Interactive Information Extraction with Constrained Conditional Random Fields

Total Page:16

File Type:pdf, Size:1020Kb

Interactive Information Extraction with Constrained Conditional Random Fields Interactive Information Extraction with Constrained Conditional Random Fields Trausti Kristjansson Aron Culotta Paul Viola Andrew McCallum Microsoft Research Dept. of Computer Science Microsoft Research Dept. of Computer Science Redmond, Washington University of Mass. Amherst Redmond, Washington University of Mass. Amherst [email protected] [email protected] [email protected] [email protected] Abstract fi elds in a contact database, including last name, fi rst name, address, city, state, phone, etc. As we will show, it is pos- Information Extraction methods can be used to au- sible to create automatic systems which will extract over tomatically “fill-in” database forms from unstructured data such as Web documents or email. State-of-the-art 90% of these fi elds correctly from a diverse set of complex methods have achieved low error rates but invariably sources. Given this low error rate, the first goal of a good make a number of errors. The goal of an interactive user interface is to display the extracted fi elds so that they information extraction system is to assist the user in fill- can be verified rapidly. The second goal is to allow for the ing in database fields while giving the user confidence rapid correction of incorrect fi elds. It is important to realize in the integrity of the data. The user is presented with that the fi elds are extracted as an interdependent set. Given an interactive interface that allows both the rapid verifi- the name “Charles Stanley” it is likely that the fi rst name is cation of automatic field assignments and the correction Charles and the last name is “Stanley.” But, the opposite is of errors. In cases where there are multiple errors, our possible as well. Given the error that the two names have system takes into account user corrections, and immedi- been switched, naive correction systems require two correc- ately propagates these constraints such that other fields are often corrected automatically. tive actions. In the interactive information extraction system Linear-chain conditional random fields (CRFs) have described below, when the user corrects the fi rst name fi eld been shown to perform well for information extraction to be “Stanley,” the system then automatically changes the and other language modelling tasks due to their ability last name fi eld to be “Charles.” We call this capability cor- to capture arbitrary, overlapping features of the input in rection propagation. a Markov model. We apply this framework with two ex- From the perspective of user interface design, there are tensions: a constrained Viterbi decoding which finds the a number of goals, including reducing cognitive load, re- optimal field assignments consistent with the fields ex- ducing the number of user actions (clicks and keystrokes), plicitly specified or corrected by the user; and a mech- and speeding up the data acquisition process. An impor- anism for estimating the confidence of each extracted field, so that low-confidence extractions can be high- tant element that is often overlooked is the confidence the lighted. Both of these mechanisms are incorporated in a user has in the integrity of the data. This is crucial to the novel user interface for form filling that is intuitive and usability of the application, as users are not tolerant of (sur- speeds the entry of data—providing a 23% reduction in prising) errors, and will discontinue the use of an automatic error due to automated corrections. semi-intelligent application if it has corrupted or misclassi- fi ed information. Unfortunately such factors are often hard Introduction to quantify. An interactive form fi lling system is quite different from A recent study showed that as part of the process of gather- the batch processing of data, such as for warehouse data ing and managing information, currently 70 million workers, cleaning (Borkar, Deshmukh, & Sarawagi 2000). In batch or 59% of working adults in the U.S., complete forms on a processing the set of fi elds extracted are determined directly regular basis. Filling in forms is tedious, error-prone and and are optimized for low error rates. In contrast interactive time-consuming. In many cases, the data that is used to pop- information extraction (IIE) puts additional requirementson ulate the fi elds of the form is already available in computer the information extraction system. To facilitate a natural readable form. user experience, the information extraction system must dis- The goal of this work is to reduce the burden on the user play low confi dence fi elds and make optimal use of any cor- to the largest extent possible, while ensuring the integrity rections that the user has made. of the data entered into the system. One typical example There are a number of statistical approaches for infor- is the entry of contact addresses from on-line sources such mation