Shrinking Majority of the Deep Biosphere

Total Page:16

File Type:pdf, Size:1020Kb

Shrinking Majority of the Deep Biosphere Shrinking majority of the deep biosphere Bo Barker Jørgensen1 Department of Bioscience, Center for Geomicrobiology, Aarhus University, 8000 Aarhus, Denmark iving microorganisms were first 10 discovered in sediment cores from Black Sea (18) scientific ocean drilling in the late 9 L -3 1980s when microbiologists ob- served and counted DNA-stained micro- 8 Peru Shelf, IODP 1227 (17) bial cells under the microscope. During the following decade, new observations 7 Peru Shelf, IODP 1230 (17) were made from drill sites in the Atlantic 6 and Pacific Oceans and the Mediterranean East Pacific, IODP 1225 (17) Sea (1, 2). The combined data on cell 5 numbers from these sites showed a sys- Log cell numbers cm Peru Basin, IODP 1231 (17) tematic, log-log linear decrease with − 4 depth, from approximately 109 cells·cm 3 6 · −3 South Pacific gyre, SPG-2 (9) near the sediment surface to 10 cells cm 3 at several hundred meters below seafloor, 2345678 where the sediment had been deposited Log age (years) many million years ago (2) (Fig. 1). In their 1998 study, Whitman et al. (3) used Fig. 1. Microbial cells numbers of marine sediments at different subseafloor depths with different sediment ages ranging from 100 y to 100 million years. Data from six sites are plotted as log10 of the cell these data to make a grand estimate of the 3 total number of prokaryotic cells on Earth. numbers per cm vs. log10 of the sediment age in years. The data illustrate the general decrease in cell Their astonishing conclusion was that 55% numbers with age of the buried organic matter that provides the energy for the deep biosphere. The central North and South Pacific have extremely low sediment burial rates and cell numbers (red symbols), of all microbial cells occurred in the deep thereby changing the earlier estimates of the deep biosphere to lower cell numbers. IODP, Integrated seabed whereas most of the rest were Ocean Drilling Program. found in the deep terrestrial subsurface. Even more staggering, the combined deep biospheres appeared to harbor one third early database was skewed toward sedi- “noisy or erratic cell concentration of the total living biomass on Earth. The ments with high cell counts. trends.” By omitting such data, the depth publication of Whitman et al. (3) sparked In stark contrast to the ocean margins, distribution of cell numbers below 0.1 m a rapidly growing interest in the deep the central gyres of the South and North and down to basement could be simulated biosphere, and the data from this study Pacific have the greatest distance from the for each site by a power-law function and were repeatedly cited in the literature in continents, the lowest phytoplankton pro- the total depth-integrated cell numbers the following years. Their biomass esti- ductivity, and the lowest sedimentation could be calculated. Interestingly, the cell mate was later supported by data on intact rate of anywhere in the world ocean. The numbers were inversely correlated to the polar membrane lipids as indicators of red clay covering the basement rock in distance from the continents, which ex- living cells (4). Now, these numbers are these regions has extremely low organic plains why the early estimates based on < being challenged. In PNAS, Kallmeyer carbon content ( 0.5% of dry weight), and ocean margin sites were too high. The et al. (5) conclude that the total cell oxygen penetrates from the seawater and statistical trends observed in the data were fl number for the deep subsea oor bio- deeply into the seabed, even down to the used to calculate areal cell densities in sphere is probably 12-fold lower than the basaltic crust tens of meters below the a1°× 1° gridded map of the world ocean fl earlier estimate whereas the total biomass sea oor (6, 7). Microbial cells are so few and thereby to estimate a new global may be 74-fold lower. Is the deep bio- that they cannot be detected by direct × 29 fi number: 2.9 10 cells in the marine sphere losing signi cance? microscopy in these sediments. A new deep biosphere (5). Given the great scatter The low estimates by Kallmeyer et al. method was therefore developed by which of cell counts and the great diversity in (5) do not result from a correction of the bacteria are first extracted from the sedimentary environments, such a number earlier cell counts. They result from new sediment, concentrated by density centri- still suffers a degree of uncertainty, but it data from the vast desert regions of the fugation to a particle suspension, and is certainly based on stronger data and oceans that have been drilled and sampled then counted (8). With this 100-fold more more advanced statistical methods than by microbiologists for the first time sensitive procedure, cells turned