HCFC-123) CAS No

Total Page:16

File Type:pdf, Size:1020Kb

HCFC-123) CAS No 1,1-Dichloro-2,2,2-trifluoroethane (HCFC-123) CAS No. 306-83-2 (Third Edition) JACC No. 47 ISSN-0773-6339-47 Brussels, May 2005 1,1-Dichloro-2,2,2-trifluoroethane (HCFC-123) ECETOC JACC REPORT No. 47 © Copyright – ECETOC European Centre for Ecotoxicology and Toxicology of Chemicals 4 Avenue E. Van Nieuwenhuyse (Bte 6), B-1160 Brussels, Belgium. All rights reserved. No part of this publication may be reproduced, copied, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without the prior written permission of the copyright holder. Applications to reproduce, store, copy or translate should be made to the Secretary General. ECETOC welcomes such applications. Reference to the document, its title and summary may be copied or abstracted in data retrieval systems without subsequent reference. The content of this document has been prepared and reviewed by experts on behalf of ECETOC with all possible care and from the available scientific information. It is provided for information only. ECETOC cannot accept any responsibility or liability and does not provide a warranty for any use or interpretation of the material contained in the publication. ECETOC JACC No. 47 1,1-Dichloro-2,2,2-trifluoroethane (HCFC-123) 1,1-Dichloro-2,2,2-trifluoroethane (HCFC-123) CAS No. 306-83-2 (Third Edition) CONTENTS EXECUTIVE SUMMARY 1 THE ECETOC SCHEME FOR THE JOINT ASSESSMENT OF COMMODITY CHEMICALS 2 LIST OF SPECIAL ABBREVIATIONS 3 1. SUMMARY AND CONCLUSIONS 4 2. IDENTITY, PHYSICAL AND CHEMICAL PROPERTIES, ANALYTICAL METHODS 8 2.1 Identity 8 2.2 EU classification and labelling 8 2.3 Physical and chemical properties 9 2.4 Conversion factors 10 2.5 Analytical methods 10 3. PRODUCTION AND USE 11 3.1 Production 11 3.2 Use 11 4. ENVIRONMENTAL DISTRIBUTION, TRANSFORMATION AND IMPACT 12 4.1 Sources 12 4.2 Environmental distribution 12 4.3 Atmospheric lifetime 13 4.4 Ozone depleting potential 13 4.5 Global warming potential 13 4.6 Tropospheric ozone formation 14 4.7 Degradation mechanism and products 14 4.8 Contribution of degradation products to environmental chloride, fluoride and trifluoroacetate and 16 to the acidity of rainwater 4.9 Biodegradability 16 5. ENVIRONMENTAL LEVELS AND HUMAN EXPOSURE 18 5.1 Environmental levels 18 5.2 Consumer exposure 18 5.3 Occupational exposure 18 ECETOC JACC No. 47 1,1-Dichloro-2,2,2-trifluoroethane (HCFC-123) 6. EFFECTS ON ORGANISMS IN THE ENVIRONMENT 21 6.1 Aquatic toxicity 21 6.2 Aquatic organisms 21 6.3 Terrestrial organisms 22 7. KINETICS AND METABOLISM 23 7.1 Animal studies 23 7.1.1 Absorption 23 7.1.2 Distribution 25 7.1.3 Metabolism 25 7.1.4 Elimination 29 7.1.5 Covalent binding 30 7.1.6 Summary 32 7.2 Human studies 33 8. EFFECTS ON EXPERIMENTAL ANIMALS AND IN VITRO TEST SYSTEMS 34 8.1 Acute toxicity 34 8.1.1 Oral toxicity 34 8.1.2 Dermal toxicity 34 8.1.3 Inhalation toxicity 34 8.1.4 Cardiac sensitisation 36 8.2 Skin, respiratory tract and eye irritation, sensitisation 37 8.2.1 Skin irritation and sensitisation 37 8.2.2 Eye irritation 37 8.3 Subacute/subchronic toxicity 37 8.4 Mutagenicity and cell transformation 41 8.4.1 In vitro 41 8.4.2 In vivo 43 8.4.3 Conclusion 45 8.5 Chronic toxicity and carcinogenicity 