Diseño Preliminar De Un Flexwing Trike (Ultraliviano) Biplaza

Total Page:16

File Type:pdf, Size:1020Kb

Diseño Preliminar De Un Flexwing Trike (Ultraliviano) Biplaza DISEÑO PRELIMINAR DE UN FLEXWING TRIKE (ULTRALIVIANO) BIPLAZA JORGE LUIS CALDERON PEREZ IVAN FELIPE CAÑON GONZALEZ UNIVERSIDAD DE SAN BUENAVENTURA FACULTAD DE INGENIERÍA PROGRAMA INGENIERÍA AERONÁUTICA BOGOTÁ 2008 DISEÑO PRELIMINAR DE UN FLEXWING TRIKE (ULTRALIVIANO) BIPLAZA JORGE LUIS CALDERON PEREZ IVAN FELIPE CAÑON GONZALEZ Trabajo presentado como requisito parcial para optar al título de profesional en Ingeniería aeronáutica. Asesor Temático, Carlos Bohórquez Ingeniero Mecánico UNIVERSIDAD DE SAN BUENAVENTURA FACULTAD DE INGENIERÍA PROGRAMA INGENIERÍA AERONÁUTICA BOGOTÁ 2008 NOTA DE ACEPTACIÓN _______________________ _______________________ _______________________ _______________________ _______________________ ___________________________________ Firma del presidente del jurado ___________________________________ Firma del Jurado ___________________________________ Firma del Jurado Bogotá D.C. 31, 10,2008 DEDICATORIA Esta tesis la dedico a toda mi familia que a la distancia me apoyó en todo lo que pudo en todo momento, a mi papá, a mi mamá y a mis dos hermanos que aunque no estuvieron presentes en la mayor parte de este proceso educativo su apoyo a la distancia fue importante. También dedico esta tesis a mis tías y mi abuela que me apoyaron en todo momento desde el primer día que llegué a estudiar a la universidad de San Buenaventura, hasta estos últimos días de estudio. JORGE LUIS CALDERON PEREZ DEDICATORIA Ha sido un proceso largo que comenzó hace cinco años en el cual hubo grandes esfuerzos pero también grandes satisfacciones. Este trabajo no es más que la culminación de un proceso y el comienzo de otro lleno de desafíos y responsabilidades. Este trabajo lo dedico a mi familia que ha hecho un gran esfuerzo al permitirme estudiar y darme esta gran oportunidad que pocos tienen, a ellos les dedico este proyecto. IVAN FELIPE CAÑON GONZALEZ AGRADECIMIENTOS Al ingeniero Carlos Bohórquez que nos ayudó en la elaboración de este documento y en el tema que le compete que es el tema de las estructuras, al ingeniero Jaime Alberto Escobar, por su aporte en la parte de simulación, al ingeniero pedro por sus recomendaciones y por último a nuestro amigo compañero e ingeniero aeronáutico Cesar Augusto Rozo Jiménez, que sin su ayuda hubiese sido imposible la realización de este proyecto. TABLA DE CONTENIDO Pag INTRODUCCIÓN 1 1 PLANTEAMIENTO DEL PROBLEMA 3 1.1 ANTECEDENTES 3 1.2 DESCRIPCIÓN Y FORMULACIÓN DEL PROBLEMA 4 1.3 JUSTIFICACIÓN 5 1.4 OBJETIVOS 6 1.4.1 Objetivo general. 6 1.4.2 Objetivos específicos. 6 1.5 ALCANCES Y LIMITACIONES 6 1.5.1 Alcances. 6 1.5.2 Limitaciones. 7 2 MARCO DE REFERENCIA 8 2.1 MARCO TEÓRICO CONCEPTUAL 8 2.1.1 Descripción general. 11 2.1.2 Componentes principales. 12 2.1.3 El ala. 12 2.1.4 La estructura del trike. 16 2.1.5 Aerodinámica del trike. 