out in- earlier estimates. The effect of rejecting (Fig. 1). These regions were not specifi- deed to be present, yet in numbers that erratic data or of extrapolating to regions cally targeted in the earlier Ocean Drilling were 1,000-fold lower than in most other fi Program (and the later Integrated Ocean sediments (5, 9). By inclusion of such for which no data are available is dif - Drilling Program), as the program pri- desert regions in the global compilation, cult to evaluate for the reader, but the marily aimed to explore plate tectonics, the estimated total cell numbers authors carefully explain their approach. paleoceanography, and other dynamic decreased markedly. A similar statistical analysis is needed processes that were most strongly ex- The entire data set on cell numbers is for the terrestrial deep biosphere, but pressed along the ocean margins. Micro- still limited, and a global extrapolation biologists who joined these geologically remains difficult and highly dependent on motivated drilling expeditions therefore the statistical approach used. Kallmeyer Author contributions: B.B.J. wrote the paper. obtained their samples from ocean margin et al. (5) had data available from five times The author declares no conflict of interest. regions with high organic productivity and as many sites as Whitmann et al. (3), but See companion article on page 16213. high sedimentation rates. As a result, the they rejected 40% of these as a result of 1E-mail: [email protected]. 15976–15977 | PNAS | October 2, 2012 | vol. 109 | no. 40 www.pnas.org/cgi/doi/10.1073/pnas.1213639109 Downloaded by guest on September 27, 2021 COMMENTARY the available data are here still insufficient water reactions (14). The turnover time iologically inactive state (16). Microscopic to detect general correlations to environ- and the size of this microbial community counts of DNA-stained cells include met- mental properties. are not known. If the turnover time were abolically active cells and inactive, dor- It is unexpected that microbial cells of similar to that in deep marine sediments— mant cells as long as the latter are less than 1 μm size may constitute a large say, 100 y—the autotrophic community detectable by fluorescence staining of their fraction of all living biomass on Earth, biomass would, at the maximum, be DNA. However, for cells locked in an ex- 14 including all vascular plants on land and 10 g C, which is a small fraction of the tremely energy-starved and stable envi- × 15 all algae in the sea. The estimate of their 4 10 g C estimated by Kallmeyer et al. ronment that steadily decreases in energy biomass, however, depends on the mean (5) for the deep biosphere in marine flux over millions of years, dormancy cell size and carbon content of the cells. sediments. Another energy source for the would seem to be a dead-end strategy. The Whereas Whitman et al. (3) assumed crustal biosphere is the slow flow of sea- cells would be deprived of whatever energy a mean carbon content of 86 fg C per cell water through the cracked and porous − they could have conserved, had they not (1 fg is equal to 10 15 g), Kallmeyer et al. ocean crust beneath the thick sediment been dormant, and they would need to (5) suggest a sixfold lower value of 14 fg cover, which injects oxygen, inorganic ions, C based on microscopic measurements of and dissolved organic matter into the old spend extra energy on cell repair after cells from Integrated Ocean Drilling Pro- basalt. It is unknown how large microbial awakening. Despite this, some bacteria gram core samples. Their rationale is that communities subsist in the basaltic might still go into the most long-lived microbial cell sizes tend to be smaller un- ocean crust. dormant state known, the endospore for- der strong nutrient limitation because Although correlations are helpful to mation. Bacterial endospores are generally a larger surface-to-volume ratio of small calculate global cell numbers, it would impermeable to the DNA stains applied, cells is of competitive advantage because be interesting to gain a functional un- and spores are therefore not included of more efficient substrate uptake and derstanding of what really controls the cell in the global estimates of microbial cells or thereby faster growth. The deep biosphere numbers in subsurface sediments. Mortal- biomass. The analysis of a specific com- indeed has very low nutrient and energy ity is apparently extremely low, cell turn- ponent of the spore wall, dipicolinic acid, flux, and the microorganisms have ex- over takes hundreds of years, and the in sediment samples has recently shown ceedingly slow turnover with generation environment is stable over millions of that spores may be as abundant as vege- times of 100 to1,000 y (10, 11). However, it years with a decreasing energy flux over tative cells in the deep biosphere (11).
