Visit the Contact COMSOL page at www.comsol.com/contact to submit general inquiries, contact Technical Support, or search for an address and phone number. You can also visit the Worldwide Sales Offices page at www.comsol.com/contact/offices for address and contact information. If you need to contact Support, an online request form is located at the COMSOL Access page at www.comsol.com/support/case. Other useful links include: • Support Center: www.comsol.com/support • Product Download: www.comsol.com/product-download • Product Updates: www.comsol.com/support/updates •COMSOL Blog: www.comsol.com/blogs • Discussion Forum: www.comsol.com/community •Events: www.comsol.com/events • COMSOL Video Gallery: www.comsol.com/video • Support Knowledge Base: www.comsol.com/support/knowledgebase Part number. -
Chapter 5 Optical Properties of Materials
Chapter 5 Optical Properties of Materials Part I Introduction Classification of Optical Processes refractive index n() = c / v () Snell’s law absorption ~ resonance luminescence Optical medium ~ spontaneous emission a. Specular elastic and • Reflection b. Total internal Inelastic c. Diffused scattering • Propagation nonlinear-optics Optical medium • Transmission Propagation General Optical Process • Incident light is reflected, absorbed, scattered, and/or transmitted Absorbed: IA Reflected: IR Transmitted: IT Incident: I0 Scattered: IS I 0 IT IA IR IS Conservation of energy Optical Classification of Materials Transparent Translucent Opaque Optical Coefficients If neglecting the scattering process, one has I0 IT I A I R Coefficient of reflection (reflectivity) Coefficient of transmission (transmissivity) Coefficient of absorption (absorbance) Absorption – Beer’s Law dx I 0 I(x) Beer’s law x 0 l a is the absorption coefficient (dimensions are m-1). Types of Absorption • Atomic absorption: gas like materials The atoms can be treated as harmonic oscillators, there is a single resonance peak defined by the reduced mass and spring constant. v v0 Types of Absorption Paschen • Electronic absorption Due to excitation or relaxation of the electrons in the atoms Molecular Materials Organic (carbon containing) solids or liquids consist of molecules which are relatively weakly connected to other molecules. Hence, the absorption spectrum is dominated by absorptions due to the molecules themselves. Molecular Materials Absorption Spectrum of Water -
Quantum Metamaterials in the Microwave and Optical Ranges Alexandre M Zagoskin1,2* , Didier Felbacq3 and Emmanuel Rousseau3
Zagoskin et al. EPJ Quantum Technology (2016)3:2 DOI 10.1140/epjqt/s40507-016-0040-x R E V I E W Open Access Quantum metamaterials in the microwave and optical ranges Alexandre M Zagoskin1,2* , Didier Felbacq3 and Emmanuel Rousseau3 *Correspondence: [email protected] Abstract 1Department of Physics, Loughborough University, Quantum metamaterials generalize the concept of metamaterials (artificial optical Loughborough, LE11 3TU, United media) to the case when their optical properties are determined by the interplay of Kingdom quantum effects in the constituent ‘artificial atoms’ with the electromagnetic field 2Theoretical Physics and Quantum Technologies Department, Moscow modes in the system. The theoretical investigation of these structures demonstrated Institute for Steel and Alloys, that a number of new effects (such as quantum birefringence, strongly nonclassical Moscow, 119049, Russia states of light, etc.) are to be expected, prompting the efforts on their fabrication and Full list of author information is available at the end of the article experimental investigation. Here we provide a summary of the principal features of quantum metamaterials and review the current state of research in this quickly developing field, which bridges quantum optics, quantum condensed matter theory and quantum information processing. 1 Introduction The turn of the century saw two remarkable developments in physics. First, several types of scalable solid state quantum bits were developed, which demonstrated controlled quan- tum coherence in artificial mesoscopic structures [–] and eventually led to the devel- opment of structures, which contain hundreds of qubits and show signatures of global quantum coherence (see [, ] and references therein). In parallel, it was realized that the interaction of superconducting qubits with quantized electromagnetic field modes re- produces, in the microwave range, a plethora of effects known from quantum optics (in particular, cavity QED) with qubits playing the role of atoms (‘circuit QED’, [–]). -
Negative Refractive Index in Artificial Metamaterials
1 Negative Refractive Index in Artificial Metamaterials A. N. Grigorenko Department of Physics and Astronomy, University of Manchester, Manchester, M13 9PL, UK We discuss optical constants in artificial metamaterials showing negative magnetic permeability and electric permittivity and suggest a simple formula for the refractive index of a general optical medium. Using effective field theory, we calculate effective permeability and the refractive index of nanofabricated media composed of pairs of identical gold nano-pillars with magnetic response in the visible spectrum. PACS: 73.20.Mf, 41.20.Jb, 42.70.Qs 2 The refractive index of an optical medium, n, can be found from the relation n2 = εμ , where ε is medium’s electric permittivity and μ is magnetic permeability.1 There are two branches of the square root producing n of different signs, but only one of these branches is actually permitted by causality.2 It was conventionally assumed that this branch coincides with the principal square root n = εμ .1,3 However, in 1968 Veselago4 suggested that there are materials in which the causal refractive index may be given by another branch of the root n =− εμ . These materials, referred to as left- handed (LHM) or negative index materials, possess unique electromagnetic properties and promise novel optical devices, including a perfect lens.4-6 The interest in LHM moved from theory to practice and attracted a great deal of attention after the first experimental realization of LHM by Smith et al.7, which was based on artificial metallic structures -