18 2.2 MARCO LEGAL 20 3. METODOLOGÍA 21 3.1 ENFOQUE DE LA INVESTIGACIÓN 21 3.2 LINEA DE INVESTIGACIÓN DE LA UNIVERSIDAD 21 3.3 TÉCNICAS DE RECOLECCIÓN DE DATOS 21 4. DESARROLLO INGENIERIL 22 4.1 RECOLECCIÓN DE DATOS 22 4.2 MISIÓN DE LA AERONAVE 26 4.3 DISEÑO CONCEPTUAL DEL TRIKE 27 4.3.1 Determinación Conceptual De Pesos 27 4.3.2 Comparación entre peso- área alar (w/s) y la velocidad de pérdida. 29 4.4 SELECCIÓN DEL PERFIL 41 4.4.1 Perfil aerodinámico. 42 4.4.2 Análisis en software para la selección del perfil. 43 4.4.2.1 Validación del perfil en análisis computacional. 44 4.4.2.2 Comparación de varios perfiles en un software confiable (xfoil). 46 4.5 DIMENSIONAMIENTO Y CONFIGURACIÓN DEL ALA 49 4.6 AERODINÁMICA DEL ALA. 55 4.6.1 Coeficiente de sustentación (lift) para alas convencionales. 55 4.6.2 Distribución de la sustentación a lo largo de ala. 58 4.6.3 Coeficiente de sustentación (lift) para alas volantes. 63 4.6.4 Coeficientes de momento. 68 4.6.5 Coeficiente de resistencia al avance (drag). 70 4.7 ANÁLISIS DEL ALA EN FLUJO COMPUTACIONAL AVL 75 4.7.1 Validación del programa AVL. 75 4.7.2 Análisis del ala en flujo computacional AVL. 79 4.7.3 Analisis del ala en flujo computacional y comparacion con el analisis teorico. 79 4.7.4 Comparación de resultados aerodinámicos. 82 4.8 DINÁMICA DE VUELO 83 4.8.1 Estabilidad longitudinal. 83 4.8.2 Estabilidad lateral. 86 4.8.3 Derivada debido al cabeceo del ala. 90 4.8.4 Derivada debido a los efectos de la hélice. 90 4.8.5 Estabilidad direccional. 91 4.9 DIMENCIONAMIENTO DEL FUSELAJE 93 4.10 ESTIMACIÓN DEL COEFICIENTE DE RESISTENCIA AL AVANCE 96 EN EL FUSELAJE 4.10.1 Coeficiente de resistencia paracito del fuselaje. 96 4.10.2 Coeficiente de resistencia al avance del tren de aterrizaje. 97 4.11 CENTROS DE GRAVEDAD 98 4.12 ANÁLISIS ESTRUCTURAL DE LA AERONAVE PENDULAR 102 4.12.1 Estructura del fuselaje. 102 4.12.2 Estimación de los factores de carga para aeronaves tipo pendular. 104 4.12.3 Diagrama de V-N. 105 4.12.4 Modelación de la estructura en SOLID EDGE. 110 4.12.5 Análisis de elementos finitos en software ANSYS. 110 4.12.6 Estructura del ala modelación en SOLID EDGE. 114 4.12.7 Análisis de elementos finitos en software ANSYS para el ala. 115 4.12.8 Modelación de otras partes principales de la aeronave. 117 4.13 TREN DE ATERRIZAJE 120 4.13.1 Ubicación del tren de aterrizaje respecto al centro de gravedad y las 120 cargas a soportar. 4.13.2 Selección de las llantas. 122 4.13.3 Estimación del track del tren principal. 123 4.13.4 Esfuerzos resistidos y amortiguamiento del Tren principal. 125 4.13.5 Esfuerzos resistidos y amortiguamiento del tren de nariz. 128 4.13.6 Sistema de frenado. 131 4.14 SELECCIÓN DE INDICADORES DE VUELO Y RADIO NAVEGACION 135 4.14.1 La selección de los indicadores de vuelo. 135 4.14.2 Radio navegación y comunicaciones. 139 4.15 SELECCIÓN DEL MOTOR Y LA HÉLICE 143 4.15.1 Selección del motor. 143 4.15.2 Selección de la hélice. 148 4.16 EVALUACIÓN DE DESEMPEÑO 151 4.16.1 Desempeño de la aeronave estático. 151 4.16.2 Desempeño de la aeronave dinámico. 157 4.16.2.1 Desempeño de la aeronave en un banqueo. 158 4.16.2.2 Desempeño de pull-up y de pull-down. 160 5 PRESENTACIÓN Y ANÁLISIS DE RESULTADOS 167 5.1 PERFORMANCE 167 5.1.2 Geometría del ala. 167 5.1.3 Velocidades de operación. 