Recommended publications
  • Productivity and Sustainable Management of the Humboldt Current Large Marine Ecosystem Under Climate Change
    Environmental Development 17 (2016) 126–144 Contents lists available at ScienceDirect Environmental Development journal homepage: www.elsevier.com/locate/envdev Productivity and Sustainable Management of the Humboldt Current Large Marine Ecosystem under climate change Dimitri Gutiérrez a,c,n, Michael Akester b,n, Laura Naranjo b a Dirección General de Investigaciones en Oceanografía y Cambio Climático, Instituto del Mar del Perú, IMARPE, Peru b Global Environment Facility (GEF)-UNDP Humboldt Current LME Project, Chile-Peru c Universidad Peruana Cayetano Heredia, Programa de Maestría en Ciencias del Mar, Lima, Peru article info abstract Article history: The Humboldt Current Large Marine Ecosystem (HCLME) covers 95% of the southeast Received 14 September 2015 Pacific seaboard of which the area of influence from the Humboldt Current and associated Received in revised form upwelling areas in the Humboldt Current System (HCS) stretches from around 4° to 40° 4 November 2015 south. Global warming will likely affect marine circulation and land-atmosphere-ocean Accepted 5 November 2015 exchanges at the regional level, affecting the productivity and biodiversity patterns along the HCLME. The expected decrease of upwelling productivity in the HCS could be am- Keywords: plified by worldwide trends of oxygen depletion and lower pH. In addition, higher fre- Humboldt-current quency of extreme climatic events, such as El Niño in a warmer ocean, might augment the Coastal-upwelling risks for the recruitment success of anchovy and other short-lived fish resources, espe- Productivity cially in the Northern HCLME. A range of non-climatic anthropogenic stressors also Fisheries Climate-change combines to reduce productivity and biomass yields.
    [Show full text]
  • 6 Ocean Currents 5 Gyres Curriculum
    Lesson Six: Surface Ocean Currents Which factors in the earth system create gyres? Why does pollution collect in the gyres? Objective: Develop a model that shows how patterns in atmospheric and ocean currents create gyres, and explain why plastic pollution collects in them. Introduction: Gyres are circular, wind-driven ocean currents. Look at this map of the five main subtropical gyres, where the colors illustrate enormous areas of floating waste. These are places in the ocean that accumulate floating debris—in particular, plastic pollution. How do you think ocean gyres form? What patterns do you notice in terms of where the gyres are located in the ocean? The Earth is a system: a group of parts (or components) that all work together. The components of a system have different structures and functions, but if you take a component away, the system is affected. The system of the Earth is made up of four main subsystems: hydrosphere (water), atmosphere (air), geosphere (land), and biosphere (organisms). The ocean is part of our planet’s hydrosphere, but it is also its own system. Which components of the Earth system do you think create gyres, and why would pollution collect in them? Activity 1 Gyre Model: How do you think patterns in ocean currents create gyres and cause pollution to collect in the gyres? Use labels and arrows to answer this question. Keep your diagram very basic; we will explore this question more in depth as we go through each part of the lesson and you will be able to revise it. www.5gyres.org 2 Activity 2 How Do Gyres Form? A gyre is a circulating system of ocean boundary currents powered by the uneven heating of air masses and the shape of the Earth’s coastlines.
    [Show full text]
  • Interactive Comment on “Impacts of UV Radiation on Plankton Community Metabolism Along the Humboldt Current System” by N
    Biogeosciences Discuss., 8, C2596–C2611, 2011 Biogeosciences www.biogeosciences-discuss.net/8/C2596/2011/ Discussions © Author(s) 2011. This work is distributed under the Creative Commons Attribute 3.0 License. Interactive comment on “Impacts of UV radiation on plankton community metabolism along the Humboldt Current System” by N. Godoy et al. Anonymous Referee #3 Received and published: 23 August 2011 Review Impacts of UV radiation on plankton community metabolism along the Hum- boldt Current System by N. Godoy, A. Canepa, S. Lasternas, E. Mayol, S. RuÄsz-´ Halpern, S. AgustÄs,´ J. C. Castilla, and C. M. Duarte. Biogeosciences Discuss., 8, 5827–5848, 2011 General Comment This article reports experimental estimates of community metabolism assessed at 8 stations in the eastern south Pacific conducted during the Humboldt-2009 cruise on board RV Hesperides from 5 to 15 March 2009. An experimental evaluation of the ef- fect of UVB radiation on community metabolism is conducted. From few experiments the authors claim that UVB radiation suppressed net community production, result- ing in a dominance of heterotrophic communities in surface waters, compared to the C2596 prevalence of autotrophic communities inferred when materials, excluding UVB radia- tion, are used for incubation. They also claim that their results show that UVB radiation, which has increased greatly in the study area, may have suppressed net community production of the plankton communities, possibly driving plankton communities in the Southwest Pacific towards CO2 sources. The evidence provided in the manuscript is not sufficient to support the conclusions. The sampling is clearly too limited, both spatially and temporally, to extrapolate their results to the Humboldt Current System.