extraction (IE) that are more or less suited to this as email messages or Web pages. There are more than 20 paradigm. The most common engineering approach is to Copyright c 2004, American Association for Artificial Intelli- build a set of regular expressions that extract the fields in gence (www.aaai.org). All rights reserved. question. Regular expressions are a poor match for interac- tive information extraction since they cannot estimate confi- dence, nor can they naturally incorporateuser labels and cor- rections. Maximum Entropy Classifi ers are potentially quite powerful, since they allow for the introduction of arbitrary, potentially dependent, features. Maximum entropy classi- fi er can also estimate the confi dence in decisions. However, each fi eld extracted using a maximum entropy model is es- timated independently. For this reason the potential for cor- rection propagation is minimal. Conditional Random Fields, a generalization both of maximum entropy models and hid- den Markov models, allow for the introduction of arbitrary non-local features and capture the dependencies between la- bels. CRFs have been shown to perform well on information extraction tasks (McCallum & Li 2003; Pinto et al. 2003; McCallum 2003; Sha & Pereira 2003), and are well-suited for interactive information extraction since the confi denceof the labels can be estimated and there is a natural scheme for Figure 1: A user interface for entry of contact information. optimally propagating user corrections. The user interface relies on interactive information extrac- There are two contributions of this paper. The first con- tion. If a user makes a correction, the interactive parser can tribution is the introduction of the interactive information update other fields. Notice that there are 3 possible names extraction framework. This includes a user interface that associated with the address. The user is alerted to the ambi- highlights the label assigned to each field in the unstruc- guity by the color coding. tured document visually while flagging low confi dence la- bels. The interface also allows for rapid correction using “drag and drop.” Finally, the interface supports the propa- case color-coded correspondence is used (e.g. blue for gation of fi eld corrections, so that one correction will often all phone information, and yellow for email addresses). correct many errors. Other options include arrows or floating overlayed tags. The second contribution is a pair of new algorithms for The UI allows for rapid correction. For example, text seg- the estimation of field confidences in CRFs and for the in- ments can easily be grouped into blocks to allow for a corporation of constraints into the Viterbi decoding process. single click-drag-drop. In the contact record at the left, In this case the constraints come from corrections to incor- fields have drop down menus with other candidates for rect fields or from the new field labels added by the user. the fi eld. Alternatively the interface could include “try The remainder of this paper describes each contribution again” buttons next to the fields that cycle through pos- in turn. We then describe a set of experiments in the domain sible alternative extractions for the fi eld until the correct of contact address entry. In these experiments we compare value is found. the performance of several well known algorithms against CRFs. We then investigate the effectiveness of constrained The UI immediately propagates all corrections and addi- Viterbi decoding after correcting the least confi dent error. tions by the “constrained Viterbi” proceduredescribed be- low. User Interaction Models The UI visually alerts the user to fi elds that have low con- Theideaexploredin this paper is that of populatingthe fi elds fi dence. Furthermore, in the unstructured text box, possi- of a contact database, sometimes called a Digital Address ble alternatives may be highlighted (e.g. alternate names Book. With the increase of personal digital devices such as are indicated in orange) personal digital assistants (PDAs), and cell phones, there is Using a well-defi ned probabilistic model, such as CRF’s, increasing demand for better tools for contact entry. we can correctly calculate confidence estimates for each User Interfaces for Information Extraction field assignment. Estimation of confidence scores is dis- cussed in the section “Confi dence Estimation.” Figure 1 shows a user interface that facilitates interactive in- Confidence scores can be utilized in a UI in a number formation extraction. The fi elds to be populated are on the of ways. Field assignments with relatively low confi dence left side, and the source text was pasted by the user into the can be visually marked. If a field assignment has very low right side. The information extraction system extracts text confi dence, and is likely to be incorrect; we may choose not segments from the unstructured text and populates the cor- to fi ll in the fi eld at all. The text that is most likely to be responding fi elds in the contact record.