45 8.5.1 Discussion and assessment 51 8.6 Embryotoxicity, teratology and reproductive performance 55 8.6.1 Embryotoxicity and teratology 55 8.6.2 Reproductive performance 55 8.7 Special studies 58 8.7.1 Neurotoxicity 58 8.7.2 Endocrine evaluations 59 8.7.3 Peroxisome proliferation and hypolipidemia 60 8.7.4 In vitro studies in testicular cell cultures 63 8.7.5 Other investigations 63 ECETOC JACC No. 47 1,1-Dichloro-2,2,2-trifluoroethane (HCFC-123) 9 EFFECTS ON HUMANS 65 9.1 General population exposure 65 9.2 Occupational exposure 65 10. BIBLIOGRAPHY 67 10.1 References quoted 67 10.2 References not quoted 79 APPENDIX A: CRITERIA FOR RELIABILITY CATEGORIES 82 APPENDIX B: NAMING AND NUMBERING SYSTEM FOR FLUOROCARBON COMPOUNDS 83 APPENDIX C: CONVERSION FACTORS FOR VAPOUR CONCENTRATIONS IN AIR 86 MEMBERS OF THE TASK FORCE 87 MEMBERS OF THE SCIENTIFIC COMMITTEE 89 ECETOC JACC No. 47 1,1-Dichloro-2,2,2-trifluoroethane (HCFC-123) ECETOC JACC No. 47 1,1-Dichloro-2,2,2-trifluoroethane (HCFC-123) EXECUTIVE SUMMARY This report has been produced as part of the ECETOC Joint Assessment of Commodity Chemicals (JACC) programme. It updates an earlier ECETOC review a and presents a critical evaluation of the available toxicity and ecotoxicity data on 1,1-dichloro-2,2,2-trifluoroethane (HCFC-123), including results of new toxicological studies conducted by the Programme for Alternative Fluorocarbon Toxicity Testing (PAFT) b. HCFC-123 is a volatile liquid that is used, for example, as a refrigerant in air-conditioning installations and as an intermediate in the production of various chemicals. HCFC-123 is a transitional replacement (to be phased out by 2020) for chloro- and bromo-fluorocarbons. It has a low potential for ozone depletion (2% of that of CFC-11, trichlorofluoromethane) and global warming (76 relative to carbon dioxide; this compares to 4,000 for CFC-11). Any HCFC-123 released to the environment will rapidly volatilise to the atmosphere, where it will be slowly degraded, mainly to trifluoroacetic acid, which will partition into water and possibly accumulate there, although predicted concentrations are below toxic thresholds. HCFC-123 is not readily biodegradable, but is not likely to bio-concentrate in fish and other aquatic organisms. It is slightly to moderately toxic to fish, invertebrates, and algae. Thus, HCFC-123 is unlikely to pose a significant hazard to the aquatic environment; it is also not persistent in water. HCFC-123 has a low toxicity in laboratory animals upon single brief exposure to the liquid or vapour. The liquid is not irritant or sensitising to the skin, but produces eye irritation. For humans, the most relevant critical effects from single, brief single exposure to HCFC-123, such as from the discharge of a fire extinguisher, are depression of the central nervous system and increased likelihood of cardiac arrhythmia. Repeated exposure to HCFC-123 may yield liver lesions. In reproductive toxicity studies in animals, the growth of neonates was retarded, probably because the milk of the dams contained trifluoroacetic acid, the main metabolite of HCFC-123. HCFC-123 is not genotoxic in vivo, although there was clastogenetic activity at high doses in vitro. HCFC-123 caused statistically