    [Show full text]
  • Nutrient Limitation of Primary Productivity in the Southeast Pacific (BIOSOPE Cruise) Sophie Bonnet, C
    Nutrient limitation of primary productivity in the Southeast Pacific (BIOSOPE cruise) Sophie Bonnet, C. Guieu, F. Bruyant, O. Prášil, France van Wambeke, Patrick Raimbault, T. Moutin, C. Grob, M. Y. Gorbunov, J. P. Zehr, et al. To cite this version: Sophie Bonnet, C. Guieu, F. Bruyant, O. Prášil, France van Wambeke, et al.. Nutrient limitation of primary productivity in the Southeast Pacific (BIOSOPE cruise). Biogeosciences, European Geo- sciences Union, 2008, 5 (1), pp.215-225. hal-00330343 HAL Id: hal-00330343 https://hal.archives-ouvertes.fr/hal-00330343 Submitted on 14 Oct 2008 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Biogeosciences, 5, 215–225, 2008 www.biogeosciences.net/5/215/2008/ Biogeosciences © Author(s) 2008. This work is licensed under a Creative Commons License. Nutrient limitation of primary productivity in the Southeast Pacific (BIOSOPE cruise) S. Bonnet1, C. Guieu1, F. Bruyant2, O. Pra´silˇ 3, F. Van Wambeke4, P. Raimbault4, T. Moutin4, C. Grob1, M. Y. Gorbunov5, J. P. Zehr6, S. M. Masquelier7, L. Garczarek7, and H. Claustre1
    [Show full text]
  • Governing a Continent of Trash: the Global Politics of Oceanic Pollution
    University of Connecticut OpenCommons@UConn Honors Scholar Theses Honors Scholar Program Spring 5-1-2020 Governing a Continent of Trash: The Global Politics of Oceanic Pollution Anne Longo [email protected] Follow this and additional works at: https://opencommons.uconn.edu/srhonors_theses Part of the Environmental Studies Commons, and the Political Science Commons Recommended Citation Longo, Anne, "Governing a Continent of Trash: The Global Politics of Oceanic Pollution" (2020). Honors Scholar Theses. 704. https://opencommons.uconn.edu/srhonors_theses/704 Anne Cathrine Longo Honors Thesis in Political Science Dr. Mark A. Boyer Dr. Matthew M. Singer May 1, 2020 Governing a Continent of Trash: The Global Politics of Oceanic Pollution Convenience is King and Plastic is the King of Convenience: So, Who is the King of the Great Pacific Garbage Patch? Abstract There is a new continent growing in the North Pacific Ocean known as the Great Pacific Garbage Patch. The Patch is composed of a vast array of marine pollution, discarded single-use items, and mostly microplastics. This thesis explores how and why governments and other entities do or do not deal with the growing problem of ocean pollution. Sovereignty roadblocks and balance of power prove to be obstacles for such efforts. This thesis then attempts to create the ideal model of governance for ocean plastics using the policy-making process. The policy analysis reviews bilateral, multilateral, and non-governmental solutions for the removal of the Great Pacific Garbage Patch and subsequent maintenance efforts. Following the analysis of these three policies, this thesis concludes that a combination of factors from each solution is likely the best course of action.