Recommended publications
  • Estimation of Viterbi Path in Bayesian Hidden Markov Models
    Estimation of Viterbi path in Bayesian hidden Markov models Jüri Lember1,∗ Dario Gasbarra2, Alexey Koloydenko3 and Kristi Kuljus1 May 14, 2019 1University of Tartu, Estonia; 2University of Helsinki, Finland; 3Royal Holloway, University of London, UK Abstract The article studies different methods for estimating the Viterbi path in the Bayesian framework. The Viterbi path is an estimate of the underlying state path in hidden Markov models (HMMs), which has a maximum joint posterior probability. Hence it is also called the maximum a posteriori (MAP) path. For an HMM with given parameters, the Viterbi path can be easily found with the Viterbi algorithm. In the Bayesian framework the Viterbi algorithm is not applicable and several iterative methods can be used instead. We introduce a new EM-type algorithm for finding the MAP path and compare it with various other methods for finding the MAP path, including the variational Bayes approach and MCMC methods. Examples with simulated data are used to compare the performance of the methods. The main focus is on non-stochastic iterative methods and our results show that the best of those methods work as well or better than the best MCMC methods. Our results demonstrate that when the primary goal is segmentation, then it is more reasonable to perform segmentation directly by considering the transition and emission parameters as nuisance parameters. Keywords: HMM, Bayes inference, MAP path, Viterbi algorithm, segmentation, EM, variational Bayes, simulated annealing 1 Introduction and preliminaries arXiv:1802.01630v2 [stat.CO] 11 May 2019 Hidden Markov models (HMMs) are widely used in application areas including speech recognition, com- putational linguistics, computational molecular biology, and many more.
    [Show full text]
  • Sequence Models
    Sequence Models Noah Smith Computer Science & Engineering University of Washington [email protected] Lecture Outline 1. Markov models 2. Hidden Markov models 3. Viterbi algorithm 4. Other inference algorithms for HMMs 5. Learning algorithms for HMMs Shameless Self-Promotion • Linguistic Structure Prediction (2011) • Links material in this lecture to many related ideas, including some in other LxMLS lectures. • Available in electronic and print form. MARKOV MODELS One View of Text • Sequence of symbols (bytes, letters, characters, morphemes, words, …) – Let Σ denote the set of symbols. • Lots of possible sequences. (Σ* is infinitely large.) • Probability distributions over Σ*? Pop QuiZ • Am I wearing a generative or discriminative hat right now? Pop QuiZ • Generative models tell a • Discriminative models mythical story to focus on tasks (like explain the data. sorting examples). Trivial Distributions over Σ* • Give probability 0 to sequences with length greater than B; uniform over the rest. • Use data: with N examples, give probability N-1 to each observed sequence, 0 to the rest. • What if we want every sequence to get some probability? – Need a probabilistic model family and algorithms for constructing the model from data. A History-Based Model n+1 p(start,w1,w2,...,wn, stop) = γ(wi w1,w2,...,wi 1) | − i=1 • Generate each word from left to right, conditioned on what came before it. Die / Dice one die two dice start one die per history: … … … start I one die per history: … … … history = start start I want one die per history: … … history = start I … start I want a one die per history: … … … history = start I want start I want a flight one die per history: … … … history = start I want a start I want a flight to one die per history: … … … history = start I want a flight start I want a flight to Lisbon one die per history: … … … history = start I want a flight to start I want a flight to Lisbon .
    [Show full text]
  • Viterbi Extraction Tutorial with Hidden Markov Toolkit
    Viterbi Extraction tutorial with Hidden Markov Toolkit Zulkarnaen Hatala 1, Victor Puturuhu 2 Electrical Engineering Department Politeknik Negeri Ambon Ambon, Indonesia [email protected] [email protected] Abstract —An algorithm used to extract HMM parameters condition probabilities. The distribution of observation only is revisited. Most parts of the extraction process are taken from depends on the current state of Markov chain. In some implemented Hidden Markov Toolkit (HTK) program under application not all states of Markov chain emit observations. name HInit. The algorithm itself shows a few variations Set of states that emit an observation is called emitting states, compared to another domain of implementations. The HMM while non emitting states could be an entry or start state, model is introduced briefly based on the theory of Discrete absorption or exiting state and intermediate or delaying state. Time Markov Chain. We schematically outline the Viterbi The entry state is the Markov chain state with initial method implemented in HTK. Iterative definition of the probability 1. method which is ready to be implemented in computer programs is reviewed. We also illustrate the method One application of Hidden Markov Model is in speech calculation precisely using manual calculation and extensive recognition. The observations of HMM are used to model graphical illustration. The distribution of observation sequence of speech feature vectors like Mel Frequency probability used is simply independent Gaussians r.v.s. The Cepstral Coefficients (MFCC) [4]. MFCC is assumed to be purpose of the content is not to justify the performance or generated by emitting hidden states of the underlying accuracy of the method applied in a specific area.