significant increases in benign tumours in rat liver, testis and pancreas. The formation of liver tumours can be linked with the rodent-specific peroxisome proliferation potential of HCFC-123, while the testicular tumours may have resulted from enhanced hormonal disturbances in senescent rats. Thus, the hepatic and testicular tumours are not relevant for human health hazard assessment. The mechanism of pancreatic acinar cell tumour formation is not understood, and the significance of those tumours for humans remains uncertain. a ECETOC. 1996. Joint assessment of Commodity Chemicals report No. 33 b A cooperative research effort (1987-2000) sponsored by 16 of the leading CFC producers [http://www.afeas.org/paft/] ECETOC JACC No. 47 1 1,1-Dichloro-2,2,2-trifluoroethane (HCFC-123) THE ECETOC SCHEME FOR THE JOINT ASSESSMENT OF COMMODITY CHEMICALS This report has been produced as part of the ECETOC Joint Assessment of Commodity Chemicals (JACC) programme for preparing critical reviews of the toxicology and ecotoxicology of selected existing industrial chemicals. In the programme, commodity chemicals (i.e. those produced in large tonnage by several companies and having widespread and multiple use) are jointly reviewed by experts from a number of companies with knowledge of the chemicals. Only the chemical itself is considered in a JACC review; products in which it appears as an impurity are not normally taken into account. This document presents a critical evaluation of the toxicology and ecotoxicology of 1,1-dichloro- 2,2,2-trifluoroethane (HCFC-123) (CAS No. 306-83-2). Where relevant, the Task Force has graded the studies by means of a ‘code of reliability’ (CoR) (Appendix A) to reflect the degree of confidence that can be placed on the reported results. ECETOC JACC No. 47 2 1,1-Dichloro-2,2,2-trifluoroethane (HCFC-123) LIST OF SPECIAL ABBREVATIONS ALD Approximate lethal dose ALP Alkali phosphatase ALT Alanine transferase AST Aspartate transaminase CAS Chemical Abstracts Service CCK Cholecystokinin CFC Chlorofluorocarbon CNS Central nervous system CoR Code fo reliability EQC Equilibrium criterion GGT γ-glutamyl transpeptidase GWP Global warming potential HCFC Hydrochlorofluorocarbon HCG Human chorionic gonadotropin HFC Hydrofluorocarbon hPa Hectopascal HPLC High-pressure liquid chromatography i.p. Intraperitoneal ITH Integration time horizon JACC Joint Assessment of Commodity Chemicals Km Michaelis-Menten constant LDHX Lactate dehydrogenase-X LHRH Luteinising hormone-releasing hormone LOAEL Lowest-observed-adverse-effect level MHA Methaemalbumin NOAEL No-observed-adverse-effect level NOEC No-observed-effect concentration NOEL No-observed-effect level ODPs Ozone depleting potentials PAFT Programme for Alternative Fluorocarbon Toxicity Testing PPAR Peroxisome proliferator activated receptor ppb Parts per billion ppm Parts per million ppt Parts per trillion TFA Trifluoroacetic acid UDS Unscheduled DNA synthesis Vmax Maximal metabolic rate; velocity at maximal concentration of substrate WY Wyeth ECETOC JACC No. 47 3 1,1-Dichloro-2,2,2-trifluoroethane (HCFC-123) 1. SUMMARY AND CONCLUSIONS 1,1-Dichloro-2,2,2-trifluoroethane (HCFC-123 a) is a non-combustible, volatile colourless liquid with a slight ether odour.