Surface Plasmon Enhanced Evanescent Wave Laser Linac
Particle Accelerators, 1993, Vol. 40, pp.171-179 © 1993 Gordon & Breach Science Publishers, S.A. Reprints available directly from the publisher Printed in the United States of America. Photocopying permitted by license only SURFACE PLASMON ENHANCED EVANESCENT WAVE LASER LINAC T. H. KOSCHMIEDER* Department ofPhysicsIRLM5.208, University ofTexas at Austin, Austin, TX 78712 (Received 17 January 1992; in final form 25 September 1992) The grating laser linac concept of Palmer will be modified to incorporate a surface plasmon excitation in the visible part of the optical spectrum. Both grating and prism coupling of light to the surface plasmon will be discussed. It will be shown that phase matching between a relativistic particle and the surface plasmon can be achieved. Finally calculations will be presented showing that accelerations up to 14 GeV1m for a grating and up to 7 GeV1m for a prism could be obtained for incident power densities less than a nominal damage threshold. KEY WORDS: Laser-beam accelerators, Surface plasmons INTRODUCTION There is an ongoing interest in increasing the exit energy of particles from linacs. One possibility of achieving this is by PalmerI who showed that light incident upon a grating ? at skew angles could achieve very high accelerations (GeV1m). The relativistic particles travel just above the grating and are accelerated by coupling to evanescent waves. One effect that can occur for light incident upon a metal grating is the excitation of 2 a surface plasmon. Surface plasmon excitationc in the visible part of the spectrum will be explored in this paper. It will be shown that surface plasmon excitation in the visible part of the spectrum can be used to accelerate relativistic particles. -
Mirror Images Georg Maier
Mirror Images Georg Maier The following article is excerpted from Chapter 3 of An Optics of Visual Experience, by Georg Maier. The text has been abridged and adapted for In Context. See the box on next page and the end of the article for further information. hen we see a rock in the landscape we feel sure that it is “really there!” Seeing is usually experienced almost like touching. Sight helps us to orient ourselves in our surroundings when we set off toward an as yet dis- tant goal, just as it lets us attend to our activities right here where we are. Thus seeing is generally thought to simply be our ability to keep an eye on objects. WAny attempt to use mirror images to orient ourselves in a similar way will lead to confusion. They do not seem to corre- spond to our other perceptions of bodies with respect to their location. They offer “extra,” “indirect” views, and as long as we are not clear about what we mean here by “indirect,” we will justifiably claim that they are unreal for us. In the following considerations the object that is mirrored will be referred to as the prototype. Our main task will be to understand the lawful relationships between mirror images and their prototypes. Mirror Images in a Quiet Pond It is worthwhile to study reflections in quite some detail in a moderately-sized pond. Memorable key experiences can be gained in such a situation. If the pond is small and sheltered from wind, its surface will normally be quiet. -
Course Description Learning Objectives/Outcomes Optical Theory
11/4/2019 Optical Theory Light Invisible Light Visible Light By Diane F. Drake, LDO, ABOM, NCLEM, FNAO 1 4 Course Description Understanding Light This course will introduce the basics of light. Included Clinically in discuss will be two light theories, the principles of How we see refraction (the bending of light) and the principles of Transports visual impressions reflection. Technically Form of radiant energy Essential for life on earth 2 5 Learning objectives/outcomes Understanding Light At the completion of this course, the participant Two theories of light should be able to: Corpuscular theory Electromagnetic wave theory Discuss the differences of the Corpuscular Theory and the Electromagnetic Wave Theory The Quantum Theory of Light Have a better understanding of wavelengths Explain refraction of light Explain reflection of light 3 6 1 11/4/2019 Corpuscular Theory of Light Put forth by Pythagoras and followed by Sir Isaac Newton Light consists of tiny particles of corpuscles, which are emitted by the light source and absorbed by the eye. Time for a Question Explains how light can be used to create electrical energy This theory is used to describe reflection Can explain primary and secondary rainbows 7 10 This illustration is explained by Understanding Light Corpuscular Theory which light theory? Explains shadows Light Object Shadow Light Object Shadow a) Quantum theory b) Particle theory c) Corpuscular theory d) Electromagnetic wave theory 8 11 This illustration is explained by Indistinct Shadow If light -