    [Show full text]
  • Markov Chains and Hidden Markov Models
    COMP 182 Algorithmic Thinking Luay Nakhleh Markov Chains and Computer Science Hidden Markov Models Rice University ❖ What is p(01110000)? ❖ Assume: ❖ 8 independent Bernoulli trials with success probability of α? ❖ Answer: ❖ (1-α)5α3 ❖ However, what if the assumption of independence doesn’t hold? ❖ That is, what if the outcome in a Bernoulli trial depends on the outcomes of the trials the preceded it? Markov Chains ❖ Given a sequence of observations X1,X2,…,XT ❖ The basic idea behind a Markov chain (or, Markov model) is to assume that Xt captures all the relevant information for predicting the future. ❖ In this case: T p(X1X2 ...XT )=p(X1)p(X2 X1)p(X3 X2) p(XT XT 1)=p(X1) p(Xt Xt 1) | | ··· | − | − t=2 Y Markov Chains ❖ When Xt is discrete, so Xt∈{1,…,K}, the conditional distribution p(Xt|Xt-1) can be written as a K×K matrix, known as the transition matrix A, where Aij=p(Xt=j|Xt-1=i) is the probability of going from state i to state j. ❖ Each row of the matrix sums to one, so this is called a stochastic matrix. 590 Chapter 17. Markov and hidden Markov models Markov Chains 1 α 1 β − α − A11 A22 A33 1 2 A12 A23 1 2 3 β ❖ A finite-state Markov chain is equivalent(a) (b) Figure 17.1 State transition diagrams for some simple Markov chains. Left: a 2-state chain. Right: a to a stochastic automaton3-state left-to-right. chain. ❖ One way to represent aAstationary,finite-stateMarkovchainisequivalenttoa Markov chain is stochastic automaton.Itiscommon 590 to visualizeChapter such 17.
    [Show full text]
  • N-Best Hypotheses
    FIANAL PROJECT REPORT NAME: Shuan wang STUDENT #: 21224043 N-best Hypotheses [INDEX] 1. Introduction 1.1 Project Goal 1.2 Sources of Interest 1.3 Current Work 2. Implemented Three Algorithms 2.1 General Viterbi Algorithm 2.1.1 Basic Ideas 2.1.2 Implementation 2.2 N-Best List in HMM 2.2.1 Basic Ideas 2.2.2 Implementation 2.3 BMMF (Best Max-Marginal First) 2.3.1 Basic Ideas 2.3.2 Implementation 3. Some Experiment Results 4. Future Work 5. References 1 of 8 FIANAL PROJECT REPORT NAME: Shuan wang STUDENT #: 21224043 1. Introduction It’s very useful to find the top N most probable figures of hidden variable sequence. There are some important methods in recent years to find such kind of N figures: (1) General Viterbi Algorithm (2) MFP (Max-Flow Propagation), by Nilson and Lauritzen in 1998 (3) N-Best List in HMM, by Nilson and Goldberger in 2001 (4) BMMF (Best Max-Marginal First), by Chen Yanover and Yair Weiss in 2003 In this project my task is to realize part of these algorithms and test the results. 1.1 Project Goal The project goal is to totally understand the basic algorithm ideas and try to realize the most recent three of them (MFP, N-Best List in HMM, BMMF) and test them. 1.2 Sources of Interest Many applications, such as protein folding, vocabulary speech recognition and image analysis, want to find not just the best configuration of the hidden variables (state sequence), but rather the top N. Normally the recognizers in these applications are based on a relatively simple model.