Recommended publications
  • 1,1,1,2-Tetrafluoroethane
    This report contains the collective views of an international group of experts and does not necessarily represent the decisions or the stated policy of the United Nations Environment Programme, the International Labour Organisation, or the World Health Organization. Concise International Chemical Assessment Document 11 1,1,1,2-Tetrafluoroethane First draft prepared by Mrs P. Barker and Mr R. Cary, Health and Safety Executive, Liverpool, United Kingdom, and Dr S. Dobson, Institute of Terrestrial Ecology, Huntingdon, United Kingdom Please not that the layout and pagination of this pdf file are not identical to the printed CICAD Published under the joint sponsorship of the United Nations Environment Programme, the International Labour Organisation, and the World Health Organization, and produced within the framework of the Inter-Organization Programme for the Sound Management of Chemicals. World Health Organization Geneva, 1998 The International Programme on Chemical Safety (IPCS), established in 1980, is a joint venture of the United Nations Environment Programme (UNEP), the International Labour Organisation (ILO), and the World Health Organization (WHO). The overall objectives of the IPCS are to establish the scientific basis for assessment of the risk to human health and the environment from exposure to chemicals, through international peer review processes, as a prerequisite for the promotion of chemical safety, and to provide technical assistance in strengthening national capacities for the sound management of chemicals. The Inter-Organization
    [Show full text]
  • Chlorofluorocarbons Chem 300A Tyler Jensen, Mackenzie Latimer, Jessie Luther, Jake Mcghee, Adeeb Noorani, Tyla Penner, & Maddy Springle
    Chlorofluorocarbons Chem 300a Tyler Jensen, Mackenzie Latimer, Jessie Luther, Jake McGhee, Adeeb Noorani, Tyla Penner, & Maddy Springle 1.1: A Brief History of Chlorofluorocarbons Chlorofluorocarbons (CFCs), also known as Freons, were first synthesized in 1928 by Thomas Midgley Jr, who was working for General Motors trying to find a safe refrigerant to use in commercial applications. (Rosenbaum, n.d.). They are an anthropogenic compound containing fluorine, carbon, and chlorine atoms, and are classified as halocarbons. CFCs are a family of chemicals based upon hydrocarbon skeletons, where most hydrogens have been replaced with chlorine and/or fluorine atoms. They are chemically stable freons that are non-flammable, tasteless and odourless. CFCs are very volatile, which makes for ideal refrigerant gases, having a boiling point close to zero degrees (Rosenbaum, n.d) They were originally created to replace the toxic gases used in the late 1800’s and early 1900’s. Examples of the toxic gases replaced by CFCs as refrigerants are ammonia (NH3), methyl chloride (CH3Cl), and sulfur dioxide (SO2) (Wilkins, 1999). When first created dichlorodifloromethane was found to be less toxic than carbon dioxide, and as non-flammable as carbon tetrachloride (Midgley & Henne, 1930). The non-toxic, non-flammable, and non-reactive properties of CFCs made them ideal for use as refrigerants. CFCs were used in many developed countries for consumption and production as they were inflammable and non-toxic towards humanity. Chlorofluorocarbons can be used as refrigerants, cleaning agents, foaming agents, and propellants for aerosol sprays (Welch, n.d.). In 1974, Two University of California chemists, Professor F. Sherwood Rowland and Dr.
    [Show full text]
  • CHAPTER12 Atmospheric Degradation of Halocarbon Substitutes
    CHAPTER12 AtmosphericDegradation of Halocarbon Substitutes Lead Author: R.A. Cox Co-authors: R. Atkinson G.K. Moortgat A.R. Ravishankara H.W. Sidebottom Contributors: G.D. Hayman C. Howard M. Kanakidou S .A. Penkett J. Rodriguez S. Solomon 0. Wild CHAPTER 12 ATMOSPHERIC DEGRADATION OF HALOCARBON SUBSTITUTES Contents SCIENTIFIC SUMMARY ......................................................................................................................................... 12.1 12.1 BACKGROUND ............................................................................................................................................... 12.3 12.2 ATMOSPHERIC LIFETIMES OF HFCS AND HCFCS ................................................................................. 12.3 12.2. 1 Tropospheric Loss Processes .............................................................................................................. 12.3 12.2.2 Stratospheric Loss Processes .............................................................................................................. 12.4 12.3 ATMOSPHERIC LIFETIMES OF OTHER CFC AND HALON SUBSTITUTES ......................................... 12.4 12.4 ATMOSPHERIC DEGRADATION OF SUBSTITUTES ................................................................................ 12.5 12.5 GAS PHASE DEGRADATION CHEMISTRY OF SUBSTITUTES .............................................................. 12.6 12.5.1 Reaction with NO ..............................................................................................................................