How Does Light Work? Making a Water Prism
How does light work? Making a water prism How do we see color? In this activity students release the colors in the rainbow through the action of bending light in a water prism. Time Grade Next Generation Science Standards • 5 minutes prep time • 1-4 • 1-PS4-3. Plan and conduct an investigation to determine the effect of placing objects made with different materials in the path of light. • 10 minutes class time • 4-PS4-1. Develop a model of waves to describe patterns in terms of for activity amplitude and wavelength. • More if you are using • 4– PS3-2. Make observations to provide evidence that energy can be the Lab Sheet transferred from place to place by sound, light, heat and electric currents. Materials Utah Science Core Standards You will need to do this outside or with the • K-2 Standard 2– Earth and Space Science sunlight streaming through a window • 3.1.1b Explain the sun is the source of light that lights the moon A bowl full of water A mirror A sheet of white paper Science notebook or lab sheet Directions • You may want to view this video ahead of time which shows how to move the paper to find the rainbow How to make a water prism https://www.youtube.com/watch?v=D8g4l8mSonM • You may want to introduce your class to color and light with this video Light and Color (Bill Nye) https://www.youtube.com/watch?v=dH1YH0zEAik&t=10s GBO suggestion - Do this activity as a station in a rotation with several other light activities. -
Equilateral Dispersing Prisms
3ch_PrismsandRetroreflectors_renumbered.qxd 2/15/2010 1:13 PM Page 3.18 Optical Components Ask About Our Build-to-Print and Custom Capabilities OEM Optical Flats Windows and Windows Dispersing Prisms Prisms and Retroreflectors Lenses Spherical Equilateral Dispersing Prisms Do you need . Equilateral dispersing prisms are used for wavelength-separation appli- cations. A light ray is twice refracted passing through the prism with POST-MOUNTED PRISM HOLDERS total deviation denoted by vd in the figure below. Deviation is a Allows post mounting of prisms up to 50 mm (2 inches) in size Lenses Cylindrical function of refractive index and hence wavelength. Angular dispersion and permits precise tilt adjustment in two axes. Please see part Dvd is the difference in deviation for light rays having different wave- numbers 07 TTM 203 and 07 TTM 703. lengths, and it varies with prism orientation. $ Reflection losses are minimized for unpolarized rays traveling parallel to the base of the prism.This condition is called minimum Lenses deviation. Multielement $ Minimum deviation occurs when the ray and wavelength angle of incidence at the entrance surface are equal to the angle of emer- gence (both angles measured with respect to the surface normals). $ Prisms are available in BK7, F2, and SF10 glass as well as UV-grade Mirrors fused silica. $ Antireflection coatings help reduce polarization at the prism sur- faces by increasing total transmittance. Beamsplitters MINIATURE PRISM TABLE This miniature prism table allows tilt adjustment and 360-degree rotation for components of up to 15 mm in size. Please see part numbers 07 TTC 501 and 07 TTD 501. -
Infrared Deflectometry for the Inspection of Diffusely Specular Surfaces
Adv. Opt. Techn. 2016; 5(5-6): 377–387 Review Article Open Access Sebastian Höfer, Jan Burke* and Michael Heizmann Infrared deflectometry for the inspection of diffusely specular surfaces DOI 10.1515/aot-2016-0051 principles of thermal deflectometry, its special challenges, Received September 12, 2016; accepted November 5, 2016; previously and illustrates its use with examples from the inspection published online December 8, 2016 of industrially produced surfaces. Abstract: Deflectometry is a full-field gradient technique Keywords: deflectometry; infrared displays; metrological that lends itself very well to testing specular surfaces. It instrumentation. uses the geometry of specular reflection to determine the gradient of the surface under inspection. In consequence, a necessary precondition to apply deflectometry is the 1 Introduction presence of at least partially specular reflection. Surfaces with larger roughness have increasingly diffuse reflection This section presents the basic ingredients needed for characteristics, making them inaccessible to usual deflec- understanding the technique of deflectometry and appre- tometry. However, many industrially relevant surfaces ciating the rationale for extending the wavelength range exist that change their reflection characteristic during into the infrared. production and processing. An example is metal sheets that are used as car body parts. Whereas the molded but otherwise raw metal sheets show a mostly diffuse reflec- 1.1 Deflectometry tion without sufficient specular reflection, the final car body panels have a high specular reflectance due to the When testing and/or measuring reflective objects, the lacquering. In consequence, it would be advantageous well-established technique of fringe projection [1] is not to apply the same inspection approach both for the raw available because there is not enough scattered light avail- material and for the final product.