    [Show full text]
  • Graphical Models
    Graphical Models Unit 11 Machine Learning University of Vienna Graphical Models Bayesian Networks (directed graph) The Variable Elimination Algorithm Approximate Inference (The Gibbs Sampler ) Markov networks (undirected graph) Markov Random fields (MRF) Hidden markov models (HMMs) The Viterbi Algorithm Kalman Filter Simple graphical model 1 The graphs are the sets of nodes, together with the links between them, which can be either directed or not. If two nodes are not linked, than those two variables are independent. The arrows denote causal relationships between nodes that represent features. The probability of A and B is the same as the probability of A times the probability of B conditioned on A: P(a; b) = P(bja)P(a) Simple graphical model 2 The nodes are separated into: • observed nodes: where we can see their values directly • hidden or latent nodes: whose values we hope to infer, and which may not have clear meanings in all cases. C is conditionally independent of B, given A Example: Exam Panic Directed acyclic graphs (DAG) paired with the conditional probability tables are called Bayesian networks. B - denotes a node stating whether the exam was boring R - whether or not you revised A - whether or not you attended lectures P - whether or not you will panic before the exam Example: Exam Panic R P(r) P(:r) P(b) P(:b) T 0.3 0.7 0.5 0.5 F 0.8 0.2 RA P(p) P(:p) A P(a) P(:a) TT 0 1 T 0.1 0.9 TF 0.8 0.2 F 0.5 0.5 FT 0.6 0.4 FF 1 0 P The probability of panicking: P(p) = b;r;a P(b; r; a; p) = P b;r;a P(b) × P(rjb) × P(ajb) × P(pjr; a) Example: Exam Panic Suppose you know that the course was boring, and want to work out how likely it is that you will panic before exam.
    [Show full text]
  • Hidden Markov Models in Bioinformatics
    Current Bioinformatics, 2007, 2, 49-61 49 Hidden Markov Models in Bioinformatics Valeria De Fonzo1, Filippo Aluffi-Pentini2 and Valerio Parisi*,3 1EuroBioPark, Università di Roma “Tor Vergata”, Via della Ricerca Scientifica 1, 00133 Roma, Italy 2Dipartimento Metodi e Modelli Matematici, Università di Roma “La Sapienza”, Via A. Scarpa 16, 00161 Roma, Italy 3Dipartimento di Medicina Sperimentale e Patologia, Università di Roma “La Sapienza”, Viale Regina Elena 324, 00161 Roma, Italy Abstract: Hidden Markov Models (HMMs) became recently important and popular among bioinformatics researchers, and many software tools are based on them. In this survey, we first consider in some detail the mathematical foundations of HMMs, we describe the most important algorithms, and provide useful comparisons, pointing out advantages and drawbacks. We then consider the major bioinformatics applications, such as alignment, labeling, and profiling of sequences, protein structure prediction, and pattern recognition. We finally provide a critical appraisal of the use and perspectives of HMMs in bioinformatics. Keywords: Hidden markov model, HMM, dynamical programming, labeling, sequence profiling, structure prediction. INTRODUCTION this case, the time evolution of the internal states can be induced only through the sequence of the observed output A Markov process is a particular case of stochastic states. process, where the state at every time belongs to a finite set, the evolution occurs in a discrete time and the probability If the number of internal states is N, the transition distribution of a state at a given time is explicitly dependent probability law is described by a matrix with N times N only on the last states and not on all the others.