    [Show full text]
  • The Need for Fast Near-Term Climate Mitigation to Slow Feedbacks and Tipping Points
    The Need for Fast Near-Term Climate Mitigation to Slow Feedbacks and Tipping Points Critical Role of Short-lived Super Climate Pollutants in the Climate Emergency Background Note DRAFT: 27 September 2021 Institute for Governance Center for Human Rights and & Sustainable Development (IGSD) Environment (CHRE/CEDHA) Lead authors Durwood Zaelke, Romina Picolotti, Kristin Campbell, & Gabrielle Dreyfus Contributing authors Trina Thorbjornsen, Laura Bloomer, Blake Hite, Kiran Ghosh, & Daniel Taillant Acknowledgements We thank readers for comments that have allowed us to continue to update and improve this note. About the Institute for Governance & About the Center for Human Rights and Sustainable Development (IGSD) Environment (CHRE/CEDHA) IGSD’s mission is to promote just and Originally founded in 1999 in Argentina, the sustainable societies and to protect the Center for Human Rights and Environment environment by advancing the understanding, (CHRE or CEDHA by its Spanish acronym) development, and implementation of effective aims to build a more harmonious relationship and accountable systems of governance for between the environment and people. Its work sustainable development. centers on promoting greater access to justice and to guarantee human rights for victims of As part of its work, IGSD is pursuing “fast- environmental degradation, or due to the non- action” climate mitigation strategies that will sustainable management of natural resources, result in significant reductions of climate and to prevent future violations. To this end, emissions to limit temperature increase and other CHRE fosters the creation of public policy that climate impacts in the near-term. The focus is on promotes inclusive socially and environmentally strategies to reduce non-CO2 climate pollutants, sustainable development, through community protect sinks, and enhance urban albedo with participation, public interest litigation, smart surfaces, as a complement to cuts in CO2.
    [Show full text]
  • US5174906.Pdf
    ||||||||||||| USOO5174906A United States Patent (19) 11 Patent Number: 5,174,906 Henry (45) Date of Patent: Dec. 29, 1992 54) FLUSHING OF HEATING, VENTILATING 56) References Cited AND AIR CONDITIONING SYSTEMS USING ENVIRONMENTALLY SAFE MATERIALS U.S. PATENT DOCUMENTS 4,887,435 2/989 Anderson, Jr. ....................... 62/292 4,934.390 6/1990 Sapp .......... ... 62/303 (75) Inventor: Richard G. Henry, Mayfield Heights, 5,025,633 6/1991 Furmanek ..... ... 62/292 Ohio 5,036,675 8/991 Anderson, Jr. ....................... 62/292 Primary Examiner-Robert A. Dawson 73 Assignee: Advanced Research Technologies, Assistant Examiner-Ana M. Fortuna Park Ridge, Ill. Attorney, Agent, or Firm-Robert J. Black 57) ABSTRACT A solvent selected from the terpene hydrocarbon group 21 Appl. No.: 766,124 and terpene alcohol group as a cleaning agent can pro vide effective cleaning of heating, ventilating and air lar. conditioning systems which use hydrofluorocarbon or (22 Filed: Sep. 27, 1991 hydrochlorofluorocarbon or Freon refrigerants by using a solvent as described. Flushing through the re (5) Int. Cl. ................................................ CO2F 1/68 frigerant system condenser coils and evaporation coils 52 U.S. C. .................................... 210/765; 210/749; removes any trace of excessive compressor lubricant 210/805; 62/292; 62/303: 134/22. l; which will be carried out with the solvent. The flushed 134/22.19; 252/67 materials carried out are biodegradable, thus are desir 58 Field of Search ............... 210/805, 804, 749, 765; able from an environmental standpoint. 62/303, 292, 77, 85; 252/67, 68; 134/22.1, 22, 19, 108 11 Claims, No Drawings 5,174,906 1.