168 5.1.4 Pesos calculados para la aeronave pendular. 168 5.1.5 Datos aerodinámicos del ala. 169 5.1.6 Desempeño de la aeronave. 173 5.2 ESTABILIDAD Y CONTROL 175 5.3 ESTRUCTURAS 175 5.4 ANÁLISIS DE DATOS DEL TREN DE ATERRIZAJE. 177 5.5 ANALISIS DE DISTANCIA DE DESPEGUE Y ATERRIZAJE. 180 5.6 ANALISIS DE COSTOS 180 6. CONCLUSIONES 183 7. RECOMENDACIONES 185 8. BIBLIOGRAFÍA 186 LISTA DE FIGURAS Pag. FIGURA 1. Esquema simplificado de un trike visto de perfil. 11 FIGURA 2. Partes que conforman el ala. 13 FIGURA 3. Partes que conforman la estructura del trike. 17 FIGURA 4. Tendencia entre W/S y velocidad de pérdida. 31 FIGURA 5. Tendencia de trike diseñados entre índice de poder y velocidad 36 de crucero. FIGURA 6. Área de diseño del trike. 38 FIGURA 7. Perfiles más utilizados para aeronaves tipo pendular. 43 FIGURA 8. Perfil Naca 1408. 44 FIGURA 9. Resultados obtenidos por Xfoil del perfil utilizado para la 45 validación del perfil Naca 1408. FIGURA 10. Gráfica de datos experimentales del perfil naca 1408. 46 FIGURA 11. Comparación del perfil EPPLER 182 y el NACA 1408. 47 FIGURA 12. Comparación de varios perfiles validados en el software. 48 FIGURA 13. Diferentes tipos de alas deltas. 49 FIGURA 14. Geometría del ala. 53 FIGURA 15. Vorticidad que genera sustentación. 54 FIGURA 16. Pendiente del coeficiente de sustentación versus el ángulo de 56 ataque analizado como ala convencional. FIGURA 17. Geometría que describe el ala con sus respectivas ecuaciones. 57 FIGURA 18. Distribución básica del ala izquierda a diferentes ángulos de 59 ataque. FIGURA 19. Distribución adicional del ala debido al ángulo de torsión. 60 FIGURA 20. Distribución debido a la torsión generando una sustentación de 61 cero. FIGURA 21. Distribución total del ala a lo largo de la envergadura 62 parte izquierda del ala. FIGURA 22. Coeficiente de Sustentación generada a un ángulo de 63 5 grados. FIGURA 23. Comparación de pendientes de teoría alas deltas y teoría de 64 alas convencionales. FIGURA 24. Comparación entre alas convencionales y alas delta. 66 FIGURA 25. Pendiente de sustentación de gráficos experimentales de la 67 NASA. FIGURA26. Validación delas teorías de pendientes de sustentación con papers 68 de la NASA sobre alas delta. FIGURA27. Factor de drag inducido versus la relación de cuerdas. 72 FIGURA 28. Gráfica experimental NASA a cero grados; la grafica usa forma 76 de círculo para cero grados. FIGURA 29. Modelación en flujo computacional del ala que se va a validar en 77 AVL. FIGURA 30. Datos dados por el programa de flujo computacional del ala que 78 se va a validar. FIGURA 31. Comparación del coeficiente de sustentación de la validación y el 78 del paper de la NASA. FIGURA 32. Modelación del ala en flujo computacional. 80 FIGURA 33. Pendiente y coeficiente de momento obtenidos en flujo 82 computacional a diferentes ángulos de ataque. FIGURA 34. Comparación resultados teóricos y resultados computacional. 83 FIGURA 35. Área de región de la aeronave. 84 FIGURA 36. Variación del coeficiente de momento a diferentes ángulos de 86 ataque variando el centro de gravedad.