    [Show full text]
  • Hidden Markov Model: Tutorial
    Hidden Markov Model: Tutorial Benyamin Ghojogh [email protected] Department of Electrical and Computer Engineering, Machine Learning Laboratory, University of Waterloo, Waterloo, ON, Canada Fakhri Karray [email protected] Department of Electrical and Computer Engineering, Centre for Pattern Analysis and Machine Intelligence, University of Waterloo, Waterloo, ON, Canada Mark Crowley [email protected] Department of Electrical and Computer Engineering, Machine Learning Laboratory, University of Waterloo, Waterloo, ON, Canada Abstract emitted observation symbols (Rabiner, 1989). HMM mod- This is a tutorial paper for Hidden Markov Model els the the probability density of a sequence of observed (HMM). First, we briefly review the background symbols (Roweis, 2003). on Expectation Maximization (EM), Lagrange This paper is a technical tutorial for evaluation, estima- multiplier, factor graph, the sum-product algo- tion, and training in HMM. We also explain some applica- rithm, the max-product algorithm, and belief tions for HMM. There exist many different applications for propagation by the forward-backward procedure. HMM. One of the most famous applications is in speech Then, we introduce probabilistic graphical mod- recognition (Rabiner, 1989; Gales et al., 2008) where an els including Markov random field and Bayesian HMM is trained for every word in the speech (Rabiner & network. Markov property and Discrete Time Juang, 1986). Another application of HMM is in action Markov Chain (DTMC) are also introduced. We, recognition (Yamato et al., 1992) because an action can then, explain likelihood estimation and EM in be seen as a sequence or times series of poses (Ghojogh HMM in technical details. We explain evalua- et al., 2017; Mokari et al., 2018).
    [Show full text]
  • Lecture 6A: Introduction to Hidden Markov Models
    Lecture 6a: Introduction to Hidden Markov Models Introduction to Computational Biology Instructor: Teresa Przytycka, PhD Igor Rogozin PhD First order Markov model (informal) α A G β β β β β,α -probability of given mutation in a unit of time C T α transversion transition A random walk in this graph will generates a path; say AATTCA…. For each such path we can compute the probability of the path In this graph every path is possible (with different probability) but in general this does need to be true. First order Markov model (formal) Markov model is represented by a graph with set of vertices corresponding to the set of states Q and probability of going from state i to state j in a random walk described by matrix a: a – n x n transition probability matrix a(i,j)= P[q t+1=j|q t=i] where q t denotes state at time t Thus Markov model M is described by Q and a M = (Q, a) Example 1/4 Transition probabilities for general DNA seq. Set of states Q: {Begin, End, A,T,C,G} Transition probability matrix a: a Probability of a sequence of states S=q0,…,qm in model M Assume a random walk that starts from state q0 and goes for m steps. What is the probability that S= q0,…,qm is the sequence of states visited? P(S|M) = a(q0,q1) a(q1 , q2) a(q2 , q3) … a(qm-1 , qm) P(S|M) = probability of visiting sequence of states S assuming Markov model M defined by a: n x n transition probability matrix a(i,j) = Pr[q t+1=j|q t=i] Example 1/4 Transition probabilities for general DNA seq.
    [Show full text]
  • Hidden Markov Models + Conditional Random Fields
    10-715 Advanced Intro. to Machine Learning Machine Learning Department School of Computer Science Carnegie Mellon University Hidden Markov Models + Conditional Random Fields Matt Gormley Guest Lecture 2 Oct. 31, 2018 1 1. Data 2. Model (n) N 1 = x n=1 p(x ✓)= (x ) D { } | Z(✓) C C n v p d n Sample 1: C time flies like an arrow Y2C T1 T2 T3 T4 T5 Sample n n v d n 2: W W W W W time flies like an arrow 1 2 3 4 5 Sample n v p n n 3: flies fly with their wings 3. Objective N Sample p n n v v (n) 4: `(✓; )= log p(x ✓) with time you will see D | n=1 X 5. Inference 4. Learning 1. Marginal Inference p(x )= p(x0 ✓) ✓⇤ = argmax `(✓; ) C | x :x =x D 0 C0 C ✓ 2. Partition Function X Z(✓)= C (xC ) x C 3. MAP Inference X Y2C xˆ = argmax p(x ✓) x | 2 HIDDEN MARKOV MODEL (HMM) 3 Dataset for Supervised Part-of-Speech (POS) Tagging Data: = x(n), y(n) N D { }n=1 n v p d n y(1) Sample 1: time flies like an arrow x(1) n n v d n y(2) Sample 2: time flies like an arrow x(2) (3) n v p n n y Sample 3: (3) flies fly with their wings x (4) p n n v v y Sample 4: (4) with time you will see x 4 Naïve Bayes for Time Series Data We could treat each word-tag pair (i.e.
    [Show full text]
  • 4A. Inference in Graphical Models Inference on a Chain (Rep.)