    [Show full text]
  • Title Synthetic Studies on Perfluorinated Compounds
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Kyoto University Research Information Repository Synthetic Studies on Perfluorinated Compounds by Direct Title Fluorination( Dissertation_全文 ) Author(s) Okazoe, Takashi Citation Kyoto University (京都大学) Issue Date 2009-01-23 URL http://dx.doi.org/10.14989/doctor.r12290 Right Type Thesis or Dissertation Textversion author Kyoto University Synthetic Studies on Perfluorinated Compounds by Direct Fluorination Takashi Okazoe Contents Chapter I. General Introduction 1 I-1. Historical Background of Organofluorine Chemistry -Industrial Viewpoint- 2 I-1-1. Incunabula 2 I-1-2. Development with material industry 5 I-1-3. Development of fine chemicals 17 I-2. Methodology for Synthesis of Fluorochemicals 24 I-2-1. Methods used in organofluorine industry 24 I-2-2. Direct fluorination with elemental fluorine 27 I-3. Summary of This Thesis 33 I-4. References 38 Chapter II. A New Route to Perfluoro(Propyl Vinyl Ether) Monomer: Synthesis of Perfluoro(2-propoxypropionyl) Fluoride from Non-fluorinated Compounds 47 II-1. Introduction 48 II-2. Results and Discussion 49 II-3. Conclusions 55 II-4. Experimental 56 II-5. References 60 i Chapter III. A New Route to Perfluorinated Vinyl Ether Monomers: Synthesis of Perfluoro(alkoxyalkanoyl) Fluorides from Non-fluorinated Substrates 63 III-1. Introduction 64 III-2. Results and Discussion 65 III-2-1. Synthesis of PPVE precursors 65 III-2-2. Synthesis of perfluoro(alkoxyalkanoyl) fluorides via perfluorinated mixed esters 69 III-3. Conclusions 75 III-4. Experimental 77 III-5. References 81 Chapter IV. Synthesis of Perfluorinated Carboxylic Acid Membrane Monomers by Liquid-phase Direct Fluorination 83 IV-1.
    [Show full text]
  • Inventory of US Greenhouse Gas Emissions and Sinks: 1990-2015
    ANNEX 6 Additional Information 6.1. Global Warming Potential Values Global Warming Potential (GWP) is intended as a quantified measure of the globally averaged relative radiative forcing impacts of a particular greenhouse gas. It is defined as the cumulative radiative forcing–both direct and indirect effectsintegrated over a specific period of time from the emission of a unit mass of gas relative to some reference gas (IPCC 2007). Carbon dioxide (CO2) was chosen as this reference gas. Direct effects occur when the gas itself is a greenhouse gas. Indirect radiative forcing occurs when chemical transformations involving the original gas produce a gas or gases that are greenhouse gases, or when a gas influences other radiatively important processes such as the atmospheric lifetimes of other gases. The relationship between kilotons (kt) of a gas and million metric tons of CO2 equivalents (MMT CO2 Eq.) can be expressed as follows: MMT MMT CO2 Eq. kt of gas GWP 1,000 kt where, MMT CO2 Eq. = Million metric tons of CO2 equivalent kt = kilotons (equivalent to a thousand metric tons) GWP = Global warming potential MMT = Million metric tons GWP values allow policy makers to compare the impacts of emissions and reductions of different gases. According to the IPCC, GWP values typically have an uncertainty of 35 percent, though some GWP values have larger uncertainty than others, especially those in which lifetimes have not yet been ascertained. In the following decision, the parties to the UNFCCC have agreed to use consistent GWP values from the IPCC Fourth Assessment Report (AR4), based upon a 100 year time horizon, although other time horizon values are available (see Table A-263).
    [Show full text]
  • Synthesis of Hydrofluorocarbon Ethers and New Amorphous Fluoropolymers with Cyclic Fluorocarbon Ether Units
    Clemson University TigerPrints All Dissertations Dissertations August 2016 Synthesis of Hydrofluorocarbon Ethers and New Amorphous Fluoropolymers with Cyclic Fluorocarbon Ether Units Xiaolin Liu Clemson University, [email protected] Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations Recommended Citation Liu, Xiaolin, "Synthesis of Hydrofluorocarbon Ethers and New Amorphous Fluoropolymers with Cyclic Fluorocarbon Ether Units" (2016). All Dissertations. 2539. https://tigerprints.clemson.edu/all_dissertations/2539 This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been accepted for inclusion in All Dissertations by an authorized administrator of TigerPrints. For more information, please contact [email protected]. SYNTHESIS OF HYDROFLUOROCARBON ETHERS AND NEW AMORPHOUS FLUOROPOLYMERS WITH CYCLIC FLUOROCARBON ETHER UNITS A Dissertation Presented to the Graduate School of Clemson University In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Materials Science and Engineering by Xiaolin Liu August 2016 Accepted by: Joseph S. Thrasher, Ph.D., Committee Chair Marek W. Urban, Ph.D. Gary C. Lickfield, Ph.D. Stephen H. Foulger, Ph.D. ABSTRACT The main focus of this work is the synthesis of hydrofluorocarbon ethers (HFEs). New synthetic methods and new HFEs were successfully developed. In Chapter 1, new HFEs were synthesized with tetrafluoroethylene (CF2=CF2, TFE) as new engineered fluids. The fluorinated olefins’ addition to alcohols is a more conventional approach to HFEs, and in our group a synthetic method consists of three steps was attempted: a. radical addition of tetrafluoroethylene (TFE) to 2,2-dimethyl-1,3-dioxolane compound; b. hydrolysis of the fluorinated dioxolane compound to make a diol; c.