Recommended publications
  • Air Quality Monitoring and Forecasting
    atmosphere Books Air Quality Monitoring and Forecasting Edited by Pius Lee, Rick Saylor and Jeff McQueen Printed Edition of the Special Issue Published in Atmosphere www.mdpi.com/journal/atmosphere MDPI Air Quality Monitoring and Forecasting Special Issue Editors Pius Lee Books Rick Saylor Jeff McQueen MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade MDPI Special Issue Editors Pius Lee, Rick Saylor and Jeff McQueen NOAA USA Editorial Office MDPI St. Alban‐Anlage 66 Basel, Switzerland This edition is a reprint of the Special Issue published online in the open access journal Atmosphere (ISSN 2073‐4433) from 2017–2018 (available at: http://www.mdpi.com/journal/atmosphere/special_issues/air_monitoring). For citation purposes, cite each article independently as indicated on the article page online and as indicated below: Books Lastname, F.M.; Lastname, F.M. Article title. Journal Name Year, Article number, page range. First Edition 2018 ISBN 978‐3‐03842‐839‐8 (Pbk) ISBN 978‐3‐03842‐840‐4 (PDF) Articles in this volume are Open Access and distributed under the Creative Commons Attribution license (CC BY), which allows users to download, copy and build upon published articles even for commercial purposes, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. The book taken as a whole is © 2018 MDPI, Basel, Switzerland, distributed under the terms and conditions of the Creative Commons license CC BY‐NC‐ND (http://creativecommons.org/licenses/by‐nc‐nd/4.0/). MDPI Table of Contents About the Special Issue Editors ..................................... v Pius Lee, Rick Saylor and Jeff McQueen Air Quality Monitoring and Forecasting doi: 10.3390/atmos9030089 .....................................
    [Show full text]
  • White Eng 17 1.Cdr
    WHITE PAPER I’M AERO White paper - I’M AERO First and the only ultralight coaxial helicopter This document is not a securities oering or a scheme of collective investment, nor does it require the registration or approval of the Monetary Authority of Singapore. The participants are advised to carefully read this document and be cautious when investing funds. 1. Introduction 2. Company’s products and their description 2.1. Ultralight aviation and coaxial system in helicopter industry 2.2. Manufacturing facilities of I’M AERO 2.3. Application range of the helicopters of I’M AERO 2.4. Review of the models and technical peculiarities of the I’M AERO helicopters 2.4.1. Ultralight airplane Nestling 21 2.4.2. Ultralight coaxial helicopter Helicopter R-34 2.4.3. Unmanned aerial vehicle Aerobot A-34 2.5. Geography of product application 3. Implementation of the blockchain 4. I’M AERO meets market needs 5. Business model 6. Marketing research 7. Roadmap of the Project 8. Project team 9. Structure of the Token Sale 10. Jurisdiction 11. Contacts * The current version of White Paper is not final and can be adjusted. The final parameters will be presented a few days before the Token Sale starts. Introducon The aim of the I AM AERO Project is to create a series production of ultralight aircraft that meet the needs of the population at the level of everyday use, as well as to meet the challenges of private business and the demands of government agencies. I’M AERO is a specialized aviation enterprise engaged in the design, development and production of manned and unmanned aerial vehicles.
    [Show full text]
  • Husker Ultralight Newsletter9 5
    THE BI-MONTHLY NEWSLETTER FOR ULTRALIGHT, progress. Due to the wind he and Kevin Wilkinson were LIGHT SPORT, AND MICROLIGHT AVIATION the only ones to fly in. Dave and Hugh, both based at ENTHUSIASTS (NOT JUST PILOTS) IN AND NEAR Harvard, had flown before the meeting. There was a SOUTH-CENTRAL NEBRASKA. PUBLISHED BY continuing discussion of ELLASS, or Emergency, Low HUSKER ULTRALIGHT CLUB (HUC), USUA CLUB #140. level, Aerial Search and Surveillance to see if there is any interest by club members in participating in this national VOLUME 9, ISSUE 5 September 2007 group. A quick survey indicated there were twelve persons interested in some capacity. They do have a web MEETING HIGHLIGHTS…On July 7, 2007 we met at site. Jim Maxwell has indicated his interest in giving a David City, NE Airport Lounge. Meeting called to order. partially completed homebuilt plane to a non-profit June Meetings Minutes approved as published in newsletter organization in order to get it completed and get a tax Motion by D. Nissen: When HUC meeting at Public airfield to deduction. After some discussion Lee Meents moved that reimburse for meal expenses, up to $50.00; 2nd D. Krause we table the idea of receiving the plane at this time, but to Motion voted on and passed continue to look into the feasibility of incorporating as a Treasurer’s Report: $2088 in bank, 58 paid members. Allen non-profit organization. Seconded and carried. Doug Davis rejoined the club at this meeting. Approved Treasurer’s Camplin brought a suggested copy of incorporation Report.