    Computer Vision Group Prof. Daniel Cremers 4a. Inference in Graphical Models Inference on a Chain (Rep.) • The first values of µα and µβ are: • The partition function can be computed at any node: • Overall, we have O(NK2) operations to compute the marginal Machine Learning for Dr. Rudolph Triebel Computer Vision 2 Computer Vision Group More General Graphs The message-passing algorithm can be extended to more general graphs: Directed Undirected Polytree Tree Tree It is then known as the sum-product algorithm. A special case of this is belief propagation. Machine Learning for Dr. Rudolph Triebel Computer Vision 3 Computer Vision Group More General Graphs The message-passing algorithm can be extended to more general graphs: Undirected Tree An undirected tree is defined as a graph that has exactly one path between any two nodes Machine Learning for Dr. Rudolph Triebel Computer Vision 4 Computer Vision Group More General Graphs The message-passing algorithm can be extended to more general graphs: Directed A directed tree has Tree Conversion from only one node a directed to an without parents and undirected tree is all other nodes no problem, have exactly one because no links parent are inserted The same is true for the conversion back to a directed tree Machine Learning for Dr. Rudolph Triebel Computer Vision 5 Computer Vision Group More General Graphs The message-passing algorithm can be extended to more general graphs: Polytree Polytrees can contain nodes with several parents, therefore moralization can remove independence relations Machine Learning for Dr. Rudolph Triebel Computer Vision 6 Computer Vision Group Factor Graphs • The Sum-product algorithm can be used to do inference on undirected and directed graphs.
    [Show full text]
  • Hidden Markov Models
    Hidden Markov Models A profile HMM What is a HMM? • It’s a model. It condenses information. • Models 1D discrete data. • Directed graph. • Nodes emit discrete data • Edges transition between nodes. • What’s hidden about it? • Node identity. • Who is Markov? 2 Markov processes time sequence Markov process is any process where the next item in the list depends on the current item. The dimension can be time, sequence position, etc Modeling protein secondary structure using Markov chains “states” connected by “transitions” H E H=helix E=extended (strand) L L=loop Setting the parameters of a Markov model from data. Secondary structure data LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLEEEEELLLLEEEEELLLLLLLLLLLEEEEEEEEELLLLLEEEEEEEEELL LLLLLLEEEEEELLLLLEEEEEELLLLLLLLLLLLLLLEEEEEELLLLLEEEEELLLLLLLLLLEEEELLLLEEEELLLLEEE EEEEELLLLLLEEEEEEEEELLLLLLEELLLLLLLLLLLLLLLLLLLLLLLLEEEEELLLEEEEEELLLLLLLLLLEEEEEEL LLLLEEELLLLLLLLLLLLLEEEEEEEEELLLEEEEEELLLLLLLLLLLLLLLLLLLHHHHHHHHHHHHHLLLLLLLEEL HHHHHHHHHHLLLLLLHHHHHHHHHHHLLLLLLLELHHHHHHHHHHHHLLLLLHHHHHHHHHHHHHLLLLLEEEL HHHHHHHHHHLLLLLLHHHHHHHHHHEELLLLLLHHHHHHHHHHHLLLLLLLHHHHHHHHHHHHHHHHHHHHH HHHHHHLLLLLLHHHHHHHHHHHHHHHHHHLLLHHHHHHHHHHHHHHLLLLEEEELLLLLLLLLLLLLLLLEEEEL LLLHHHHHHHHHHHHHHHLLLLLLLLEELLLLLHHHHHHHHHHHHHHLLLLLLEEEEELLLLLLLLLLHHHHHHHH HHHHHHHHHHHHHHHLLLLLHHHHHHHHHLLLLHHHHHHHLLHHHHHHHHHHHHHHHHHHHH Count the pairs to get the transition probability. E P(L|E) L P(L|E) = P(EL)/P(E) = counts(EL)/counts(E) counts(E) = counts(EE) + counts(EL) + counts(EH) Therefore: P(E|E) + P(L|E) + P(H|E) = 1. A transition matrix P(H|H)
    [Show full text]