    [Show full text]
  • Hydrofluorocarbon Phasedown: Issues for Congress
    March 3, 2021 Hydrofluorocarbon Phasedown: Issues for Congress Congress enacted legislation—the American Innovation including the United States, agreed to the 1985 Vienna and Manufacturing (AIM) Act of 2020—to phase down Convention for the Protection of the Ozone Layer. hydrofluorocarbons (HFCs) domestically (P.L. 116-260, Division S, §103). HFCs are potent greenhouse gases Montreal Protocol (MP) (GHGs) used in air conditioning, refrigeration, foam Parties to the Vienna Convention adopted the subsidiary blowing agents, insulation, and other applications. Multiple MP in 1987 to set binding, quantitative schedules for scientific assessments conclude that anthropogenic GHGs countries to phase out listed ODS. The MP provides for (e.g., carbon dioxide and HFCs) have been a major driver international cooperation on ODS substitutes and research, of observed climate change since 1950. financial assistance, and trade restrictions with nonparties. The United States is among the 197 parties to the Vienna AIM establishes a 15-year timeline to reduce domestic HFC Convention and the MP. production and consumption and directs the U.S. Environmental Protection Agency (EPA) to implement Kigali Amendment to the MP AIM’s requirements, including through regulations. AIM’s As MP parties agreed to accelerate the phaseout of certain phasedown schedule appears to align with international ODS, discussions turned to the projected growth in HFCs as commitments to phase down HFCs under the Kigali ODS replacements. In 2016, MP parties agreed to phase Amendment to the Montreal Protocol. The United States is down HFCs and adopted the Kigali Amendment to the MP, a party to the Montreal Protocol (MP). As of early March its fifth amendment.
    [Show full text]
  • Hydrofluorocarbon Emission Reduction: a Crucial Contribution to Climate Protection Proposals to Enhance European Climate Ambition
    SCIENTIFIC OPINION PAPER // MAY 2021 Hydrofluorocarbon Emission Reduction: A Crucial Contribution to Climate Protection Proposals to enhance European Climate Ambition Imprint Publisher Umweltbundesamt Wörlitzer Platz 1 06844 Dessau-Roßlau Tel: +49 340-2103-0 Fax: +49 340-2103-2285 [email protected] Internet: www.umweltbundesamt.de /umweltbundesamt.de /umweltbundesamt Responsible unit: Section III 1.4 Substance-related Product Issues Publication as pdf: http://www.umweltbundesamt.de/publikationen Dessau-Roßlau, May 2021 SCIENTIFIC OPINION PAPER // May 2021 Hydrofluorocarbon Emission Reduction: A Crucial Contribution to Climate Protection Proposals to enhance European Climate Ambition by Daniel de Graaf, Cornelia Elsner, Gabriele Hoffmann, Kerstin Martens, Diana Thalheim and Wolfgang Plehn German Environment Agency, Dessau-Roßlau Executive summary Hydrofluorocarbons (HFCs) are the dominant fraction of fluorinated greenhouse gases, also known as F-gases. HFC emissions in the European Union (EU) amounted to 112 million tonnes CO2 equivalent (Mt CO2eq.) in 2018. This amounts to 2,2% of the EU’s total greenhouse gas emissions. Main sources of HFC emissions are refrigeration and air conditioning plants and appliances. Following a proposal by the EU Commission, EU member states and the EU parliament just recently agreed to increase the 2030 target from 40% to 55% reduction of greenhouse gas emissions compared to the 1990 level. This considerable step-up of climate ambition by more than a third needs to be reflected also in the revision process of the F-gas Regulation, regardless of the achievements already made to curb F-gas emissions. Since 2006, the EU F-gas Regulation has been seeking to reduce emissions of HFCs and other F- gases.