    [Show full text]
  • Air Spring 2001
    AIR S p r i n g In the Air Department’s 3 President’s Message 4 Editor’s Message 6 AirBuzz 13 AirTech 14 AirEvents 15 Transport Canada 16 AirSafety Air Feature’s 23 AirBag 9 Tow Nationals 2000 19 Triangular Madness by Dean & Margaret Lutz by Tomas Suchanek 31 AirImages 37 AirTech 10 From Hero to Zero 24 HPAC 38 HPAC Membership By Chris Muller By Andre Nadeau 39 AirTraffic 12 Golden Airtime 29 Radio’s &Wizardry by John Janssen by Peter Bowle-Evans Air is printed four times yearly and is a publication of the Hang Gliding and Paragliding AGM 2001 SOGA Updates Association Of Canada / Association 17 32 Canadienne de Vol Libre. by Andre Nadeau by Mike Gates Designed and produced using an Apple G4, Imac and G3 Laptop Powerbook. Air design, editorial and Rescues at MT 7 Iparaglide.com production completed by 18 40 Tony P. McGowan. by Peter Bowle-Evans All views expressed in this publication are not necessarily those of HPAC / ACVL, it’s directors or editor. Printed by Winnipeg Web Press. Cover: Chris Muller wangs it over Cochrane. Above: Jayson Biggins takes advantage of the coastal winds. YOUR DEALER FOR : Flex Wings: Wills, Aeros, Airwave, North Wing Fast Service Rigid Wings: Flight Design, AIR High Quality Varios: Flytec, Ball, Suunto Hang Gliders and Trikes Low Prices Harnesses: Woody Valley, High Energy, C of G Support Chutes: High Energy, Free Flight, BRS Satisfaction Helmets: Charley Insider Ultralights: North Wing, Rotax, Wasp Harness Aero-Towing Flight Park FREE SHIPPING WITH ALL MAIL ORDERS Now in Central CANADA Wasp Motor Harness (in stock) - $7400 - Platform, and Aero Towing to 2,500 feet! - Grass Runway 4000’ - wide open LZ’s! - Excellent XC potential - Record 100 miles! North Wing Illusion & Tandem 2 - Motel, restaurant, and camping on site! - Golf, beaches, & tourist attractions nearby.
    [Show full text]
  • Thirteenth North American Crane Workshop
    PROCEEDINGS OF THE THIRTEENTH NORTH AMERICAN CRANE WORKSHOP 14-17 April 2014 Lafayette, Louisiana FRONTISPIECE. Gary Krapu, Research Wildlife Biologist Emeritus, USGS Northern Prairie Wildlife Research Center, received the L. H. WALKINSHAW CRANE CONSERVATION AWARD in recognition of his career-long work to better understand the needs of sandhill cranes in the Platte River ecosystem; initiate a comprehensive, long-term research program to guide conservation and management of the Mid-continental Population of sandhill cranes; and for collaborative research efforts with biologists of other nations to guide international conservation of cranes. The Award was presented by Jane Austin, President of the North American Crane Working Group, on 17 April 2014. Gary received his M.S. and Ph.D. degrees in Animal Ecology from Iowa State University. He was employed as a Research Wildlife Biologist at Northern Prairie under the U.S. Fish and Wildlife Service and U.S. Geological Survey from 1968 until his retirement in 2011 and in emeritus status thereafter. While at Northern Prairie, he also conducted studies on waterfowl, including wetland habitat requirements, role of stored nutrients in waterfowl reproduction, brood habitat use and factors influencing duckling survival, waterfowl nutrition, and staging ecology of white-fronted geese. He continues to conduct research on sandhill cranes at Northern Prairie, primarily studying population dynamics of the Mid-continent Population and the geographic distribution and ecology of sandhill cranes breeding in Russia and western Alaska. (Photo by Glenn Olsen) Front cover: Whooping crane family at nest, Jefferson Davis Parish, Louisiana, April 2016, by Eva Szyszkoski, Louisiana Department of Wildlife and Fisheries.