    [Show full text]
  • Lecture 4: OCEANS (Outline)
    LectureLecture 44 :: OCEANSOCEANS (Outline)(Outline) Basic Structures and Dynamics Ekman transport Geostrophic currents Surface Ocean Circulation Subtropicl gyre Boundary current Deep Ocean Circulation Thermohaline conveyor belt ESS200A Prof. Jin -Yi Yu BasicBasic OceanOcean StructuresStructures Warm up by sunlight! Upper Ocean (~100 m) Shallow, warm upper layer where light is abundant and where most marine life can be found. Deep Ocean Cold, dark, deep ocean where plenty supplies of nutrients and carbon exist. ESS200A No sunlight! Prof. Jin -Yi Yu BasicBasic OceanOcean CurrentCurrent SystemsSystems Upper Ocean surface circulation Deep Ocean deep ocean circulation ESS200A (from “Is The Temperature Rising?”) Prof. Jin -Yi Yu TheThe StateState ofof OceansOceans Temperature warm on the upper ocean, cold in the deeper ocean. Salinity variations determined by evaporation, precipitation, sea-ice formation and melt, and river runoff. Density small in the upper ocean, large in the deeper ocean. ESS200A Prof. Jin -Yi Yu PotentialPotential TemperatureTemperature Potential temperature is very close to temperature in the ocean. The average temperature of the world ocean is about 3.6°C. ESS200A (from Global Physical Climatology ) Prof. Jin -Yi Yu SalinitySalinity E < P Sea-ice formation and melting E > P Salinity is the mass of dissolved salts in a kilogram of seawater. Unit: ‰ (part per thousand; per mil). The average salinity of the world ocean is 34.7‰. Four major factors that affect salinity: evaporation, precipitation, inflow of river water, and sea-ice formation and melting. (from Global Physical Climatology ) ESS200A Prof. Jin -Yi Yu Low density due to absorption of solar energy near the surface. DensityDensity Seawater is almost incompressible, so the density of seawater is always very close to 1000 kg/m 3.
    [Show full text]
  • Assessment and Use of NGR Instrumentation on the JOIDES Resolution to Quantify U, Th, and K Concentrations in Marine Sediment Ann G
    University of Rhode Island DigitalCommons@URI Graduate School of Oceanography Faculty Graduate School of Oceanography Publications 2013 Assessment and Use of NGR Instrumentation on the JOIDES Resolution to Quantify U, Th, and K Concentrations in Marine Sediment Ann G. Dunlea Richard W. Murray See next page for additional authors Creative Commons License This work is licensed under a Creative Commons Attribution 3.0 License. Follow this and additional works at: https://digitalcommons.uri.edu/gsofacpubs Citation/Publisher Attribution A. G. Dunlea, R. W. Murray, R. N. Harris, M. A. Vasiliev, H. Evans, A. J. Spivack, S. D'Hondt. (2013). "Assessment and Use of NGR Instrumentation on the JOIDES Resolution to Quantify U, Th, nda K Concentrations in Marine Sediment." Scientific Drilling, 15, 57-63. Available at: www.sci-dril.net/15/57/2013/ This Article is brought to you for free and open access by the Graduate School of Oceanography at DigitalCommons@URI. It has been accepted for inclusion in Graduate School of Oceanography Faculty Publications by an authorized administrator of DigitalCommons@URI. For more information, please contact [email protected]. Authors Ann G. Dunlea, Richard W. Murray, Robert N. Harris, Maxim A. Vasiliev, Helen Evans, Arthur J. Spivack, and Steven D'Hondt This article is available at DigitalCommons@URI: https://digitalcommons.uri.edu/gsofacpubs/94 Technical Development Assessment and Use of NGR Instrumentation on the JOIDES Resolution to Quantify U, Th, and K Concentrations in Marine Sediment by Ann G. Dunlea, Richard W. Murray, Robert N. Harris, Maxim A. Vasiliev, Helen Evans, Arthur J. Spivack, and Steven D’Hondt doi:10.2204/iodp.sd.15.05.2013 Introduction constraints of core processing.