    [Show full text]
  • MAC Report 2013: IV Industrial Processes Sector
    IV. Industrial Processes Sector NITRIC AND ADIPIC ACID PRODUCTION IV.1. Nitric and Adipic Acid Production IV.1.1 Sector Summary he production of nitric and adipic acid results in significant nitrous oxide (N2O) emissions as a by-product. Nitric and adipic acid are commonly used as feedstocks in the manufacture of a variety of commercial products, particularly fertilizers and synthetic fibers (USEPA, 2012a). T Combined global emissions of N2O from nitric and adipic acid production are shown in Figure 1-1. Globally, emissions have declined by about 13% (17 MtCO2e) over the past decade; however, over the next 20 years—2010 to 2030—emissions are expected to increase steadily (~20%) growing by 24 MtCO2e over the time period. This trend is largely due to increased demand for fertilizer (nitric acid is an input) and increased demand for synthetic fibers (adipic acid is an input). In 2030, the United States, South Korea, Brazil, China, and Ukraine are expected to be five largest emitters of N2O from nitric and adipic acid production. Figure 1-1: N2O Emissions from Nitric and Adipic Acid: 2000–2030 160 142 135 140 125 118 120 Ukraine 100 e 2 China 80 Brazil MtCO 60 South Korea 40 United States 20 Rest of World 0 2000 2010 2020 2030 Year Source: USEPA, 2012a. Over the coming decades, increased demand for adipic acid in Asia is expected to contribute to higher N2O emissions from adipic acid production, while abatement control technologies employed at adipic acid production facilities in the 1990s in the United States, Canada, and some countries of the EU are expected to reduce N2O emissions (USEPA, 2012a).
    [Show full text]
  • BNL Refrigerant Overview
    BNL Refrigerant Overview Presentation to the BER and CAC Ed Murphy, PE Chief Engineer / Manager, Energy & Utilities Division May 2011 Background… Evaporation is a cooling process. Condensation is a heating process. Refrigeration is an engineered “cycle” where the refrigerant is made to evaporate in the area you want cooled – and condense in the area you want heated. • Heat flows naturally from hot (high temperature) to cold (low temperature). • To make heat flow from cold to hot, we must do work (add energy) to the cycle. Refrigerants are the “working fluids” in refrigeration, air conditioning and heat pumping systems • They absorb heat from one area (office/house or refrigerator) and reject it into another (outdoors or kitchen air) Refrigeration Cycle Refrigerant Selection Refrigerant selection involves compromises between desirable / undesirable properties: • Thermal / physical properties (Boiling point? Freezing point? Heat of vaporization? Pressure range? Molecular weight?) • Transport properties (Thermal conductivity? Viscosity?) • Chemical stability (Stable? Corrosive? Compatible with oil? Compatible with metals, gaskets, seals?) • Safety (Flammable? Explosive? Toxic? Asphyxiant?) • Environmental consequences of leakage (Ozone depleting? Greenhouse gas?) Refrigerant History Early air conditioners and refrigerators employed flammable and toxic gases. • Ammonia, sulfur dioxide, methyl chloride, propane. • Leaks resulted in fires, explosion, injuries and fatalities. Thomas Midgley, Jr., working for GM, invented the first “safe” chlorofluorocarbon gas, Freon, in 1928. [R-12] • Freon is a trademark of DuPont for any chlorofluorocarbon (CFC), hydrogenated CFC (HCFC) or hydrofluorocarbon (HFC). 1970s – concerns arise about CFC impacts on environment. • Lovelock measures CFC residuals in the atmosphere at 60 ppt. • Rowland & Molina show UV breaks down CFCs – and free chlorine depletes earth’s ozone layer.
    [Show full text]