    [Show full text]
  • December 2009 PROPWASH Colour
    From the editor— Bruce Dyer DECEMBER 2009 ith the Centennial Year of Flight almost over and the year 2010 on the horizon, I try to imagine the technological advances that will W evolve in the aerospace industries in millenniums to come. But, future breakthroughs in aerospace systems will occur only if tradition- ally separate disciplines -- nanotechnology, biotechnology and infotechnology -- are integrated. In the next generation, NASA will create ultra- efficient, reliable spacecraft, while decreasing costs. One project that is currently being worked on is the transfer of air transport technology's analog systems to more efficient digital. NASA's autonomous space vehicles of the future will be able to travel in space for up to two years, resisting adverse climates and conditions. As 'thinking spacecraft,' they will be networked as colonies, able to exchange and interpret information, from analyzing a glitch to being able to repair themselves. But developing such intelligent aerospace systems will only occur if the three "revolutionary" technologies are integrated and they will overturn current patterns. Nanotechnology aims to create useful materials and systems through control of matter at the smallest scales. Biotech- nology applies knowledge and techniques that mimic biological systems to produce engineering applications like precise molecular control. And greater progress in infotechnology will enable spacecraft to process data along a hierarchy of knowledge, just as humans do, from sensing the environment to responding accordingly. Research is well on the way to develop newer fuels and fuel blends that will be used to power aircraft engines. Exotic propulsion systems are in the development stages that will propel space vehicles into the far reaches of the universe.
    [Show full text]
  • Groppo Trail 1 • Vinyl
    ® MAY 2015 www.kitplanes.com ALIA OR SPEED!OR F T RAIL Easier I Rotorcraft ’ for Made Essentials T Gear d Plug Wiring Panel Spark Inthe Shop: • Landing • • HOMEBUILT HOMEBUILT RSO O APHICS R ROPPO ACTIONS R FORMULA 1: G Colorful Options the Air and Hangar Staying FocusedStaying in Affordable and Fun Affordable VINYL G DIST KR REUNION KITPLANES MAY 2015 Groppo Trail • KR Fly-In • Formula 1 • Vinyl Graphics • First Flight Insurance • Landing Gear • Split Cowl • DIY Camera Mounts • Dawn Patrol • Spark Plugs BELVOIR PUBLICATIONS May 2015 | Volume 32, Number 5 Flight Review 6 ORSO D’ITALIA: While it’s not exactly a Cub clone, Groppo’s new Trail kit shares some of the same DNA as Piper’s classic. By Paul Bertorelli. Builder Spotlight 14 KR AIRPLANES—AFFORDABLE, FUN FLYING: Chino KR Fly-In showcased this sporty, economical airplane. By Dave Prizio. 18 FoRMULA 1: Getting 260 mph out of an O-200 Continental just for fun. By Tom Wilson. 26 SPLIT DECISioN: Building a vertical-split cowl for an RV-7A. 18 By Roger Kellogg. 32 VINYL GRAPHICS: Colorful alternatives to the plain plane. By Eric Stewart. 38 NEAR THE FiNISH LiNE: When your plane is almost completed, it’s time to shop for insurance. By Shanna Linton and Jennifer Cummins. 40 WHERE THE RUBBER MEETS THE RUNWAY: Understanding gyroplane nosewheels. By Roy Beisswenger. 68 ASK THE DAR: Data plate questions, airworthiness certificate errors, complying with service bulletins. By Mel Asberry. Shop Talk 46 MAINTENANCE MATTERS: Spark plugs: A window into how your engine is running. By Dave Prizio.
    [Show full text]