    [Show full text]
  • Shallow Particulate Organic Carbon Regeneration in the South Pacific Ocean
    Shallow particulate organic carbon regeneration in the South Pacific Ocean Frank J. Paviaa,b,1, Robert F. Andersona,b, Phoebe J. Lamc, B. B. Caeld,e, Sebastian M. Vivancosa,b, Martin Q. Fleisherb, Yanbin Luf, Pu Zhangf, Hai Chengf,g, and R. Lawrence Edwardsf aLamont-Doherty Earth Observatory, Columbia University, Palisades, NY 10964; bDepartment of Earth and Environmental Sciences, Columbia University, New York, NY 10027; cDepartment of Ocean Sciences, University of California, Santa Cruz, CA 95064; dDaniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawai‘iatManoa, Honolulu, HI 96822; eDepartment of Oceanography, School of Ocean and Earth Science and Technology, University of Hawai‘iatManoa, Honolulu, HI 96822; fDepartment of Earth Sciences, University of Minnesota, Minneapolis, MN 55455; and gInstitute of Global Environmental Change, Xi’an Jiaotong University, Xi’an 710054, China Edited by David M. Karl, University of Hawaii, Honolulu, HI, and approved April 8, 2019 (received for review January 31, 2019) Particulate organic carbon (POC) produced in the surface ocean Historical estimates of carbon regeneration in the ocean in- sinks through the water column and is respired at depth, acting as terior have come from POC flux profiles generated either by a primary vector sequestering carbon in the abyssal ocean. compilations of sediment traps (8); by individual free-floating Atmospheric carbon dioxide levels are sensitive to the length sediment trap profiles, typically with three to six depths in the (depth) scale over which respiration converts POC back to in- upper 500 m (9, 10); or by combining 234Th-based euphotic zone organic carbon, because shallower waters exchange with the POC fluxes with those from bottom-moored sediment traps be- atmosphere more rapidly than deeper ones.
    [Show full text]
  • Surface Circulation & Upwelling
    OCE-3014L Lab 6 NAME________________________________________________ Surface Circulation & Upwelling A closer look at the Gulf Stream Current & the California Current Part A. Global Surface Currents Surface currents are in direct response to 1) wind, 2) Earth’s rotation (the Coriolis Effect), and 3) land masses or continents which affect the location, speed, and direction of the currents. Ocean currents follow a regular circular pattern in their respective ocean basins, called gyres. Gyres form north and south of the equator in Atlantic and Pacific Oceans. Warm currents within gyres carry water from the equator toward the poles. Cold currents transport cooler water from the subarctic regions toward the equator. If you do not have a color printer, color code the currents in the above figure: red for warm currents; blue for cool currents. 1. The North Atlantic Gyre circulates CW (clockwise) or CCW (counter-clockwise)? 2. The North Pacific Gyre circulates CW or CCW ? 3. The South Atlantic Gyre circulates CW or CCW? 4. The South Pacific Gyre circulates CW or CCW? 5. On which sides of the ocean basins are the warm currents? East or West ? 6. On which sides of the ocean basins are the cold currents? East or West ? • Note the warm surface current in the Indian Ocean that crosses the equator to join the Indian Ocean’s southern gyre, owing to the presence of the Asian land mass south of 0 degree latitude and atmosphere pressure extremes dominating wind patterns over Asia. 1 OCE-3014L Lab 6 7. Indicate warm or cool beside the major ocean currents listed below.
    [Show full text]
  • Ocean-Gyre-4.Pdf
    This website would like to remind you: Your browser (Apple Safari 4) is out of date. Update your browser for more × security, comfort and the best experience on this site. Encyclopedic Entry ocean gyre For the complete encyclopedic entry with media resources, visit: http://education.nationalgeographic.com/encyclopedia/ocean-gyre/ An ocean gyre is a large system of circular ocean currents formed by global wind patterns and forces created by Earth’s rotation. The movement of the world’s major ocean gyres helps drive the “ocean conveyor belt.” The ocean conveyor belt circulates ocean water around the entire planet. Also known as thermohaline circulation, the ocean conveyor belt is essential for regulating temperature, salinity and nutrient flow throughout the ocean. How a Gyre Forms Three forces cause the circulation of a gyre: global wind patterns, Earth’s rotation, and Earth’s landmasses. Wind drags on the ocean surface, causing water to move in the direction the wind is blowing. The Earth’s rotation deflects, or changes the direction of, these wind-driven currents. This deflection is a part of the Coriolis effect. The Coriolis effect shifts surface currents by angles of about 45 degrees. In the Northern Hemisphere, ocean currents are deflected to the right, in a clockwise motion. In the Southern Hemisphere, ocean currents are pushed to the left, in a counterclockwise motion. Beneath surface currents of the gyre, the Coriolis effect results in what is called an Ekman spiral. While surface currents are deflected by about 45 degrees, each deeper layer in the water column is deflected slightly less.
    [Show full text]
  • Silicon Cycle in the Tropical South Pacific: Evidence for an Active Pico-Sized Siliceous Plankton
    Biogeosciences Discuss., https://doi.org/10.5194/bg-2018-149 Manuscript under review for journal Biogeosciences Discussion started: 15 May 2018 c Author(s) 2018. CC BY 4.0 License. 1 Silicon cycle in the Tropical South Pacific: evidence for an active 2 pico-sized siliceous plankton 3 Karine Leblanc 1, Véronique Cornet 1, Peggy Rimmelin-Maury 2, Olivier Grosso 1, Sandra Hélias- 4 Nunige 1, Camille Brunet 1, Hervé Claustre 3, Joséphine Ras 3, Nathalie Leblond 3, Bernard 5 Quéguiner 1 6 1Aix-Marseille Univ., Université de Toulon, CNRS, IRD, MIO, UM110, Marseille, F-13288, 7 France 8 2UMR 6539 LEMAR and UMS OSU IUEM - UBO, Université Européenne de Bretagne, Brest, 9 France 10 3UPMC Univ Paris 06, UMR 7093, LOV, 06230 Villefranche-sur-mer, France 11 12 Correspondence to : Karine Leblanc ([email protected]) 13 1 Abstract 14 This article presents data regarding the Si biogeochemical cycle during two oceanographic cruises 15 conducted in the Southern Tropical Pacific (BIOSOPE and OUTPACE cruises) in 2005 and 2015. 16 It involves the first Si stock measurements in this understudied region, encompassing various 17 oceanic systems from New Caledonia to the Chilean upwelling between 8 and 34° S. Some of the 18 lowest levels of biogenic silica standing stocks ever measured were found in this area, notably in 19 the Southern Pacific Gyre, where Chlorophyll a concentrations are most depleted worldwide. 20 Integrated biogenic silica stocks are as low as 1.08 ± 0.95 mmol m -2, and are the lowest stocks 21 measured in the Southern Pacific. Size-fractionated biogenic silica concentrations revealed a non- 22 negligible contribution of the pico-sized fraction (<2-3 µm) to biogenic silica standing stocks, 23 representing 26 ± 12 % of total biogenic silica during the OUTPACE cruise and 11 ± 9 % during 24 the BIOSOPE cruise.
    [Show full text]
  • Atmospheric Dust Inputs, Iron Cycling, and Biogeochemical Connections in the South
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Caltech Authors - Main Pavia Frank (Orcid ID: 0000-0003-3627-0179) Anderson Robert, F. (Orcid ID: 0000-0002-8472-2494) Winckler Gisela (Orcid ID: 0000-0001-8718-2684) Atmospheric Dust Inputs, Iron Cycling, and Biogeochemical Connections in the South Pacific Ocean from Thorium Isotopes Frank J. Pavia1,2,3*, Robert F. Anderson1,2, Gisela Winckler1,2, Martin Q. Fleisher1 1Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY, USA 2Department of Earth and Environmental Sciences, Columbia University, New York, NY, USA 3Now at: California Institute of Technology, Division of Geological and Planetary Sciences, Pasadena, CA 91125, USA *Corresponding author Email: [email protected] Keywords: Thorium, GEOTRACES, Iron, Dust, Nitrogen Fixation, South Pacific Main point #1: Dust Fluxes to the South Pacific Gyre are quantified using measurements of dissolved and particulate thorium isotopes This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1029/2020GB006562 ©2020 American Geophysical Union. All rights reserved. Main point #2: Global models underestimate dust flux to the South Pacific Gyre by 1-2 orders of magnitude Main point #3: Dust deposition is the most important source of dissolved iron to the surface of the South Pacific Ocean Abstract One of the primary sources of micronutrients to the sea surface in remote ocean regions is the deposition of atmospheric dust.
    [Show full text]